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Abstract— TCP Veno was recently proposed to eliminate TCP 
performance suffering from wireless links. Real network 
measurements and live Internet results have validated Veno’s 
significant throughput improvement in wireless networks and its 
harmonious co-existence with TCP Reno connections in wired 
networks. In this paper, we demonstrate the out-of-phase 
synchronization of Veno in one-way traffic, as opposed to the in-
phase synchronization of Reno. The detailed studies of these 
behaviors and its interaction with Reno are reported. Moreover, 
our careful study shows that this out-of-phase synchronization 
benefits network link utilization, and reduces the occurrence of 
congestion loss. 

Keywords-TCP Veno; TCP Reno; out-of-phase; in-phase; 
synchronization 

I.  INTRODUCTION  
TCP is a reliable connection-oriented protocol that 

implements flow control by means of a sliding window 
algorithm [3]. TCP Reno, which makes use of slow start and 
congestion avoidance algorithms to adjust the window size, is 
widely deployed in the Internet. During the slow start phase, its 
window is incremented for each ack received until packet loss 
is experienced, at which point the window is halved and then a 
linear increase algorithm takes over until further packet loss is 
experienced. This additive increase and multiplicative decrease 
mechanism leads to periodic oscillations in the congestion 
window, round trip delay and queue length of the bottleneck 
buffer in the path.  

However, the assumption in TCP Reno that packet loss 
implies network congestion may not apply to wireless 
networks, in which packet loss may be induced by noise, link 
error or reasons other than network congestion. Not making an 
attempt to distinguish between random and congestion losses, 
TCP Reno is equally sensitive to both of them. This may lead 
to significant but unnecessary end-to-end throughput 
degradation.  

Recently, a new TCP variant called TCP Veno [4, 6, 7] was 
proposed to eliminate the severe suffering from wireless links. 
It integrates the advantages of two opposing camps - TCP Reno 
and Vegas [8]. A distinguishing feature of TCP Veno is that its 
significant improvement over Reno performance is achieved 
from better unitization of the available bandwidth that is left 
unused by other existing connections, rather than by 
aggressively grabbing extra bandwidth from other connections. 
Besides, Veno only requires modification of the sender-side 

protocol stack, making it easier to deploy over the current 
Internet. 

Earlier in 1990, Shenker et al. [1-2] have studied the in-
phase synchronization phenomenon of Reno in one-way traffic, 
and observed that the co-existing connections drop packets 
almost simultaneously when they reach the path capacity. In 
this paper, we study the dynamics behavior of Veno’s 
congestion control algorithm and its detailed interactions with 
TCP Reno connections. The experimental results demonstrate 
one interesting characteristics of Veno – out-of-phase 
synchronization, which is quite different from Reno’s window 
dynamics observed before. Moreover, our extensive study on 
co-existence under different situations further verified that 
Veno indeed works harmoniously with its competing Reno 
connections over wired networks. Its slight improvement is 
achieved by this out-of-phase synchronization. 

The remainder of this paper is organized as follows. In 
Section II, we brief TCP Veno congestion control algorithms. 
Our experimental topology is described in Section III, and the 
experimental results are presented and detailed analyses are 
described in Section IV. Some conclusions and future work are 
given in Section V. 

II. THE MECHANISM OF TCP VENO 
TCP Veno makes use of the idea of congestion monitoring 

scheme from TCP Vegas, and integrates it into window 
evolution scheme of Reno. In Vegas TCP, This monitoring is 
calculated by the difference between the measured and the 
expected throughput, namely,  

                     DIFF = (Expected – Actual)                           (1) 

 
with Expected = cwnd/BaseRTT and BaseRTT is the minimum 
of all measured RTT (round trip times) 1 . Actual is the 
measured throughput at the sender given by cwnd/RTT, where 
RTT is the actual round-trip time of a tagged packet. Strictly 

                                                           
1In Vegas, BaseRTT is continually updated throughout the live time of the 
TCP connection with the minimum round-trip time collected so far. In Veno 
TCP, however, BaseRTT is reset whenever packet loss is detected, either due 
to time-out or duplicate ACKs. BaseRTT is then updated as in the original 
Vegas algorithm until the next fast-recovery or slow-start is triggered. This is 
done to take into account of the changing traffic from other connections and 
that the bandwidth acquired by a single connection among the many 
connections may change from time to time, causing the BaseRTT to change 
also. 
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speaking, Expected as defined is the best possible throughput, 
since BaseRTT is the minimum of all measured RTT.  

