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Abstract

The CMAC neural network is a simple yet powerful
modeling tool for various type of applications, such as
in control. It is well-established that the network size
in a CMAC based system increases exponentially with
the number of input variables. In this paper we pro-
pose an adaptively quantized CMAC (i.e. FQCMAC)
as a brain inspired learning memory model whereby the
quantization step size is autonomously adapted based
on the characteristics of the data to be modeled. The
proposed approach employs a simplified version of the
DIC partitioning technique to capture the input data
distribution. We subsequently demonstrate through a
highway traffic flow modeling application that FQC-
MAC outperforms its CMAC counterpart.

1 Introduction

The Cerebellar Model Arithmetic Computer
(CMAC) neural network [?, ?] has the advantages of
simple computation, fast training, local generalization
and ease of hardware implementation that render it
as particularly useful and effective in control applica-
tions [?, ?, ?, ?, ?, ?]. The proof of learning conver-
gence of the CMAC network has also been established
in a number of literatures [?, ?, ?].

The development of the CMAC neural network was
inspired by the neurophysiology of the cerebellum, a
part of the human brain which is primarily involved
with the control of movements, in particular those
of the limbs, hands, and eyes. The human cerebel-
lum functions by storing and retrieving information re-
quired to regulate thousands of muscles in the produc-
tion of controlled behaviors as a function of time [?].
As a functional model of the cerebellum, CMAC man-
ifests as an associative memory neural network and
computes by a table lookup operation.

Due to this table lookup nature of CMAC, its net-
work size increases exponentially with each addition of

a new input variable. Hence, an efficient memory allo-
cation scheme is required to optimize the memory us-
age in CMAC. The basic CMAC has a static structure
in which the resolution of the memory cells is solely
dependent on the rigid (even) partitioning of the in-
put space. And since this resolution is not adapted
according to the characteristics of the input training
data, there is no guarantee that the CMAC network
employs an optimal memory allocation scheme.

On the other hand, neuro-psychology has estab-
lished that the human brain organizes information in
a highly non-linear manner. In this paper, we propose
a multi-resolute cerebellum-inspired learning memory
model, where the memory resolution of the network is
autonomously adapted according to the information
distribution of the input training data. The objec-
tive of such an approach is to formulate a memory
mapping mechanism to achieve non-linearity in stor-
age allocation, so as to enhance the efficiency of the
CMAC memory allocation based on the characteris-
tics of the data to be modeled. The advantages of
having such a mapping scheme are two-folded: (1) to
provide improved accuracy and fidelity in the stored
and computed outputs of the CMAC network, and (2)
to maintain a low computational complexity of the
CMAC based system with increased data complexity.

The rest of the paper is organized as follows. In Sec-
tion 2, the anatomical structure of the cerebellum is
highlighted to support the use of non-uniform quanti-
zation in CMAC. Section ?? presents the description
of the proposed FQCMAC architecture. An experi-
ment on traffic trend prediction is provided in Section
?? to demonstrate the performance of the proposed
FQCMAC. Section ?? concludes this paper.

2 Cerebellum and its Multi-Resolution
Organization

CMAC is a functional model developed to emu-
late the information-processing characteristics of the



human cerebellum. The cerebellum, which in Latin
means little brain, is located at the bottom rear of the
head (the hindbrain) directly above the brainstem and
is highly recognizable for its structural regularity. The
cerebellum is divided into several distinct regions, each
of which receives projections from different portions of
the brain and spinal cord and projects to different mo-
tor systems, suggesting that regions of the cerebellum
perform similar computational operations but on dif-
ferent inputs [?].

Together with the cerebral cortex and striatum
(part of the basal ganglia formation), the cerebel-
lum constitutes the brain’s procedural memory sys-
tem. All the brain subsystems involved, including the
cerebellum, modify their circuitries in the service of
the formation of procedural memory. Changes in the
cerebellum’s circuitry occur in two ways. Firstly, the
synaptic transmissions are modified through a cellu-
lar mechanism called Long Term Potentiation (LTP),
which results from the comparisons of the goals, com-
mands and feedback signals associated with a partic-
ular movement. Secondly, cerebellar plasticity (which
refers to the alteration of the synaptic connections)
is achieved as a result of training and repeated expo-
sures.

