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Abstract— An instruction word in VLIW (very

long instruction word) processors consists of a vari-

able number of individual instructions. Therefore the

power consumption variation over time significantly

depends on the parallel instruction schedule gener-

ated by the compiler. Sharp power variations across

time cause power supply noises, degrade chip relia-

bility and accelerate battery exhaustion. This pa-

per proposes a branch and bound algorithm for in-

struction scheduling of VLIW architectures that effec-

tively minimizing power variation without degrading

the speed. Our experimental results demonstrate the

efficiency of our algorithm compared with previously

presented approaches. Finally, a new rough sets based

approach to the instruction-level VLIW power model

for this instruction scheduling optimization problem

is discussed.

I. Introduction

A significant amount of multimedia applications exhibit
high instruction-level parallelism (ILP). A single instruc-
tion word of VLIW (very long instruction word) proces-
sors contains a variable number of individual instructions
which are executed on different functional units in par-
allel. Therefore, VLIW processors provide a means to
efficiently exploit such ILP of multimedia applications be-
cause of their parallel processing power. The instruction
scheduling techniques used by VLIW compilers are thus
essential to improve the execution speed. However, de-
pending on the parallel schedule generated by the com-
piler, power consumption variation over time can also be
significantly different. Since sharp power variations across
time steps cause power supply noises, degrade chip relia-
bility and accelerate battery exhaustion, power variation
reduction without compromising execution speed becomes
an important instruction scheduling constraint in embed-
ded VLIW systems.

Some instruction scheduling algorithms for ILP proces-
sor have been proposed. However, most of them pro-
duce schedules that meet deadline constraints. Pub-
lished works on instruction scheduling of ILP processors

for power variation minimization are still relatively few.
Among them, Yun [1] extended iterative modulo schedul-
ing by adding a heuristic for power-aware scheduling of
VLIW processor cores. Yang [2] proposed a mixed inte-
ger programming formulation to derive the optimal sched-
ules. In contrast with the heuristic in [1], the integer
programming formulation has the potential to derive op-
timal results and it can be used to evaluate any heuristic
algorithm. Yang [2] used a commercial library (ILOG
CPLEX) to obtain the solutions. However, due to lack
of problem-specific information, the average time used to
solve the mixed integer problem is quite unacceptable for
ILP compilers, as shown in our experimental data in Ta-
ble I.

In this paper, the mixed integer program is also used
to formulate the problem. However, we propose a branch
and bound algorithm to solve this problem of schedul-
ing of VLIW instructions without compromising the
speed. The algorithm adaptively adds problem-specific
constraints (cuts) and applies a tight and fast lower bound
algorithm to accelerate convergence of the search for the
optimal solution. The algorithm is evaluated on instruc-
tion blocks of various sizes. The results show an aver-
age improvement in power variation of 20.07% compared
with the classical list scheduling algorithms and an aver-
age improvement in required computation time of 68.62%
compared with [2].

Finally, previously published works about power aware
instruction scheduling make use of power consumption
models with parameters that are assumed to be precisely
known [3, 1, 2, 4]. However, in reality, the values of these
parameters are not precise for two main reasons. Firstly,
physical measurements, which has been an important ap-
proach to instruction-level power modelling and estima-
tion for microprocessors [5, 6, 7, 8], are always imprecise.
The variations in the measured values are using handled
by using the mean or median of a large number of mea-
surements. Secondly, in order to reduce the complexity
of the power model, those instruction with consume simi-
lar amounts of power are typically clustered together and
given a the same power figure [9]. While these approxi-
mations allow us to optimize power consumption in the



average sense, we are not able to get any idea of the de-
viations from the average that may actually occur.

Today’s instruction-level VLIW power models seem
ill-equipped to exploit this opportunity. A new rough
sets based approach to the instruction-level VLIW power
model is proposed. In contrast to the previous model
models, what’s new here is the inaccuracy in instruction-
level power models are also modelled, within the rough
concepts which are ranges defined by their upper approx-
imation and lower approximation. In this way, the in-
struction scheduling optimization problem will become an
optimization problem based on rough sets system which
can meet our goal.

