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Abstract Two main issues associated with Model Predic-
tive Control (MPC) are learning the unknown dynamics of
the system and handling model uncertainties. In this paper,
unknown Linear Time-Varying (LTV) system with external
noise is represented by using probabilistic Gaussian Process
(GP) models. In this way, we can explicitly evaluate model
uncertainties as variances. As a result, it is possible to di-
rectly take obtained variances into account when planing the
policy. In addition, through using analytical gradients that are
available during the GP modelling process, the optimization
problem in GP based MPC can be solved faster. The perfor-
mance of proposed approach is demonstrated by simulations
on trajectory tracking problem of a LTV system.

I. INTRODUCTION

Model Predictive Control (MPC) [1, 2] refers to a class
of computer control algorithms that predict future responses
of a plant based on its system model. Control actions are
obtained by repeatedly solving a finite horizon optimal control
problem. The advantage of MPC mainly lies in its ability
to handle multiple variable control problems. In addition, it
can naturally incorporate input and output constraints that are
commonly encountered in practice but are not well addressed
by other control methods. Consequently, it has been widely
used to control linear and nonlinear systems in research and
in practice [3].

MPC requires an accurate, explicit model of the system
dynamics of the plant. Where an explicit model is not avail-
able, data-driven models such as Artificial Neural Networks
(ANN) [4, 5] and Fuzzy Models (FMs) [6, 7] have been used in
the past. The training of ANN models requires a large number
of training data while sufficient prior knowledge of the plant
is need for the construction of FMs. Hence these methods are
not applicable when the number of training observations are
small and minimal prior knowledge of the plant is available.
Another issue is concerned with the modelling of uncertainties
arising from time-varying model parameter changes and ex-
ternal disturbances. This problem can be addressed by using
deterministic robust MPC [1, 8] where the uncertainties are
assumed to be bounded and robustness is guaranteed by using
the “min-max” method [9]. However, controllers designed
using this method are too conservative since the design is
based on worst-case perturbations. In addition, uncertainty
bounds are not easy to define in practice. An alternative is to

use stochastic MPC where uncertainties are taken into account
explicitly by probabilistic constraints [10]–[13].

In [14, 15], a Gaussian Process (GP) based stochastic
MPC is proposed. The advantage of using GP models is that
prediction accuracy is explicitly expressed through the com-
putation of variances which is part of the modelling process.
When performing multiple step predictions, GP models allow
uncertainties to propagate, making it natural to be incorporated
into stochastic MPC to address the model robustness issue.
While model uncertainties are expressed as probabilistic “hard-
constraints” in [14, 15], the use of “soft-constraints” to incor-
porate model uncertainty into policy planning and evaluation
in a straightforward manner has also been proposed [14]. This
latter scheme has recently been used to control a linear system
with periodic errors [16]. But this method is computationally
demanding.

In this paper, we proposed a computationally efficient way
to solve the optimization problem in [16] by making use of
gradients that can be obtained analytically from the GP model.
We show through a trajectory tracking problem of an Linear
Time-Varying (LTV) system, our proposed method is able
to provide good modelling and control performances while
substantially reducing the computation time.

The rest of this paper is organized as follows. Section II
provides a brief overview of the GP modelling technique.
In Section III, GP based MPC algorithm is described and
the gradient expressions are derived. Simulation of trajectory
tracking of an LTV system in Section IV demonstrate the
effectiveness of the proposed method. Finally, Section V draws
the conclusions.

II. DYNAMICAL SYSTEM MODELLING USING GP
Consider a dynamical system with states x ∈ Rn and

controls u ∈ Rm which are related by

xk+1 = f (xk,uk, k) +wk (1)

where k is the integer index of time, f(·) is an unknown linear
time-varying function, and w ∈ Rn represents Gaussian noise
with zero mean and variance Σw. This system can be modelled
by a GP model where the state-control tuples x̃k = (xk,uk) ∈
Rn+m and state differences δxk = xk+1−xk ∈ Rn are used as
training inputs and targets respectively [17, 18]. This approach
can be advantageous when changes in δx are less than changes
in x. When there are multiple targets, a separate GP model
can be trained for each independent target.
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A GP model is completely specified by a mean and a
covariance function [19]. If the mean µ is zero and the
squared exponential covariance, defined as K(x̃i, x̃j) =
σ2
s exp(− 1