Cerebellar plasticity studies by William Greenough
and his colleagues inspired the development of a multi-
resolution CMAC architecture [?]. In his studies, rats
were given acrobatic training by challenging them to
acquire complex motor skills necessary to traverse a
series of obstacles. It is discovered that rats with such
training developed an increased volume of the parallel
fiber layer in the cerebellar cortex, and this increases
the number of synapses onto the Purkinje cells without
an increase in synaptic density. This suggests that the
cerebellum organizes its learned knowledge in a non-
linear manner, where repeated training yields more
synaptic connections as well as a finer resolution in the
neural circuitry, and resulting in more precise control.

Such observations provided the motivations for our
proposed FQCMAC architecture, a multi-resolution
variant of the CMAC network which manages the
memory (receptive field) allocation based on the in-
formation distribution of the input training data.

3 FQCMAC: A Learning Memory
Model

The basic CMAC neural network is an associative
memory model of the cerebellum, where it simply
performs a mapping of the multi-dimensional input-

output data tuples. The CMAC memory is visualized
as a hypercube array of storage cells. These cells are
employed to store sets of weight values, which con-
stitutes the computed outputs of the CMAC network.
The elements in the input vector are used as indices to
activate a particular set of storage cells, and the sum-
mation of the stored values in these active cells forms
the computed output of the CMAC. In the CMAC
network, the computing cells are organized as a multi-
dimensional memory array, and the resolution (recep-
tive field) of these cells are computed through an even
quantization of the input space along each of the in-
put dimensions. Each of the computing cells therefore
cover a region of similar size in the input surface.

However, certain parts of the input space tend to be
more important or significant as compared to the rest.
Depending on the underlying dynamics and charac-
teristics of the system to be modeled, some regions of
the input surface will contain more information than
others. In such cases, adopting an uniformly quantized
memory resolution throughout the entire problem sur-
face may not be a preferable option, as it could po-
tentially result in many unused memory cells. Draw-
ing inferences from the findings of neuroscience, where
it has been demonstrated that the human brain allo-
cates more synaptic connections to cortical areas asso-
ciated with parts of the body such as fingers or tongue,
where there are higher throughput of sensory infor-
mation as compared to the arms or legs, we proposed
a novel method to maximize the memory utilization
of the CMAC model to enhance the resolution of its
computed output. The resulting architecture, named
Fuzzy-Quantized CMAC (FQCMAC), employs vari-
able quantization of the training input values based
on the observed information distribution in each of the
input dimensions. In the proposed FQCMAC model,
more memory cells are allocated to significant areas
in the input space which are perceived as containing
more information than the rest. These regions gener-
ally corresponds to those densely populated areas of
the input surface.

Figure 1: 2D FQCMAC input surface

Figure ?? depicts the 2D illustration of the concept
of the multi-resolute allocation of memory cells in the
proposed FQCMAC network.



3.1 Adaptive Memory Allocation

The initial step to create a variable quantization
memory mapping in the FQCMAC network is to iden-
tify areas which potentially contain more information
as compared to the rest, and subsequently allocating
more memory cells to these regions. This is achieved
by partitioning the input space based on their informa-
tion content. In particular, we are looking for densely
populated areas in which large amount of data points
are clustered together within close proximity. This is
because densely populated area potentially contains
more entropy or information content which justifies
the use of more memory cells to efficiently model and
capture the inherent characteristics of the data points
in the region.

The partitioning of the input space is performed on
a per-dimension basis. A simplified version of the Dis-
crete Incremental Clustering (DIC) [?] method is em-
ployed to partition the overall input space into a set
of fuzzy clusters. DIC was selected as the partitioning
method due to its high efficiency and low computa-
tional complexity; and it does not require the prior
specification of the number of partitions to be formed
before the algorithm commences.

