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ABSTRACT

Distributed Video coding based on compressed sensing is
considered in this paper. Side information plays an important
role in the quality of decoded non-key video frames. Existing
systems generate side information based on the decoded key
frames and the processes are quite complicated, increasing
the computation burden at the decoder. We propose a side
information generation method that is founded on the high
statistical correlation between compressed sensing measure-
ments of key frames and non-key frames. The proposed
technique is simple and simulation results show that better
rate distortion performance can be obtained in comparison
with motion compensated interpolation.

Index Terms— Distributed Video Coding, Side Informa-
tion Generation, Compressed Sensing.

1. INTRODUCTION

The encoding of video data in conventional video compres-
sion standards [1] is a computationally demanding process
mainly because it involves motion estimation to give us higher
compression rates. Decoding videos compressed with con-
ventional standards, on the other hand, is much simpler. For
modern applications where video acquisition is performed by
resource limited devices such as mobile phones, and decod-
ing is performed by relatively resource rich computers, a new
approach to video encoding and decoding is needed. It ba-
sically requires a low-power, low-complexity encoder while
the computational burden is shifted from the encoder to the
decoder.

Research in this direction has been developed along the
lines of Distributed Video Coding (DVC) [2]. DVC is an ap-
plication of distributed source coding, pioneered by Slepian
and Wolf [3] and also Wyner and Ziv [4], which involves the
encoding of two or more dependent sources. Each source is
coded by an independent encoder. At the receiver (decoder),
the independently encoded data are jointly decoded by ex-
ploiting any correlation between them. When applied to video
coding, this implies that no motion estimation is performed at
the encoder. More recently, DVC has been combined with

the concept of Compressed Sensing (CS) [5, 6]. The theory
of CS tells us that for signals which are sparse in a certain
domain, the sampling rate required to reconstruct these sig-
nals can be much lower than what is required by Shannon’s
sampling theorem. Since video signals contain substantial
amounts of redundancy and are therefore sparse, CS is appli-
cable. A number of DVC schemes that makes use of CS has
recently been proposed [7, 8, 9, 10]. Typically, video frames
are classified into key and non-key frames. Key frames are
encoded at substantially higher rates than non-key frames.
Since these frames are encoded independently in DVC sys-
tems, the quality of the decoded non-key frames will be sub-
stantially lower than that for key frames. In order to over-
come this problem, non-key frames are decoded with the help
of side information which is generated at the decoder. The
way side information is generated varies in complexity for the
various systems mentioned above. A common technique is
motion compensated interpolation which involves motion es-
timation, increasing the computational burden at the decoder.
More importantly, side information is derived from decoded
key frames and therefore depends on the quality of the recon-
structed data.

In this paper, we propose a simple and effective side in-
formation generation technique for DVC based solely on CS.
This technique is based on the fact that CS measurements be-
tween video frames are highly correlated. Side information is
generated directly from CS measurements of the key frames.
Thus it does not depend on the decoded key frames, unlike
other DVC techniques. The performance of this technique is
compared with motion compensated interpolation proposed
in [8] using four different video sequences. Experimental re-
sults show that the proposed technique produces better rate
distortion performance and is computationally less demand-
ing.

The rest of this paper is organized as follows. In Sec-
tion 2 we give a brief overview of compressed sensing and
distributed video coding based on CS. In Section 3, we pro-
vide some details on role of side information in DVC. Our
proposed side information generation scheme is presented in
Section 4. It is tested using several video sequences and re-
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sults are presented in Section 5. Finally, Section 6 concludes
the paper.

2. BACKGROUND

2.1. Compressed Sensing

Compressed Sensing [5, 6] suggests that signals which are
sparse in some domain can be efficiently acquired much
lower than the sampling rate required by Shannon’s sam-
pling theorem. In practice, most compressible signals have
only a few significant coefficients while the rest have rela-
tively small magnitudes. A signal is more compressible if
it has higher sparsity in some representation domain Ψ that
is less coherent to the sensing (or sampling) domain Φ. Let
𝑥 = {𝑥[1], . . . 𝑥[𝑁 ]} be a discrete time real-valued random
process. If 𝑥 is represented in a transform domain Ψ by 𝑠,
then

