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Abstract— The computational complexity of linear phase finite 
impulse response (LPFIR) filters used in the channelizer of a 
wideband receiver is dominated by the number of adders 
(subtractors) employed in the multipliers. Common 
subexpression elimination (CSE) is a well-known technique for 
minimizing the number of adders in LPFIR filters. An improved 
CSE method is proposed in this paper, which is used to 
implement the channel filters of a filter bank channelizer (FBC). 
In the FBC, each modulated bandpass filter extract one channel 
from the input wideband signal. The reduction in number of 
adders is obtained by eliminating redundant multiplications of 
common subexpressions that exist among the channel filters of 
the FBC with the input signal. Design example of the channel 
filters employed in the Digital Advanced Mobile Phone System 
(D-AMPS) show that the proposed method offers considerable 
reduction in the number of full adders when compared with 
conventional CSE methods.  

Keywords-channelizer; common subexpression elimination; LPFIR 
filters 

I.  INTRODUCTION  
The most computationally intensive part of a wideband 

receiver is the FBC since it operates at the highest sampling 
rate [1]. Channelization in wideband receivers involves the 
extraction of multiple narrowband channels from a wideband 
signal using several bandpass filters called channel filters. 
High-speed/low-power LPFIR filters implemented with the 
minimum number of adders are required in FBC. It has been 
shown that the redundancy across the canonic signed digit 
(CSD) coefficients can be exploited by employing CSE to 
implement LPFIR filters with a minimum number of adders 
[2]-[4]. A method to eliminate the most commonly occurring 2-
bit common subexpressions (CS), [1 0 1] and [1 0 –1], was 
proposed in [2]. (Note that an n-bit CS is defined as a 
subexpression that has n non-zero bits). In [3], a nonrecursive 
signed CSE algorithm has been proposed as a modification of 
the technique in [2], that minimizes the critical path length of 
the filter structure. A CSE technique based on vertical CS for 
filters with relatively small coefficient wordlength is presented 
in [4]. In general, the CSE methods proposed in [2]-[4] 
eliminate redundant computations in multiplier blocks of 

LPFIR filters by employing the most common subexpressions 
consisting of two non-zero bits, i.e., [1 0 1] and [1 0 –1]. In this 
paper, a super-subexpression elimination (SSE) technique for 
optimizing conventional CSE method to further reduce the 
number of adders in LPFIR filters is proposed. Further, the 
CSE and SSE methods are applied to implement FBC, where 
CS that occur among the coefficients of several bandpass filters 
are utilized for a minimum adder implementation.  

The paper is organized as follows. Section 2 provides a 
review of the CSE method. The complexity of implementation 
is analyzed in terms of full adders required for each multiplier 
of the filter. The SSE algorithm is presented in section 3. In 
section 4, we illustrate the implementation of channel filters for 
the D-AMPS standard using the SSE technique and provide 
comparisons with conventional methods. Section 5 provides 
our conclusions. 

II. THE CSE APPROACH 

A. Review of CSE 
An 8-tap LPFIR filter with coefficients expressed in 16-bit 

CSD form shown in Fig. 1 is used as an example to illustrate 
the CSE method. The number of adders required for a 
conventional CSD implementation of a LPFIR filter with N 
taps is: 

                      2/)1( NNN bCSD +−=                   (1) 

where bN  is the number of nonzero bits in one half of the 
symmetric coefficient set. In this example, ,29=bN  and 

.8=N  Hence thirty-two adders would be required to 
implement the filter without using CSE. The objective of CSE 
algorithm is to identify multiple identical bit patterns in the 
coefficient set and eliminate redundant computations by 
forming CS from the bit patterns. The 2-bit CS, [1 0 1] and [1 0 
-1], shown encircled in Fig. 1 are given by: 

              2112 >>+= xxx  and 2113 >>−= xxx            (2) 

where 1x  is the input signal and ‘>>’ represents shift right 
operation. If csN  is the number of CS in one half of the 



symmetric coefficient set and acsN  is the number of adders 
required for distinct CS, the CSE method would require 

)( acscs NN −  adders fewer than conventional CSD 
implementation. Hence number of adders required to 
implement the filter using CSE obtained by modifying (1) is 

             )(2/)1( acscsbCSE NNNNN −−+−=              (3) 

In this case ,13=csN ,2=acsN  and .21=CSEN  This offers a 
reduction of 34% over direct CSD implementation without 
CSE.  