The rest of this paper is organized as follows. In Sec-
tion II we present our mixed integer programming formu-
lation of the problem. A customized branch and bound
algorithm is developed in Section III to solve the problem.
Section IV presents the experimental evaluation results.
Discussion about our improvement on VLIW power model
is presented in Section V.

II. Formulation

A. Power Model

VLIW processors use very long instruction words to
execute multiple instructions simultaneously on seperate
functional units. Each instruction takes different amount
of time to execute. We divide the time line into equal
length time slots. A power cost pj

i is associated with each
instruction i which represents the power consumed by this
instruction in the j -th time slot.

Given a program execution schedule N , let Ni repre-
sents the very long instruction word executed at the i -th
time slot of N . Let nj be an instruction in Ni. Then
power consumption at the i -th time slot P i is the sum of
power consumed by all the executing instructions, either
started in this time slot or before is given by

P i =
∑

0≤k<i

∑

nj∈Ni−k

pk
nj

(1)

where k is an integer.

B. Mixed Integer Program

The following notations will be used:

• N is the set of n target instructions to be scheduled.

• T is the set of t time slots, where t is the performance
deadline.

• xk
i =

{
1, if instruction i is allocated to time slot k
0, otherwise.

• X is the set of n variables xk
i , which equal to 1.

• U is the set of u functional unit types.

• cj is the number of functional units of type j.

• aj
i =





1, if instruction i corresponds to
functional unit type j

0, otherwise

• E is the set of v dependency pairs < l, m >, where
instruction m depends on instruction l.

• Di is the number of the execution stages of instruc-
tion i.

• P k is the total power consumption in time slot k.

• M is the average power consumption over all the t
time slots.

For the sake of simplicity we introduce the function

ε(x) =
{

1 if x ≥ 1
0 otherwise

where x is an integer.
According to the power estimation formula (1), power

consumption at each time slot P k and the average power
consumption M can be computed by

P k =
min(Dmax−1,k−1)∑

f=0

n∑

i=1

xk−f
i ε(Di − f)pf

i (2)

M =

(
t∑

k=1

P k

)
/t (3)

where Dmax = max
∀i∈N

(Di). Then, the power deviation at

any given time slot k is computed as

PV k(P k) = |P k −M | (4)

with the total deviation given by

PV (X) =
t∑

k=1

PV k(P k) (5)

The optimization problem of instruction scheduling of
VLIW architectures for balanced power consumption can
be formulated as a mixed integer program P1 with objec-
tive function (6) and constraints (7)-(12).

P1 : min PV (X) (6)

subject to
X = ∪

i,k:xk
i
=1
{xk

i } (7)

xk
i ∈ {0, 1} for each i = 1, ..., n; k = 1, ..., t (8)

t∑

k=1

xk
i = 1 for each i = 1, ..., n (9)



t∑

k=1

kxk
i + Di − 1 ≤ t for each i = 1, ..., n; k = 1, ..., t

(10)
n∑

i=1

aj
ix

k
i ≤ cj , for each j = 1, ..., u; k = 1, ..., t (11)

t∑

k=1

kxk
m −

t∑

k=1

kxk
l ≥ Dl ∀ < l,m >∈ E (12)

The objective function (5) is given as a sum of the power
deviations defined by (4) over all time slots. The set X is
called a schedule. Condition (9) states that each instruc-
tion can only be issued once. Finally, (12) are dependency
constraints, (10) are the deadline constraints and (11) are
the resource constraints.

For the program P1, we need to find a feasible sched-
ule X that minimize the value of the function PV (X)
with all the constraints satisfied. This problem is NP-
complete. In the next section, we describe a branch and
bound method that allows us to find a solution within a
reasonable amount of time.

III. Branch and Bound Algorithm

Starting with an initial schedule X1, a sequence of
schedules Xr are generated until the optimal schedule
is found. The initial schedule X1 can be one produced
through a conventional list scheduling algorithm.

The branch and bound algorithm requires three impor-
tant elements:

1. the rules for branching to a set of new schedule Xs

from a certain schedule Xr, and

2. the rules for selecting a certain schedule Xr from the
produced schedule pool, and

3. the lower bound estimate for a schedule Xr.