2 (x̃i − x̃j)
TΛ(x̃i − x̃j)) + σ2

n, is used, then σ2
s , σ

2
n

and matrix Λ are the hyperparameters of the GP model. Given
D training inputs X̃ = [x̃1, · · · , x̃D] and the corresponding
training targets y = [δx1, · · · , δxD]T , the joint distribution
between training targets and test target δx∗ at a given training
input x̃∗ follows the Gaussian distribution. That is,

p

(
y
δx∗

)
∼ N

(
0,

K(X̃, X̃) + σnI K(X̃, x̃∗)

K(x̃∗, X̃) K(x̃∗, x̃∗)

)
(2)

Furthermore, through restricting the joint distribution to only
contain those targets that agree with collected observations,
we can obtain the posterior distribution that also is a Gaussian
with following mean and variance function

Ef [δxk] = K(x̃∗, X̃)(K(X̃, X̃) + σnI)
−1y

VARf [δxk] = K(x̃∗, x̃∗)

−K(x̃∗, X̃)(K(X̃, X̃) + σnI)
−1K(X̃, x̃∗)

(3)

Typically, hyperparameters θ = [σs, σn, vec(Λ)] are learned
by using the evidence maximization technique [20], where
vec(·) denotes vectorization of given matrix. This requires
O(nD3) operations. Conventionally, Conjugate Gradient (CG)
or BFGS approaches are used to solve this stochastic opti-
mization problem. More recently, Particle Swarm Optimization
(PSO) based algorithms [21] have been proposed to solve this
problem.

III. GAUSSIAN PROCESS BASED MODEL PREDICTIVE
CONTROL

Consider an unconstrained MPC optimal control problem
with the following objective function

V∗
k = min

u(·)
J (xk,uk−1) (4)

where the cost function J is given by

J (xk,uk−1) =
H∑
i=1

{
(xk+i − rk+i)

TQ(xk+i − rk+i)

+uT
k+i−1Ruk+i−1

} (5)

Here, r denotes the target reference, Q ∈ Rn×n and R ∈
Rm×m are positive definite weighting matrices, and the predic-
tion horizon H is assumed to be same as the control horizon.

If the dynamical system (1) is represented by GP models,
the predictions of xk are stochastic. Hence the MPC is a
stochastic one and (4) becomes [15, 22]

V∗
k = min

u(·)
E [J (xk,uk−1)] (6)

The expected value of the cost function can be derived as

E [J (xk,uk−1)] = E

[
H∑
i=1

{
(xk+i − rk+i)

TQ(xk+i − rk+i)

+uT
k+i−1Ruk+i−1

}]
=

H∑
i=1

E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)

+uT
k+i−1Ruk+i−1

]
(7)

Since the controls have to be deterministic in practice, the joint
distribution of the state-control tuple at sample time k is then
given by

p(x̃k) = p

(
xk

uk

)
∼ N

([
µk

uk

]
,

[
Σk COV[xk,uk]

COV[uk,xk] COV[uk,uk]

])
(8)

where COV[xk,uk],COV[uk,xk] and COV[uk,uk] are zero.
The cost function (7) can be simplified to

E [J (xk,uk−1)] =
H∑
i=1

{
(µk+i − rk+i)

TQ(µk+i − rk+i)

+trace(QΣk+i) + uT
k+i−1Ruk+i−1

}
(9)

This simplification essentially transformed the stochastic cost
function into a deterministic one. Therefore most linear and
nonlinear optimization methods can be used to solve the
problem.

A. Uncertainty Propagation

With the Stochastic Model Predictive Control (SMPC) given
by (6), one-step ahead predictions can be computed by using
(3). For multiple-step predictions, the conventional way is to
perform multiple one-step ahead predictions using only the
estimates of the mean. However, the uncertainties induced by
each successive prediction are not taken into account. This
issue has been shown to be important in [23] with a time-
series prediction task.

This uncertainty propagation problem can be dealt with
by assuming that the joint distribution of the training in-
put at sample time k is uncertain and follows a Gaus-
sian distribution p(x̃k) ∼ N (µ̃k, Σ̃k). The exact predictive
distribution of the training target can then be defined as
p(δxk) =

∫
p(f(x̃k)|x̃k)p(x̃k)dx̃k. Although this equation is

analytically intractable, it can be approximated as a Gaussian
with mean µδ

k and variance Σδ
k by using the moment matching

techniques [17, 24]. This results in

µδ
k = Ex̃k

[Ef [δxk]]

Σδ
k =

 VARf,x̃k
[δxk1 ] · · · COVf,x̃k

[δxkn , δxk1 ]
...