𝑥 = Ψ𝑠 =

𝑁∑
𝑖=1

𝑠𝑖𝜓𝑖 (1)

where 𝑠 = [𝑠1 . . . 𝑠𝑁 ], 𝑠𝑖 =< 𝑥,𝜓 > and Ψ = [𝜓1, 𝜓2 . . . 𝜓𝑁 ]
is the basis matrix. Let 𝑦 be the length-𝑀 (𝑀 < 𝑁 ) mea-
surement vector,obtained by applying a certain measurement
matrix Φ to 𝑥 such that

𝑦 = Φ𝑥 (2)

It has been proven that 𝑥 can be recovered from 𝑀 ∼ 𝐾
or more measurements [5, 6]. In order to achieve that, it is
necessary for 𝐴 = ΦΨ to have a restricted isometry prop-
erty [11]. The reconstruction problem can be expressed as a
linear program:

min ∥𝑥∥𝑙1 subject to 𝐴𝑥 = 𝑦 (3)

This under-determined linear program can be efficiently
solved by algorithms based on basis pursuit [12, 13], match-
ing pursuit [14, 15], and gradient projection [16].

2.2. Distributed Compressed Video Coding

Distributed video coding applies the theory of distributed
source coding to video signals where each video frame is
encoded independently. At the decoder, the independently
encoded data are jointly decoded by exploiting statistical de-
pendencies between them. We are interested in DVC that
makes use of CS.

A framework called Distributed Compressed Video Sens-
ing (DISCOS) is proposed in [7]. It is a hybrid video codec
that uses traditional MPEG/H.264 encoding for key frames
and CS for non-key or Wyner-Ziv (WZ) frames. Side infor-
mation for a block in a WZ frame is essentially motion vectors
that are estimated in the same way as MPEG. In this approach,
the block-based measurements of a CS frame are compared

with two neighbouring decoded key frames. The measure-
ment vector of the prediction frame is subtracted from that
of the input frame to form a new measurement prediction er-
ror vector. The reconstructed CS frame is simply the sum of
the prediction error and the prediction frame. A similar dis-
tributed CS video codec is reported in [9]. For each block
in a non-key frame, two different coding modes, known as
SKIP and SINGLE, are used. In the SKIP mode, a block is
skipped for decoding if it does not change much from the co-
located decoded key frame. In the SINGLE mode, CS mea-
surements for a block are compared with those in a dictionary
using the MSE criterion. A feedback channel is used to com-
municate with the encoder that this block has been decoded
and no more measurements are required. For blocks that are
not encoded by either SKIP or SINGLE mode, normal CS
reconstruction is performed.

While the above DVC’s make use of CS only for non-key
frames, a CS only DVC codec is proposed in [8]. It will be re-
ferred to as the distributed compressed video sensing (DCVS)
system. Both key frames and non-key frames are encoded us-
ing CS. A higher measurement rate is used for key frames
compared with non-key frames. Side information for the de-
coding of non-key frames is generated using a frame rate up
conversion tool that make use of motion compensated inter-
polation which is described in more detail in Section 3.1. This
work has been extended to use dictionary learning techniques
for selecting the best side information [10]. For these codecs,
side information generation involves motion estimation which
is computationally demanding. Since the CS reconstruction
process is itself computationally complex, this way of gener-
ating SI will increase the computational burden at the decoder
even further.

3. SIDE INFORMATION GENERATION

In DVC, WZ frames are encoded at much lower rates than key
frames. To compensate for this, side information is generated
using the key frames at the decoder for the reconstruction of
WZ frames. Side information plays an important role in DVC
decoding. If SI is not accurate, then the rate-distortion (RD)
performance will suffer.

The Laplacian distribution is commonly used to model the
correlation noise [2, 17, 18]. It provides a good trade-off be-
tween model accuracy and complexity and, therefore, is often
chosen [19]. In [8], the statistical dependency between a WZ
frame 𝑊 and its side information 𝑆𝐼 is modelled as a virtual
correlation channel, where 𝑆𝐼 can be viewed as a noisy ver-
sion of 𝑊 . The correlation between 𝑊 and 𝑆𝐼 can then be
modelled using a Laplacian distribution as follows:

𝑝([𝑊 (𝑥, 𝑦)− 𝑆𝐼(𝑥, 𝑦)) = 𝛼

2
𝑒−𝛼∣𝑊 (𝑥,𝑦)−𝑆𝐼(𝑥,𝑦)∣ (4)

Here, 𝑝(⋅) is the probability density function, 𝑊 (𝑥, 𝑦) and
𝑆𝐼(𝑥, 𝑦) are the (𝑥, 𝑦)-th pixel in 𝑊 and 𝑆𝐼 and 𝛼 is the
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Laplacian distribution model parameter defined by

𝛼 =

√
2

𝜎2
(5)

where 𝜎2 is the variance of the residue between the 𝑊 and
𝑆𝐼 . Therefore, the more similar 𝑊 and 𝑆𝐼 are, the higher
will be the value of 𝛼.