A. Branching Rules

First, the larger the power consumed by an instruction,
the earlier it is rescheduled. This helps to reduce the
impact caused by relaxation of the integer constraints (8)
and thus the lower bound obtained remains tight.

Second, once an instruction i is selected to be resched-
uled, we propose four conditions to decide whether
rescheduling to time slot j is feasible. Let Xs be the new
schedule after i is rescheduled to j. The first condition is
that for Xs, the power consumption for time slot j should
not be larger than the peak power of the best schedule to
date, expressed as

P j
u ≤ PeakXz (13)

where PeakXz is the peak power of the best schedule to
date Xz.

Since constraints (12) only describe direct dependencies
in the whole dependence graph, we need to extend them
to include all indirect dependence information. Let

Di,j =
{

Li,j if j (in)directly depends on i
0 otherwise

(14)

where Li,j is the length of the maximum path from i to
j in the dependence graph, if j (in)directly depends on i.
Then, constraints (12) can then be extended as

t∑

k=1

kxk
j −

t∑

k=1

kxk
i ≥ Di,j ∀i, j ∈ N, if Di,j > 0 (15)

The second condition is that instruction i in time slot j
should satisfy constraints (15).

Given constraints (10) and (15), those time slots in
which instruction i definitely can not be allocated to can
be expressed as

xk
i = 0 k = 1, . . . , Dfront

i , Dfront
i ≥ 1

xk
i = 0 k = t−Dback

i + 2, . . . , t,Dback
i ≥ 1

(16)

where
∀i ∈ N, Dfront

i = max
∀h∈N

(Dh,i)

Di,K = max
∀j∈N

(Di,j)

Dback
i = max

∀j∈N
(Di,j) + Di,K

The third condition is that instruction i in time slot j
should satisfy constraints (16).

The fourth condition is that instruction i in time slot j
should satisfy the resource constraints (11). If any of these
constraints is violated,instruction i cannot be scheduled
to time slot j. Therefore the branch to reschedule i to j
will not be included in the schedule pool.

These rules help to greatly cut infeasible branches, and
thus the size of the produced schedule pool is greatly re-
duced.

B. Selection Rules

Given a pool of possible schedules, a random selection
strategy is adopted. This means that we assume that the
schedules in the pool has equal probability of leading to
the optimal solution.

C. Lower Bounds

Given the current schedule Xr, its lower bound is es-
timated to check if a better schedule may be found in
its successors which are generated by rescheduling those
non-rescheduled instructions from X1 to Xr. If the lower
bound for Xr is larger than the best objective value to
date, then Xr is removed from the schedule pool. Other-
wise, replace Xr, in the schedule pool, with its branches
produced according to the rules in Section A.



Let Ptotal denote the sum of power consumption over
all the time slots. It can be expressed as

Ptotal = tM (17)

Let

P k
u =

min(Dmax−1,k−1)∑

f=0

∑

i:xk−f
i

∈Ur

xk−f
i ε(Di − f)pf

i (18)

denote the power consumption in time slot k due to all
the rescheduled instructions of the schedules from X1 to
Xr.

Now we introduce two constraints

t∑

k=1

P k − Ptotal = 0 (19)

P k − P k
u ≥ 0 for k = 1, ..., t (20)

Constraint (19) requires that the total power consumption
over all time slots in Xr or any of its successors equals
Ptotal. Condition (20) guarantees that each P k must at
least be the power consumption P k

u associated with the
rescheduled instructions in each time slot k.

The lower bound for the current schedule Xr can there-
fore be the minimum of (5) using the values of (17)-(20).
Because integer constraints (8) are relaxed, execution of
an instruction may be divided and scheduled to multiple
time slots. Execution time in each time slot is less than a
whole time slot. As a result, power consumption at each
time slot P k can be any values satisfying constraints (19)
and (20). Then the obtained minimum of total power
deviation (5) will not be a tight lower bound.