. . .
...

COVf,x̃k
[δxk1 , δxkn ] · · · VARf,x̃k

[δxkn ]


(10)
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The distribution at time k+1 can be further approximated by
a Gaussian with mean and variance given by

µk+1 = µk + µδ
k

Σk+1 = Σk +Σδ
k

+ COVf,x̃k
[xk, δxk] + COVf,x̃k

[δxk,xk]

(11)

In this way, the uncertainties of all previous predictions can be
iteratively propagated to the current one. More details on the
computation of the means and variances for uncertain inputs
can be found in [17, 25].

Note that the propagated variances have been included in
the cost function (9). This allows model uncertainties to be
included directly when solving (6).

For problems with higher dimensions, sparse GP ap-
proaches [26] are often used.

B. Gradient Based Optimization

Solving (6) is computationally demanding. The computa-
tional complexity of the one-step moment matching in (10)
alone requires O(D2n2(n + m)) operations. With the com-
plexities of both hyperparameters learning and GP inferences,
only problems with limited dimensions (under 12 as suggested
by most publications) and limited size of training data can
make use of GP based MPC. In this section, we shall describe
our gradient-based method to solve this problem that is able
to reduce the computational burden significantly.

Assuming h(z) = E[J (xk,uk−1)], the optimization prob-
lem (6) can be described in a condensed form as

z∗ = argmin
z∈Z

h(z) (12)

with initial guess z0 ⊆ Rm, and h(·) is a value-based differ-
entiable function over the whole solution domain Z ⊆ Rm.
z∗ denotes an optimal solution that satisfies ▽zh(z

∗) = 0
and ▽2

zh(z
∗) ≥ 0. Note that optimization approaches using

second-order derivatives ▽2
zh(·), such as Newton’s method that

using second-order derivatives to construct a Hessian matrix,
can improve the accuracy but is computational demanding.
Therefore we only use the first-order derivative ▽zh(·) to
keep the algorithm simple, even though both derivatives are
available when using GP models [17].

The optimal solution z∗ can be obtained by iteratively
conducting a linear or steepest descent search

z(i+ 1) = z(i) + αs▽zh(z(i)) (13)

until finding one that satisfies h(z(i))−h(z∗) ≥ ϵ, where ϵ is
a predefined tolerance, and αs is search step size. A way to
tune this step size can be found in [27]. Using this method,
suboptimal solutions to (6) can still be found even if it is
non-convex.

The key issue in implementing this gradient-based method
on problem (6) is computing the gradients that are derivatives
of the value function w.r.t. controls. Numerical methods such
as finite difference [28] are often used to approximate the
gradients. They are easy to implement but may lead to poor
gradients due to the nature of approximation methods [29].

Input: Learning GP Models, H , rk, Q,R.
1 Initialization:

Maximum iterations N = 1000,
ϵ = 1.0× 10−6,
initial inputs u0 and optimal controls u∗ = u0;

2 for i = 1 to N do
3 if E[J (ui)] ≤ ϵ then
4 u∗ = ui;
5 End Loop;
6 else
7 Calculate gradients dE[J (ui)]

dui−1
using (16);

8 Update step length αs according to [27];
9 Update controls ui+1 = ui + αs

dE[J (ui)]
dui−1

;
10 i = i+ 1;
11 end
12 end

Output: Optimal controls u∗.
Algorithm 1: Analytical gradient based optimization
method

Fortunately, with the use of GP models to represent the dynam-
ical system, the gradients can be readily obtained analytically
without the need for numerical approximations.