In Veno, DIFF*BaseRTT is used to estimate the number of 
packets accumulated at the bottleneck buffer. If there is more 
than an upper threshold (β) of packets queuing for processing, 
the TCP connection is said to have evolved into a congestive 
state. Otherwise, it is in the non-congestive state. As in TCP 
Reno, packet loss in the congestive state (congestive drop) will 
cause the window to be halved. However, packet loss in the 
non-congestive state (non-congestive drop) will only cause the 
window size to be decreased by a factor of 1/5.  

Moreover, Veno refines the additive increase phase of Reno 
by forcing the TCP connection to stay longer at the operating 
region. The whole algorithms are described in Figs. 1-2. 

 

 

 

 

 

 

 

 

Figure 1.  TCP-Veno-ssthresh adjusting algorithm 

 

 

 

 

 

Figure 2.  TCP-Veno-refined additive increase algorithm 

Similar to [1-2], we define an epoch of a TCP connection to 
be the time period during which an entire window’s worth of 
packets have been acknowledged. We will focus on those 
special epochs in which packet loss occurs, and refer them as 
congestion epochs. Therefore, Veno’s cwnd increases one 
packet by each epoch when DIFF*BaseRTT < β, or increase one 
packet only by two epochs when DIFF*BaseRTT ≥ β. In contrast, 
Reno always increase one packet for each epoch. The general 
incrementing rate of Veno’s congestion window is slower than 
that of Reno.  

III. EXPERIMENT NETWORK 
In this paper, we use network simulator (ns-2.26) [11] from 

Lawrence Berkley National Laboratory to study TCP Veno. 
The experimental network (see Fig. 3) consists of two source 
and destination pairs. The pair connections share the same 
bottleneck link using a droptail queue. The speed of each link 
connecting nodes and according routers is 10Mbps with 1ms 
propagation delay. The bottleneck link connecting Routers A 
and B have µ packets/s and τ seconds of propagation delay, the 

queue size along this link is B packets for both forward and 
reverse directions.  Typical data packet size is 1kBtyes and 
typical ack size is 40 Bytes.  

As in [2], we define the capacity of the path to be the 
maximum number of packets (data packets and 
acknowledgement packets) outstanding along this path, these 
outstanding packets - data or acks - could be spread along the 
transmission line, or queued at the buffer of the bottleneck 
router. Referring to Fig. 3, the pipe size (C) between one 
Source and one Destination is equal to B + 2P, where P =µ ⋅ (τ  
+ 1ms + 1ms) ≅ µ ⋅τ .  
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Figure 3.  Experiment network topology 

Assuming the source has infinite data to send, and the 
receiver advertised window has been set large enough, thus, we 
interchangeably use wnd (window) and cwnd (congestion 
window) in the following part. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
This section discusses some interesting results on the 

dynamic behavior of TCP Veno and its co-existence with 
legacy TCP Reno with highlights of the out-of-phase 
synchronization paces observed in Veno TCP. We further point 
out the out-of-phase synchronization benefits Veno’s behavior. 

A. Dynamics of Veno TCP and Its Interaction with Reno 
TCP 
Two TCP Reno or Veno connections are conducted 

between the pairs of sources and destinations in Fig. 1 with the 
configuration of B=15, µ=1.6Mbps, and τ =50ms. As discussed 
in [1-2], two Reno have in-phase synchronization paces, 
namely, when one connection drops its window by half, 
another connection will follow same window-penalty 
immediately. Fig. 4(a) shows the case of two TCP Reno 
connections. The phenomenon of the in-phase synchronization 
is mainly because when the shared link is fully utilized, the two 
TCP Reno senders continue to increase cwnd causing overflow 
and a packet from each connection will be dropped during this 
congestion epoch. After then, their window sizes will be halved 
for both the connections. 

When packet loss is detected by fast retransmit: 
if (DIFF*BaseRTT < β)      //most likely it is a random loss 

ssthresh = cwndloss * (4/5) 
else                                     //most likely it is a congestion loss 

ssthresh = cwndloss / 2 
 

When packet loss is detected by retransmit timeout timer: 
ssthresh is set to half the current window ; 
slow start is performed; //performs the same action as in Reno 

During the additive increase period: 
  if (DIFF*BaseRTT < β)    //available bandwidth is underutilized 
    cwnd=cwnd+1/cwnd when every new ack is received 
  else                                    //available bandwidth is fully utilized 
    cwnd=cwnd+1/cwnd when every other new ack is received
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Figure 4.  (a) Window evolution of two Reno connections. (b) Window 
evolution of two Veno connections. 