B. Adder Complexity 
To the best of our knowledge, all the previous works on 

CSE discussed hardware reduction in terms of the number of 
adders and have not addressed the complexity of adders. The 
complexity of each adder employed in multiplication is 
significant for high-speed/low-power implementations. An 
adder that adds two n-bit numbers requires n full adders (FA) 
to compute the sum. The area, power, and speed of an adder 
depend on the value of n, which is called the adder width. 
Efforts to optimize these parameters should focus on 
minimizing the adder width, i.e., the number of FA. 

Definition 1 (Nonzero terms): The CS and the nonzero bits 
other than the CS of a coefficient are termed as its nonzero 
terms. For example, the two nonzero terms of a coefficient 
represented in CSD,  (0.1010001), are [101] (CS) and 1 (least 
significant bit). 

Definition 2 (Operands): The input signal shifted 
corresponding to the positional weights of the nonzero terms of 
the coefficient form the operands of the adders. For instance, in 
the case of the coefficient, (0.1010001), the operands are 

12 >>x  and ,71 >>x  where 1x  and 2x  are as in (2). The 
number of adders required to compute the output for a 
coefficient is equal to one less than the number of operands.  

Definition 3 (Span): The span is defined as the number of 
bits of an operand. If 1x  is an 8-bit signal, the span of the 
operand, 71 >>x  is fifteen. For an adder whose operands have 
spans 1s  and 2s  such that ,12 ss >  the adder width is .2s  

Coefficients in CSD form with wordlengths up to 24-bits 
are considered for analyzing the adder complexity. Since no 
adjacent bits in CSD are one’s, a 24-bit CSD number can have 
a maximum of 12 nonzero bits and hence at the most twelve 
nonzero operands could occur in multiplication. 

Case I: Odd number of operands: Using a paper and pencil 
method, it can be shown that the number of FA’s, ),( oN  
required to compute the output corresponding to a coefficient 
with n (for n odd) operands can be determined using the 
expression: 

1211910

978756534312
22

322
ssas

sassassassasNo
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 (4) 

where ns  is the span of the nth operand and s'ia  are equal to 
zero except .12 =−na  (The proof of this expression is omitted 

due to space constraints). For instance, if 7 operands are 
present, using (4) we get .22 7642 ssssNo +++=  

Case II: Even number of operands: The number of FA’s, 
),( eN  required to compute the output corresponding to a 

coefficient with n operands )12( ≤n  is given by: 

          1210186042 332 sscsscssNe +++++=                  (5) 
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For example, if six operands are present (i.e., ),6=n  it 
would require )22( 642 sss ++  FA’s. Using (4) and (5), the 
total number of FA’s required to compute the partial products 
in the CSE implementation of the LPFIR filter of Fig. 1 is 376. 
In the next section, we present an optimization technique that 
minimizes the number of FA’s. 

III. OPTIMIZATION OF CSE METHOD 
Our method utilizes 3-bit and 4-bit super-subexpressions 

(SS) formed from CS to eliminate redundant computations. 
Note that when multiplication is performed using shifts and 
adds, the adder width can be minimized if additions are done 
prior to shifts. In CSE implementation, the adders employed 
for CS have shorter widths since the shift operations for 
obtaining the final partial products are performed after the 
addition done at the CS stage. The proposed SSE method 
performs shift operations after additions at two stages - first at 
the CS stage and then at the SS stage. Therefore the adders at 
these two stages have shorter adder widths.  