Figure 2: A sample partitioning of the DIC technique

An illustration of a sample result of the DIC parti-
tioning algorithm is given in Figure ??. The DIC algo-
rithm computes a set of trapezoidal-shaped fuzzy sets
to denote the partitions identified, where the densely
populated areas in the input space are represented by
the kernels of the fuzzy sets. From the computed par-
titioning result, we obtain two types of regions: the
kernels and the overlapping regions. Based on our no-
tion, the kernel areas are the important or significant
regions that would be allocated more memory cells in
the proposed FQCMAC network. We introduce a pa-
rameter λ to regulate the overall proportion of memory
cells allocation to the two types of regions.

Let the total number of memory cells per dimension
be M . The memory allocation process for the two
types of regions is formulated as follows:

Mk =
⌊

λ ·Ak

A
·M

⌋
(1)

Mo = M −Mk (2)
A = (λ ·Ak) + Ao (3)
λ ≥ 1 (4)

where:
Mk total number of memory cells for kernel regions

Mo total number of memory cells for overlap regions

Ak total area of kernel regions

Ao total area of overlap regions

A total conceptualized area

λ the memory cell allocation constant

A large value of λ gives more weightage or emphasis
to the kernel regions of the fuzzy sets (partitions); and
when λ equals to unity, memory cells are allocated
based on the arithmetic ratio of the two region types.

Subsequently, the allocation of memory cells to each
of the individual areas in a region type is computed as

Mi = (Ai/Atype)×Mtype (5)

where Ai is the size of the i-th region and type refers
to the particular region type to which region i belongs.

Figure 3: Variable memory distribution in a kernel

Subsequently, in order to introduce non-linearity to
the memory cell allocation process, the quantization
step sizes inside the kernel regions are non-linearly
spaced and symmetrical about the centers of the ker-
nel regions, while the quantization step sizes in the
overlapping regions are linearly spaced. The degree
of non-linearity in the kernel regions is governed by a
parameter µ, and the µ-law quantization technique is
subsequently employed to vary the distribution of the
memory cells in these regions. Figure ?? illustrates the
variable memory quantization inside a kernel region.

The distribution of the memory cells is denser to-
wards the center of a kernel area. Assuming a particu-
lar input in that appears within the i-th region of the
corresponding input dimension, the memory quantiza-
tion equations are given by:

F(in) = Si +
[
Mi

2
±

(
y

Ai/2

)
· Mi

2

]
(6)

y =
Mi

2 ·
(
1 + µ·|in−cpi|

Mi/2

)
log(1 + µ)

(7)

where:
Si the starting index of the i-th region

F(in) the indexing function for input in

i the region within which in appears

cpi the center (mid-point) of the i-th region

µ the degree of nonlinearity

Mi the number of cells allocated to the i-th region

Ai the total size of the i-th region



3.2 Network Learning

The proposed FQCMAC network adopts a modified
form of the Widrow-Hoff learning rule to implement
the computations for Weighted Gaussian Neighborhood
Output and Weighted Gaussian Neighborhood Update.
The learning equations are:

Zi
Vj

=
∑

k∈K (Gk ·Wk)∑
k∈K Gk

(8)

Wi+1
Q[Vj ]

= Wi
Q[Vj ]

+ ∆Wi+1
Q[Vj ]

(9)

∆Wi+1
Q[Vj ]

= α
GQ[Vj ]E

i+1
Vj∑

k∈K Gk
(10)

Ei+1
Vj

= Zi+1
Vj

−DVj
(11)

where:
i training iteration number

Vj the multidimensional input vector

Q[·] the quantization function

Zi
Vj

the output at training iteration i

DVj the expected output given the input vector

Wim, n the content of the memory cell at index [m, n]

Gk the gaussian weighting factor of cell k in K

K the set of neighborhood cells

Neighborhood output retrieval is employed to
smoothen the computed output of the proposed FQC-
MAC network due to the quantization error while a
Gaussian weighting factor (Gk) is applied to distrib-
ute the learning error among the cells in the neigh-
borhood. The Gaussian weighting function is defined
as:

Gk = (1− dk)e−d2
k/2γ2

(12)

where dk is the normalized Euclidean distance between
the cell k and the applied input, and γ is the parame-
ter that controls the width of the Gaussian weighting
function.