Let

Hi =(µk+i − rk+i)
TQ(µk+i − rk+i)

+ trace(QΣk) + uT
k+i−1Ruk+i−1

(14)

Then from (9), E [J (xk,uk−1)] =
∑H

i=1 Hi. The gradients
dE [J (xk,uk−1)] /duk−1 can be expressed, using the chain-
rule, as

d

duk−1
E [J (xk,uk−1)] =

H∑
i=1

dHi

duk+i−1
(15)

and
dHi

duk+i−1
=

∂Hi

∂µk+i

∂µk+i

∂uk+i−1

+
∂Hi

∂Σk+i

∂Σk+i

∂uk+i−1
+

∂Hi

∂uk+i−1

(16)

where ∂Hk

∂µk
, ∂Hk

∂Σk
and ∂Hk

∂uk−1
can be easily obtained. Also,

∂µk+i

∂uk+i−1
=

∂µk+i

∂µ̃k+i−1

∂µ̃k+i−1

∂uk+i−1

∂Σk+i

∂uk+i−1
=

∂Σk+i

∂Σ̃k+i−1

∂Σ̃k+i−1

∂uk+i−1

(17)

where ∂µ̃k+i−1

∂uk+i−1
and ∂Σ̃k+i−1

∂uk+i−1
can be easily obtained as well.

More details about computations of ∂µk+i

∂µ̃k+i−1
and ∂Σk+i

∂Σ̃k+i−1
can

be found in [17]. Algorithm 1 summarizes our proposed op-
timization method using analytical gradients at each iteration
of MPC optimization.

IV. NUMERICAL SIMULATIONS

The performance of proposed approach is verified by sim-
ulations on two trajectory tracking problems of a Multiple-
Input Multiple-Output (MIMO) LTV system. All simulations
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Fig. 1: Controlled states of using GP model based MPC in
“Duffing” trajectory tracking problem

are conducted 50 times on a computer with a 3.40GHz Intelr
CoreTM 2 Duo CPU with 16 GB RAM, using Matlabr version
8.1.

The LTV numerical example [30] used in this paper is given
as follows:

ẋ =

[
1 0
0 1

]
x+

[
a(t) 1
b(t) 0

]
u+wk (18)

where x = [x1,x2]
T and u = [u1,u2]

T denotes states and
inputs. The numerical system is corrupted by Gaussian noises
w ∼ N (0, 0.01) in all simulations.

A. “Duffing” Trajectory Tracking

In the first simulation, the time-varying parameters are de-
fined as a(t) = 1+sin(2πt/1500) and b(t) = cos(2πt/1500).
To collect observations, the system firstly is controlled to
follow the “Duffing” trajectory (shown as grey dotted line
in Figure 1) through using linear MPC approach proposed
in [31]. Then, 250 observations including states and controls
are collected. We use 140 and all of them to train and
test GP models, respectively. As a result, the overall learn-
ing process takes approximated 0.5 seconds. Meanwhile, the
training Mean Squared Error (MSE) is 2.2338 × 10−4 while
the test MSE is 3.4091 × 10−4. These results demonstrate a
well modelling performance of using GP models.

The learned GP models are then used to predict future
system responses in the tracking problem. Theoretically, a
“sufficiently long” prediction horizon H is required to guar-
antee stability and feasibility of using MPC scheme [32]. The
approach to estimate required H is discussed in [33]. However,
a longer time also may be required to solve MPC optimization
problems because computational burdens are increased. The
consideration of this issue is especially important when using
data-driven GP models due to their computational issue dis-
cussed in Section II and III. The prediction and control horizon
both are defined as 1 to make a trade-off in this simulation.
In addition, the MPC optimization problem (4) are solved by
using derivative-free approach in [34], and proposed gradient-
based algorithm.
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Fig. 2: Controls of using GP model based MPC in “Duffing”
trajectory tracking problem

The controlled states and controls in the first trajectory
tracking problem are given in Figure 1 and 2 respectively.
Where “Grad-based GPMPC” denotes proposed MPC ap-
proach using analytical gradients, while “GPMPC” is GP
based MPC without using gradients. Meanwhile, the simula-
tion result of using linear MPC (shown as “LMPC” in the
figures) is used as a reference. Based on controlled states
given in Figure 1, “LMPC” based on the exact numerical
model produces the best controlled states that closely follow
the trajectory. Over the whole trajectory, the tracking MSE
is 0.0098 on x1, and 6.9009 × 10−4 on x2. In addition,
“GPMPC” is able to perform as well as “LMPC” after first 25
sample time because of close controls shown in Figure 2 and
tracking MSE values. In particular, we obtain 7.979×10−4 and
6.921×10−4 MSE values on x1 and x2 when using “GPMPC”,
they are quite close to 3.771 × 10−4 and 4.686 × 10−4 of
using “LMPC”. Finally, through using “Grad-based GPMPC”
approach, the controlled states overall follow the trajectory
even though we obtain the bigger tracking MSE, i.e. 0.0202
on x1 and 0.0175 on x2, than others. Probably, this is mainly
because larger average predicted variances are produced when
using “Grad-based GPMPC” approach as shown in Figure 3.
Particularly, they are 0.01 on x1 and 0.0127 on x2 than 0.0077
and 0.0071 of using “GPMPC”.