The SSE technique is as follows. First, the 2-bit CS are 
extracted from the coefficient set represented in CSD. These 
CS are then examined for multiple occurrences of identical 
shifts with a nonzero bit or with another CS within the same 
coefficient to form 3-bit and 4-bit SS respectively. Consider the 
example in Fig. 1, where CS are given by (2). Note that the 
following SS can be formed as indicated by interconnecting 
lines in Fig. 1:  

1. The CS [1 0 1] and –1 with a shift of one unit between them 
to form a 3-bit SS, [1 0 1 0 -1]:   

                          4124 >>−= xxx                               (6) 

2. The CS [1 0 1] and [1 0 -1] with two shift units between 
them to form a 4-bit SS, [1 0 1 0 0 1 0 -1]:   

                          5325 >>+= xxx                               (7) 

3. The CS [–1 0 1] and [1 0 1] with one shift unit between them 
to form a 4-bit SS, [-1 0 1 0 1 0 1]: 

                         4236 >>+−= xxx                              (8) 

Note that several ‘shifted and delayed’ versions of these SS 
occur in the coefficient set, which can be obtained without 
using extra adders. We observe that several SS exist in the 
case of channel filters where the number of taps is large and 
the wordlength is larger. We have investigated several 
examples of LPFIR filters with taps ranging from 100 to 1200 



corresponding to different stop-band attenuation 
specifications. The infinite-precision filter coefficients were 
generated by the Parks-McClellan FIR filter design using 
“remez” function in MATLAB®. Filter coefficients 
represented in CSD form for different wordlengths of 12-bits, 
16-bits, and 24-bits were considered. From the fifty filters that 
we have designed, it has been observed that among the 
possible SS, the 3-bit expressions 

1]- 0 1 0 [-1 1], 0 1 0 [-1 1],- 0 1 0 [1 1], 0 1 0 [1  and their negated 
versions are the most common SS. Statistically, these 3-bit 
expressions and their negated versions form around 70% of all 
the possible SS. These account for the major reduction of 
adders in the proposed SSE method. Employing the SS (6)-(8), 
the output of the filter can be written as 

12]1[4]1[2]1[81 46154 >>−+>>−+>>−+>>+>> xxxxx  

+>>−+>>−+>>−+>>−+ 9]3[1]3[13]2[2]2[ 5635 xxxx  

+>>−+>>−+>>−+>>− 13]5[2]5[9]4[1]4[ 3556 xxxx  

+>>−+>>−+>>−+>>− 1]7[12]6[4]6[2]6[ 4461 xxxx  

8]7[5 >>−x                                                                             (9) 

Fig. 2 shows the filter structure using the SSE method. In 
Fig. 2, the numerals adjacent to the data path represent the 
number of bit-wise right shifts. Note that only seventeen 
adders are required to implement the filter. This offers a 
reduction of 19% over CSE. In the proposed method, the 
number of adder-steps (adder-step here being defined as one 
addition stage in a maximal path of decomposed 
multiplications) required to compute the partial products is 
four, which is the same as that of the CSE method. Thus, both 
methods have identical critical path lengths. Using SSE, the 
number of FA’s required to compute the partial products of 
the LPFIR filter whose coefficients are given in Fig. 1 is 253, 
which offers a reduction of 32.7% over the CSE method. 
 

IV. DESIGN EXAMPLE 
The channel filters of an FBC need sufficiently large 

number of taps to meet the stringent adjacent channel 
interference specifications. We extend the SSE method 
proposed for individual LPFIR filters to FBC for multiplication 
of one variable (wideband signal) with multiple constants 
(coefficients) of a bank of bandpass filters. The idea is 
illustrated in Fig. 3. The most frequently occurring CS among 
the coefficients of M channel filters are identified to form a 
multiplier block. Further optimization of the multiplier block 
can be achieved using the proposed SSE method. 

The LPFIR filters employed in the FBC of the D-AMPS in 
[5] are considered. The sampling rate of the wideband signal 
chosen is 34.02 MHz as in [5]. The channel filters extract 30 
kHz D-AMPS channels from the wideband signal after 
downsampling by a factor of 350. The pass-band and stop-
band edges are 30 kHz and 30.5 kHz respectively. The peak 
pass-band ripple specification is 0.1 dB. The peak stop-band 
ripple (PSR) specifications at different frequencies and 
respective filter lengths (N) are chosen to be as in the D-
AMPS standard [6]. We applied the proposed SSE method to 

implement the filters using 12-bit and 16-bit CSD coefficients. 
The 3-bit and 4-bit SS formed from the 2-bit CS are utilized 
for optimization. Comparison of the numbers of adders (NA) 
and full adders (NFA) required to implement the multipliers 
for the filter using the CSE method [2] and the proposed SSE 
method are shown in Table I. The percentage reduction of 
adders (AR) and that of FA’s (FAR) with respect to 
conventional CSD implementation without using any CS 
methods are also shown in Table I. For the filter with 1180 
taps implemented using 16 bits (corresponding to the most 
stringent blocking specification), the proposed method offers a 
reduction of 62.1%, whereas CSE method offers only 35.6% 
reduction. The proposed method results in considerable 
average reduction of adders and full adders for different filter 
lengths as shown in Table II. 