We reduce the impact caused by this relaxation by re-
stricting how execution of an instruction may be divided.
Among the non-rescheduled instructions in Xr, suppose
the smallest power consumption of a single instruction is
P∆

Xr
. Execution of an non-rescheduled instruction is di-

vided into equal smaller slices with a residue if any. Each
slice has a power consumption equal to P∆

Xr
. In this way,

the values of P k are limited to sums of some smaller ex-
ecution slices. The algorithm to obtain the lower bound
for the current schedule Xr is outlined as follows.

Algorithm III.1 Lower bound of the current schedule
Xr

Let bound, fk(k = 1 to t), p and fW be variables used
in this algorithm. The lower bound equals the value of
bound when this algorithm stops.

Step 1. bound = 0. For k = 1 to t, calculate P k
u

according to (18). For k = 1 to t, fk = P k
u .

Step 2. Calculate P∆
Xr

, which is the smallest power
consumption of a single instruction among the non-
rescheduled instructions in Xr.

Step 3. Given an non-rescheduled instruction in Xr, let
pi be its power consumption. p = pi.

Step 4. p = p−P∆
Xr

. Let fW be the smallest among fk

(k = 1 to t). fW = fW + P∆
Xr

. If p >= P∆
Xr

, then go to
Step 4. Otherwise go to Step 5.

Step 5. If all the non-rescheduled instructions in Xr

have been processed by Step 4, then go to Step 6. Other-
wise go to Step 3.

Step 6. If, for k = 1 to t, fk > M , then bound =
fk −M + bound. bound = 2 ∗ bound. Stop the algorithm.

IV. Performance Evaluation

The VLIW processor we used for evaluating our algo-
rithm is the TMS320C6711 [10] which is a VLIW dig-
ital signal processor. The input to our algorithm is a
schedule of an instruction block produced by Trimaran’s
ILP compiler. Trimaran [11] is an integrated compilation
and performance monitoring infrastructure for research in
instruction-level parallelism. Processor architecture can
be specified through the machine description language
HMDES. Our algorithm reschedules the one produced
through Trimaran to minimize its power variation across
time steps. Our branch and bound algorithm was im-
plemented in C. All our computational experiments were
conducted on an Intel Pentium 4 2.80GHz personal com-
puter with 523,256KB RAM under Microsoft Windows
2000. All instances we used for testing our algorithms
were taken from the benchmarks with Trimaran.

Table I shows the results of 18 problem instances. For
each problem instance, the problem dimension (Dim.) in-
dicates the number of time slots and the number of in-
structions involved in the instruction block. Power varia-
tion of the original schedule produced by Trimaran’s ILP
compiler is shown in the column “Root”. The perfor-
mance of our branch and bound algorithm is indicated
by the optimal value of the objective function obtained
(“Opt”), the number of nodes visited before the optimal
schedule is found (“Nodes”) and the total CPU time in
seconds before the algorithm terminates (“TT”). Exper-
iments of using CPLEX90 to solve this integer program-
ming problem are also conducted. The computation time
required are shown in the column “CPLEX”.

“Ratio” is the percentage of power variation improve-
ment obtained after optimization relative to the origi-
nal schedule. “TOpt.” is the percentage of computation
time required by our algorithm relative to that of using
CPLEX90 to solve this integer programming problem as
done in [2]. We can see that power variation is greatly
reduced through our optimization method. At the same
time, the average computation time required by our prob-
lem specific branch and bound algorithm is much lower.

V. Discussion:A Rough Set Based Approach to
Instruction-level VLIW Power Model

There are several approaches to deal with imprecision or
uncertainty. In this paper, we propose to use the rough set



TABLE I
Experimental results on Trimaran’s benchmark program

Dim. Source Root(mA) Opt.(mA) Ratio Nodes TT(sec.) CPLEX(sec.) TOpt.