However, it takes over 70 seconds to iteratively compute
250 controls when using “GPMPC” in the first tracking
problem. By using proposed “Grad-based GPMPC” approach,
the required time is reduced to approximately 35 seconds. This
demonstrates that optimization problem can be solved more
efficiently through using “Grad-based GPMPC” approach.

B. “Lorenz” Trajectory Tracking

In the second simulation, the control task is tracking a
2D “Lorenz” trajectory, shown in Figure 4. The time-varying
parameters are now defined as a(t) = 1/t − exp(−t2)/t
and b(t) = 1. Similarly, we use a linear MPC strategy
firstly to conduct a “Lorenz” trajectory tracking task. In this
way, we collect 180 state-control observations. To learn GP
models, 100 and all of them are used for training and testing,
respectively. The overall learning process takes approximately
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Fig. 3: Uncertainty propagation over whole trajectory in “Duff-
ing” trajectory tracking problem
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Fig. 4: Controlled states of using GP model based MPC in the
“Lorenz” trajectory tracking problem

0.57s. In addition, we obtain 8.7979 × 10−5 training and
4.0674× 10−4 testing MSE values.

As well, in the MPC, we define prediction horizon as H =
1, derivative-free Nelder-Mead and proposed algorithms are
used to solve the optimization problem.

As shown in Figure 4, controlled states by using “LMPC”
can closely follow the “Lorenz” trajectory when the exact dy-
namical model is available. In this situation, the tracking MSE
is only 0.0043 on x1 and 0.0151 on x2. The dynamical system
can follow the trajectory as well by using proposed “GPMPC”
and “Grad-based GPMPC” algorithms when exact model of
the system is unknown. According to simulation results, two
proposed approaches equally are able to produce controlled
states that are overall close to target trajectory, even though
bigger tracking MSE values they produced. In particular, The
tracking MSE of using “GPMPC” is 1.0013 on x1 and 0.9778
on x2 that are close to 1.0012 and 0.9772 when using “Grad-
based GPMPC” approach. In addition, as shown in Figure 5,
obtained controls of using two approaches are approximately
equal as well. The same situation again happens when we
compute average predicted variances given in Figure 6. The
obtained average variance when using “GPMPC” is 1.8112
on x1 and 0.9505 on x2, and is 1.8118 on x1 and 0.9504

0 20 40 60 80 100 120 140 160 180
−4

−2

0

2

4

u
1
(k

)

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

sample time k

u
2
(k

)

 

 
LMPC

GPMPC

Grad−based GPMPC

Fig. 5: Controls of using GP model based MPC in the
“Lorenz” trajectory tracking problem
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Fig. 6: Uncertainty propagation over whole trajectory in the
“Lorenz” trajectory tracking problem

on x2 when using “Grad-based GPMPC” approach. Those
results all demonstrate an approximately equal performance
when we use proposed algorithms in the “Lorenz” trajectory
tracking problem. However, to obtain approximately equal
180 controls in this simulation, “GPMPC” approach requires
over 37 seconds while “Grad-based GPMPC” only takes ap-
proximately 16 seconds. This again demonstrates that “Grad-
based GPMPC” outperforms than “GPMPC” with respect to
computational efficiency.

V. CONCLUSION

A MPC strategy based on the probabilistic GP models
is proposed. The proposed algorithm directly takes model
uncertainties obtained during GP predictions into account
when calculating MPC controls. This is a direct way and
reduces computational burdens compared to most existing GP
based stochastic MPC approaches. In addition, through using
analytical gradients that are available when using GP models,
the optimization problem is solved more efficiently. The sim-
ulation results on the trajectory tracking problem of a LTV
system demonstrate well modelling and control performances
of proposed MPC method, as well as the efficiency of proposed
gradient based optimization algorithm.
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