4 Experiments and Results

This simulation is conducted to evaluate the per-
formance and effectiveness of the proposed FQCMAC
network in approximation and data modeling using a
set of highway traffic flow data obtained from [?].

The data were collected at a site (denoted as Site
29) located at exit 15 along the eastbound Pan Is-
land Expressway (PIE) in Singapore (see Figure ??)
using loop detectors embedded beneath the road sur-
face. There are a total of five lanes at the site, two
exit lanes and three straight lanes for the main traffic.

For this experiment, only the traffic flow data for the
three straight lanes were considered. The traffic data
set has four input attributes, namely the time and the
traffic densities of the three lanes. The purpose of this
simulation is to model the traffic flow trends at the
site using the FQCMAC network. The trained FQC-
MAC network is then used to obtain predictions for
the traffic density of a particular lane at a time t + τ
where τ = 5, 15, 30, 45 and 60 minutes.

For the simulation, three cross-validation groups of
training and test sets are used. The square of the Pear-
son product-moment correlation value (denoted asR2)
[?] is used to denote the accuracy of the computed pre-
dicted traffic trends. Two different sets of simulations
are performed based on a neighborhood size of 0 (i.e.
1-point update and retrieval only) and a neighborhood
size of 0.1 (i.e. neighborhood update and retrieval)
respectively for both the FQCMAC and CMAC net-
works. Each network uses 8 cells per dimension, with
a learning constant of 0.1 and γ equals 0.5. The per-
formances of the FQCMAC network are subsequently
benchmarked against those of its CMAC counterpart.
The average accuracy of the predictions (denoted as
AvgR2) by the FQCMAC and CMAC networks across
the three cross-validation groups as τ increases from
5 to 60 minutes for all the three lanes for a neighbor-
hood size of 0 and 0.1 are depicted as Figure ?? and
Figure ?? respectively.

Figure 5: Avg R2 against time for N = 0

Figure 6: Avg R2 against time for N = 0.1

Two other indicators are used for the comparison.
The first indictor is Var (The change in AvgR2 value
from τ = 5 to τ = 60 minutes expressed as a percent-
age of the former) and the second is AvgVar, the mean
Var values across all the three lanes. These two indi-
cators reflect the consistency of the predictions made
by the benchmarked systems over the time interval as
τ changes from 5 to 60 minutes across the three lanes.

Table ?? provides the comparison between the
FQCMAC and CMAC networks. One can observe
that FQCMAC consistently outperforms its CMAC
counterpart. This is because FQCMAC allocates more
memory cells to the areas which potentially contain
more information as compared to CMAC where the
memory cells are uniformly distributed across the en-
tire input space. This feature of FQCMAC enhances



Figure 4: (a) Location of Site 29 along PIE (Singapore); and (b) Actual site at exit 15

the fidelity of the outputs by increasing the memory
resolution in the important areas and smoothening the
outputs by reducing the amount of empty cells.

5 Conclusions

In this paper we have presented the FQCMAC net-
work, a brain-inspired learning memory system, as
an enhancement to the original CMAC model. FQC-
MAC outperforms the CMAC network by enhancing
the memory utilization as well as increasing the res-
olution of the computed output. This is achieved by
the autonomous adaptation of the quantization step
size in FQCMAC based on the characteristics of the
training data distribution. The proposed FQCMAC is
evaluated with a set of highway traffic flow data. Sim-
ulation results have demonstrated that the FQCMAC
outperforms CMAC for the same network parameter
settings. Further research in this direction includes a
more detailed evaluation of the algorithm as well as
exploring experimentations in other application areas.



Table 1: Comparison of results from FQCMAC and CMAC testing

Networks Lane 1 Var (%) Lane 2 Var (%) Lane 3 Var (%) Avg Var (%)
CMAC (N = 0) 17.65 17.37 18.88 17.97
FQCMAC (N = 0) 14.17 16.63 23.38 18.06
CMAC (N = 0.1) 10.04 12.38 8.61 10.34
FQCMAC (N = 0.1) 7.70 7.52 12.81 9.34