(6,14) Wave 146.00 127.33 12.79% 1070 0.03 0.05 40.00%

(11,11) Fib 229.09 229.09 0 182 0.01 0.07 85.71%

(9,14) Wave 224.89 130.67 41.90% 5965 0.11 0.13 15.38%

(13,13) Wave 271.38 271.38 0 156 0.01 0.07 85.71%

(10,22) Bmm 360.00 119.6 66.78% 907 0.10 0.19 47.37%

(15,15) Fib-mem 313.6 313.6 0 482 0.01 0.10 90.00%

(12,19) Fir 313.67 201.67 35.71% 537 0.06 0.10 40.00%

(12,22) Bmm 386.00 64.00 83.42% 4108 0.54 2.16 75.00%

(17,16) Fib-mem 234.35 206.35 11.95% 386 0.03 0.57 94.74%

(20,21) Wc 408.60 408.60 0 3179 0.18 0.22 18.18%

(13,35) Bmm 710.77 250.62 64.74% 4269 0.47 0.58 18.97%

(23,22) Bmm 248.35 220.35 11.27% 753 0.09 5.43 98.34%

(23,24) Bmm 474.43 474.43 0 782 0.06 0.27 77.78%

(25,24) Bmm 251.52 223.52 11.13% 3095 0.34 19.29 98.24%

(29,29) Bmm 608.28 608.28 0 396 0.04 1.44 97.22%

(31,30) Bmm 258.58 230.58 10.83% 1499 0.26 10.04 97.41%

(33,33) mm-dyn 692.36 692.36 0 4377 0.85 1.96 56.63%

(35,34) mm-dyn 261.94 233.94 10.69% 6914 1.59 108.47 98.53%

theory [12] approach to model the uncertainty inherent in
the power model parameters. The instruction scheduling
problem can then be formulated as a rough program [13].
One of the main advantages of rough set is that it does not
need any prior information on the data, such as probabil-
ity distributions in statistics, basic probability assignment
in the Dempster-Shafer theory [14], or grade of member-
ship in fuzzy set theory [15]. Therefore, we propose to
deal with the inaccuracy in instruction-level VLIW power
modelling using rough set theory.

Definition V.1 Let R+ the set of nonnegative real, S ⊆
R+ be a set of real x1, x2, . . . , xi, . . . such that x1 < x2 <
. . . < xi < . . .. π(S) is a partition of R+: π(S) =
{0, (0, x1), x1, (x1, x2), x2, (x2, x3), x3, . . . , xi, (xi, xi+1),
xi+1, . . .}. For ∀x ∈ R+, we define the following mapping

S(x) =
{ {x}, if x ∈ S
{(xi, xi+1)}, if x /∈ S, xi < x < xi+1

(21)

Then, (R+, S) is called an approximation space defined by
π(S) on R+.

Then, the basic idea to deal with inaccuracy in instruc-
tion level VLIW power model is described in the following
definition.

Definition V.2 Let (R+, S) be the approximation space.
Let X be a power consumption parameter of the

instruction-level VLIW power model. Instead of being ex-
pressed as an accurate value, the estimated value of X is
expressed as a range limited by a pair of concepts, called
its lower and upper approximation in approximation space
(R+, S). Its lower approximation is defined as

S∗(X) = {x ∈ R+ : S(x) ⊆ X} (22)

Its upper approximation is defined as

S∗(X) = {x ∈ R+ : S(x) ∩X 6= Φ} (23)

All the power consumption parameters in the
instruction-level VLIW power model are expressed as
ranges defined with rough sets (22) and (23). As a re-
sult, the instruction scheduling optimization problem P1
in Section II is based on rough sets. Traditionally, the
quantities involved in an optimization problem are given
in precise values. For a rough set problem, the conven-
tional optimization techniques have to be adapted. How-
ever, there are few published work for this problem [13].
Future work involves detailed power consumption mod-
elling method using this theory and algorithms to solving
the instruction scheduling optimization problem based on
this formulation.



VI. Conclusion

The VLIW instruction scheduling for optimized power
balance problem without degrading the speed of the pro-
gram is being formulated as a mixed integer programming
problem. A branch and bound algorithm has been pre-
sented to solve this problem. The effectiveness of this
algorithm is demonstrated through a set of example pro-
grams. The results show an average improvement in
power variation of 20.07% compared with the classical
list scheduling algorithms and an average improvement in
required computation time of 68.62% compared with [2].

A rough set based approach to instruction-level VLIW
power estimation with the inaccuracy modelled is dis-
cussed. The benefits and initial model are outlined.
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