3.1. Motion Compensated Interpolation

Motion-compensated interpolation (MCI) is a general side in-
formation method used in [8, 10]. It is similar to motion es-
timation used for B-frames in MPEG. Let 𝑊𝑛 denote a WZ
frame at time 𝑛, and let 𝐾𝑛−1 and 𝐾𝑛+1 be the key frames
adjacent to 𝑊𝑛. We need to estimate the motion compen-
sated prediction for 𝑊𝑛. If the motion contained in three
successive frames can be assumed to be linear, then the mo-
tion vectors for 𝑊𝑛 can be derived from the motion vectors
from the adjacent two key frames. For forward prediction, if
the motion vector of a block 𝑏𝑖 in 𝑊𝑛 is 𝑀𝑉𝑓 , then 𝑀𝑉𝑓
can be derived from the motion vector of co-located block in
𝐾𝑛+1 by 𝑀𝑉𝑓 = 𝑀𝑉𝑛+1/2. Using the same method, we
can obtain the backward prediction motion vector by 𝑀𝑉𝑏 =
𝑀𝑉𝑛−1/2. After that, we can compute the two motion pre-
dicted blocks of 𝑏𝑖 from 𝐾𝑛−1 and 𝐾𝑛+1. Let 𝑃𝑏 represent
the prediction value of 𝑏𝑖, then 𝑃𝑏 = (𝑃 (𝑀𝑉𝑓 )+𝑃 (𝑀𝑉𝑏))/2
where 𝑃 (𝑀𝑉𝑓 ) and 𝑃 (𝑀𝑉𝑏) are the predicted values based
on the forward and backward motion vectors respectively. In
this way, most blocks of 𝑊𝑛 can be predicted and the side
information 𝑆𝐼 can be achieved.

4. PROPOSED SIDE INFORMATION GENERATION

The DVC system that we are considering involves only CS
measurements. In other words, both key and WZ frames are
encoded by CS measurements only. Therefore the side In-
formation that are generated will be used directly by the CS
reconstruction algorithm. This is different from methods used
by other DVC codecs discussed above.

First, we need to establish the extent of correlation be-
tween CS measurements of adjacent frames. Our side in-
formation generation method is based on this knowledge. It
should be emphasized here that our method does not depend
on any decoded data at the decoder. Hence errors in the re-
constructed frames will not affect the quality of the side in-
formation generated.

4.1. Correlation Analysis of CS Measurements

In a video sequence, adjacent frames in same scenes are
highly correlated with each other. Therefore we postulate
that the CS measurements of such adjacent frames are also
highly correlated. The dependence between two random
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Fig. 1. Correlation Analysis for CS Measurements

quantities can be indicated by the Pearson’s correlation coef-
ficient [20]. It can be obtained by dividing the covariance of
two variables by the product of their standard deviation.

To analyze the correlation among video frames, we have
tested all 300 frames of four different test video sequences
– “Foreman”,”News”,”Coastguard” and “Silent” available
from [21]. For each frame, 50% of random CS measure-
ments are used. The first frame in a sequence of 3 con-
secutive frames is considered a key frame, followed by two
non-key (WZ) frames. Hence there are 200 WZ frames per
video sequence. Correlation coefficients of the CS measure-
ments between each WZ frame and key frames are computed
and shown Figure 1. All WZ frames show high correlation
with their key frames. In particular, the videos “News” and
“Silent” which have slow motion show very high correlation
throughout. On the other hand, the correlation coefficients for
the part of the “Foreman” sequence where there is relatively
fast motion are lower. However, they are still above 0.7.

4.2. Correlation Based Side Information

We showed in Section 4.1 that CS measurements of WZ
frames are highly correlated with adjacent key frames. There-
fore we can directly make use of the CS measurements of key
frames as side information. Starting with an empty dictionary
𝐷, we populate the first column of 𝐷, denoted 𝐷1 with the
CS measurements of the first key frame received. Subsequent
columns of𝐷 are populated with the CS measurements of the
corresponding key frames.