 

The reduction achieved when the proposed method is used 
to employ the D-AMPS channelizer, where extraction of each 
channel requires a separate narrowband filter, is examined. The 
wideband signal considered for channelization consists of 1134 
D-AMPS channels, each occupying 30 kHz. We analyzed the 
requirement of adders to implement the filters for extracting 
70, 141, 283, 567, and 1134 channels. The number of filter taps 
chosen is 1180 and the coefficient wordlength considered is 16 
bits. Simulation results shown in Fig. 4 depict the adder 
reduction achieved using the CSE and SSE methods over 
conventional CSD implementation as a function of the number 
of extracted channels. Note that the SSE method offers 
considerable hardware reduction when compared with the CSE 
method. 

V. CONCLUSIONS 

We have proposed an improved technique based on the 
CSE method to efficiently implement low-complexity channel 
filters for wideband receivers. The complexity in adders is 
analyzed and expressions for determining the number of FA’s 
required for each adder in a filter are obtained. The design 
example of the FBC based on D-AMPS standard shows that 
the proposed method offers an average reduction rate of 50% 
over conventional channel filter implementations without using 
any CS methods and 20% over CSE implementations. 
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-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 

)0(h  1 0 1  -1   1 0 1   1 0 -1  

)1(h   1  -1 0 1  1 0 1  1 0 1  -1 

)2(h   1 0 1   1 0 -1    1 0 -1  

)3(h  -1 0 1  1 0 1  1 0 1   1 0 -1 

)4(h  -1 0 1  1 0 1  1 0 1   1 0 -1 

)5(h   1 0 1   1 0 -1    1 0 -1  

)6(h   1  -1 0 1  1 0 1  1 0 1  -1 

)7(h  1 0 1  -1   1 0 1   1 0 -1  

Figure 1.  HCS and HSS in 8-tap LPFIR filter coefficients HSS:  ,: 4x   ,: 5x   .: 6x  

Figure 2.  Proposed filter structure using super-subexpressions of Fig. 1. 
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Figure 3.  CSE implementation of channel filters in a filter bank channelizer. 
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 Filter length, N=610 
(PSR=-65dB) 

Filter length, N=940 
(PSR=-85dB) 

Filter length, N=1180 
(PSR=-96dB) 

 CSE [2] Proposed SSE CSE [2] Proposed SSE CSE [2] Proposed SSE 
 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 

NA 560 586 507 512 745 818 664 679 820 896 712 714 
AR 
(%) 

25 31.5 31.5 40 26.2 36.1 34.3 46.9 27.9 39.4 37.4 51.8 

NFA 9072 11376 7892 8600 12218 16121 10385 12090 13776 17740 11298 13042 
FAR 
(%) 

24.9 29.8 37.8 54.2 26.2 33.2 41.2 58.2 28.1 35.6 46 62.1 

Average reduction of adders (%) Average reduction of full adders (%) 
12 bit 16 bit 12 bit 16 bit 

CSE [2] Proposed 
SSE 

CSE [2] Proposed 
SSE 

CSE [2] Proposed 
SSE 

CSE [2] Proposed 
SSE 

26.4 34.4 35.7 46.2 26.4 41.7 32.9 58.2 

TABLE I.  COMPARISON OF THE NUMBERS OF ADDERS (NA) AND FULL ADDERS (NFA) REQUIRED TO IMPLEMENT THE MULTIPLIERS 
FOR THE FILTER IN DESIGN EXAMPLE 

TABLE II.  AVERAGE REDUCTION OF ADDERS AND FULL ADDERS FOR DIFFERENT FILTER  LENGTHS TO MEET THE  PSR SPECIFICATIONS IN 
DESIGN EXAMPLE  

Figure 4.   Reduction of adders to implement the D-AMPS channel filters in design example for different number of channels extracted 
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