Veno refines the Multiplicative Decrease in Reno to 
improve the performance in wireless environments. This 
refinement also produces an interesting phenomenon – the out-
of-phase synchronization. It can be understood as follows. In 
Fig. 4(b), the two Veno connections, when staying in the 
congestive state, takes more conservative window increment 
than Reno, namely, each cwnd is increased by one packet for 
every two round trip time instead of one round trip time. At 
“epoch 1”, when the link has been fully utilized, one 
connection increases its window by one packet while another 
does not. This only causes one packet to be dropped at the 
router and hence only one connection suffers window-halving 
penalty. The window-halving penalty has then released much 
of the bandwidth for another connection to continue in 
grabbing more bandwidth by conservative window increment. 

However, when both Veno connections increase their 
window sizes during the same round trip time when the link is 
fully utilized, they will experience packet drops and both 
connections will reduce their window sizes due to the network 
congestion. This is depicted in Fig. 4(b) at “epoch 2”. It is also 
notable at “epoch 2” that the connection with a lower window 
size reduces less than that of the connection with a higher 
window size. The reason is that the connection with low 
window size is evolving in non-congestive state (with one 
packet increasing by one round trip time), while another 
remains in its congestive state2. Noted here that while two 
connections are competing network resource, the connection 
with more resource occupying, will suffer severe penalty, and 
the connection with less resource occupying, will have less 
severe window reduction. Thus, less aggressive connection will 
                                                           
2 In Veno, window only performs half reduction in congestive state when 
packet loss is detected by three duplicated ACKs, otherwise, it will only take 
1/5 window reduction. This packet loss here, while induced by buffer 
overflowing, can be regarded as transient congestion loss, as discussed in [13]. 

have a chance to grab more resource when loss occurs, 
meanwhile, more aggressive connection will give up some 
resource occupied. 

More interestingly, both connections interchange their roles 
of being a more and a less aggressor in terms of bandwidth 
usage as cwnd evolves, which is unique in TCP Veno. This 
mechanism will definitely bring about fair competing for 
limited resource over the Internet. Seeing the congestion epoch 
1 and 2, this intertwined pattern repeats itself indefinitely, the 
figure contains only one or a few of these cycle periods to 
allow the reader to see the details of window evolutions. 

The case of one Reno and one Veno sharing a link as 
shown in Fig. 3 is also studied. The window evolution of both 
connections is reported in Fig. 5, with evidence of the out-of-
phase synchronization phenomenon of Veno. The events at 
“epoch 3” and “epoch 4” in Fig. 5 are corresponding to that of 
“epoch 1” and “epoch 2” in Fig. 4(b). In this case, Reno 
connection is the one always being the more aggressive 
connection in bandwidth sharing. 

The sharing of Reno and Veno also arises an interesting 
result that shows fairness in bandwidth sharing between Reno 
and Veno. Usually, a less aggressor in bandwidth sharing, such 
as TCP Vegas, possesses less bandwidth over a long run when 
sharing a link with the more aggressive Reno. However, Veno, 
albeit being a less aggressor, is able to share bandwidth fairly 
with Reno. Seeing Fig. 5, the solid line is Reno’s evolution, 
dotted line is Veno’s connection. Let us look at two typical 
time that packet loss is occurring - “epoch 3” and “epoch 4”.  

 

Figure 5.  Window evolution of Reno and Veno. 

At “epoch 3”, Reno connection increase its window by one 
packet while Veno’s connection is not (Veno, after entering the 
congestive state, does not always increase its cwnd after a 
round trip time, its window is increased by one packet for every 
other round trip time in congestive state). On account of full 
buffer (already occupied by these two connections) of the 
bottleneck router, one newly extra packet in Reno’s window 
will lead to a packet loss, while Veno, due to the unchanged of 
its window, avoid packet loss. Obviously, at this time, Reno’s 
aggressive window policy brings about a window-cut 
(immediacy halved by the detection of this packet loss) while 
Veno is allowed to grow and receive more bandwidth resource 
until “epoch 4”, where both Reno and Veno suffer a packet loss 
due to their simultaneous window increase at this time. Thus, 
both windows are cut into halves. Nonetheless, in the following 
window evolution phase (from 47.5s to 53s), Reno will 
gradually exceed Veno’s window and grab more bandwidth 
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resource because of its a little bit aggressiveness. At time 53, it 
will repeat the case of “epoch 3”. This intertwined pattern 
repeats its self indefinitely. Thus, over a long run, fairness 
between Veno and Reno is able to be maintained. Noted that in 
these two competing connections, Veno has suffered less 
packet congestion loss (around 9 times in Fig. 5), while Reno 
has more (around 13 times). This reduced congestion number 
definitely increases the bandwidth utilization somewhat. 