Assume that each key frame is followed by two WZ
frames. When the first two WZ frames are decoded, 𝐷 has
only one column 𝐷1. So 𝐷1 is used as the side information
to reconstruct these two WZ frames. For the third WZ frame
𝑊3, the dictionary will have two columns from the two key
frames received so far. One of them will be used as side
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information for 𝑊3. The best choice will be the one that has
higher correlation with 𝑊3. Thus we need to compute the
Pearson correlation coefficients

𝑟(𝑖) = 𝑐𝑜𝑟𝑟 (𝑊3, 𝐷𝑖) 𝑖 = 1, 2 (6)

and choose the column 𝐷𝑖 that gives the largest 𝑟(𝑖) for all 𝑖
in the dictionary. This continues until all the WZ frames are
reconstructed.

This method does not require the key frames to be de-
coded. Furthermore, the side information can be directly used
by the CS reconstruction algorithm. In order to limit the size
of the dictionary, only the measurements of the most recent
𝑁 key frames need to be stored as the most recent WZ frame
will most likely be more correlated with the most recent key
frames.

To further evaluate the effectiveness of our proposed side
information technique, we estimated the laplacian distribu-
tion parameter 𝛼 as discussed in section 3 for the proposed
correlation based SI and motion compensated SI. We used
the same video sequences as in Section 4.1 and generated the
side information using MCI and our proposed method. Fig-
ure 2 shows the median of Laplacian distribution parameter
𝛼 for these videos. It can be observed that 𝛼 is substantially
larger for side information generated by the correlation-based
method compared with MCI. These results suggest that the
proposed correlation-based side information performs much
better than MCI based ones.

5. RECONSTRUCTION RESULTS

To evaluate the proposed side information generation scheme,
a DVC codec that uses only CS for encoding is implemented
in MATLAB. The video sequences used for testing are “Fore-
man”,”News”,”Coastguard” and “Silent” available from [21]
which are in QCIF format (174×144 pixels). Both key frames

and WZ frames are encoded by CS measurements only. Key
frames are encoded with higher measurement rate (MR) com-
pared with WZ frames. A group of picture (GOP) consists of
three frames – a key frame followed by 2 WZ frames is used.
Only the luminance component is encoded.

The measurements are quantized by the quantization ma-
trix proposed in [22]. Structurally Random Matrices [23] are
used to acquire CS measurements at the encoder. The Gradi-
ent Projection for Sparse Reconstruction (GPSR) [16] algo-
rithm is used for reconstruction at the decoder. The proposed
side information generation scheme is compared with motion
compensated interpolation (MCI) [8] and with frame based
measurement (Frame DWT) without side information [23].

First, the computational complexities are compared. The
complexity of different side information generation schemes
are evaluated by calculating the average reconstruction time
(in seconds) for key frames and WZ frames using an average
measurement rate of 27%. The programs are run on the same
computer. The results for the four video sequences are shown
in Figure 3. It can be observed that using side information
improves the reconstruction time regardless of the side infor-
mation used. The proposed side information performs bet-
ter than MCI based side information because it does not re-
quire motion estimation. Its performance is also comparable
to DCVS [8] although they have used a relative stopping cri-
teria to reduce the number of iterations during reconstruction.
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Fig. 3. Reconstruction complexity comparison for average
measurement rate of 27%

Next, the rate-distortion performance of the reconstructed
videos are compared. Figures 4 to 7 show the average re-
constructed PSNR at various average measurement rates for
the four video sequences. For video sequences involving
slower motion (“News” and “Silent”), our proposed method
outperforms MCI based side information and DCVS [8]. For
the “Foreman” and “Coastguard” sequences, the proposed
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Fig. 4. MR-PSNR Performance for News video
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Fig. 5. MR-PSNR Performance for Silent video

method performs better than MCI based side information. It
is marginally worse than DCVS which requires more compu-
tational resources.

6. CONCLUSIONS

In this paper, we proposed a simple and low complexity side
information generation scheme for distributed compressed
video coding. We showed that there is strong correlation be-
tween the CS measurements of the key and non-key frames.
Therefore, the CS measurements of the key frames can be
used directly as side information. This eliminates the need
for side information generated from the decoded key frames.
Using the proposed side information, the complexity at de-
coder can be significantly low as no motion estimation or
other sophisticated techniques are needed. Experimental re-
sults show that the quality of reconstructed videos using the
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Fig. 6. MR-PSNR Performance for Foreman video
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Fig. 7. MR-PSNR Performance for Coastguard video

proposed side information is better than motion compensated
interpolation and comparable to a more sophisticated method
proposed in [8].
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