A more interesting scenario of multiple TCP connections 
with two Veno and two Reno connections’ dynamics window 
evolutions are shown in Fig. 6(a). With experiment settings of  
B=44, µ=1.8Mbps and τ=50ms with network topology 
described in Fig. 3 

 

s 

 

 

Figure 6.  a) Window evoution of two Reno and Veno connections b) 
Seqnuence number of four connections 

  The events on “epoch 5” and “epoch 6” are similar to that 
of “epoch 4” in Fig. 5. At “epoch 5” only Veno 1 does not 
incur loss, at “epoch 6” Veno 1 and Veno 2 connections do not 
incur loss. Following a series of synchronization congestions 
occurrence (all Reno and Veno connections drop one packet 
exactly at each epoch), the Reno connections show more 
aggressiveness in these following cycles. After that, the 
intertwined pattern comes up with the Veno 2 connection. We 
notice that the window evolution becomes more complicated 
while there are multiple connections, especially when 
background traffic are introduced, but the out-of-phase 
phenomenon still exist somehow. In Fig. 6, gives the evolution 
of sequence numbers vs time and the diagram shows that all 
four connections share the bottleneck link’s bandwidth equally 
without bias.  

B. Fairness of TCP Reno and Veno 
Paper [4] has studied Veno TCP can achieve high 

throughput improvement over Reno in wireless networks. In 
this section, we investigate the dynamics fairness issues of TCP 
Reno and Veno over wired networks. 

As we observed, two Reno connections always have 
synchronized in-phase paces. While a Veno connection co-
exists with a Reno connection, there are some occasions that 
Veno does not incur packet loss in specific epoch. To some 
extent, this behavior will avoid some congestion loss, and may 
improve the utilization of network link. We design our 
experiments as follows: either the Reno or the Veno connection 
starts first to transmit a 20M byte files, the other connection – 
Reno or Veno – joins in at 20s and begins to transfer a 8M byte 
files. The setting of the network topology is: transmission rate 
2Mbps, a round-trip delay 100ms and the bottleneck link buffer 
size 15. We plot the congestion window as well as the 
sequence number against time in Fig. 7, 8 and 9. From the 
three different scenarios we observe that later coming 
connection would not be biased by previous running 
connection, they will share the bandwidth evenly, this can also 
be seen in each diagram of sequence number vs time, where the 
slope of two connections are almost same.  

 

 

 
        

Figure 7.  Reno connection is started first, another Reno joins in at 20s 
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Figure 8.  Veno connection is started first, Reno joins in at 20s 

 

 

 

Figure 9.  Reno connection is started first, Veno joins in at 20s 

In the following Table 1, we calculate the throughput using 
the file size plus the total retransmitted bytes divided by time in 
seconds. From the table, we got three results, 1) as for longer 
transmission over wireline, Veno gests slightly higher 
throughput regardless of whatever combinations is employed; 
2) as for short transmission, Veno also got slightly higher 
throughput; 3) referring to row 3 of this table, we know this 
slight improvement is brought about by less retransmitted 
packets, in other words, congestion losses in Veno are reduced 
as compared to Reno. These results conform to our above 
analysis in Section IV.A.  

TABLE I.  PERFORMANCE EVALUATION OF RENO VS VENO, FIRST 
CONNECTIONS IS WITH  20M BYTES SENT, SECOND WITH 8M BYTES 

 Reno/Reno Reno/Veno Veno/Reno 

Time 
Transmitted 124.66/73.52 124.28/71.47 123.89/73.73 

Retransmitted 
packets 105/56 103/45 90/54 

Throughput 
(KByte/s) 161.27/109.51 161.76/112.56 162.4/109.85 

 

V. CONCLUSION 
TCP Veno [4, 6, 7] was recently proposed to eliminate TCP 

performance suffering from wireless links. Real network 
measurements and live Internet results have validated Veno’s 
significant throughput improvement in wireless networks and 
its harmonious co-existence with TCP Reno connections in 
wired networks. 

In this paper, we studied the dynamics of TCP Veno and its 
detailed interaction with TCP Reno over wired networks. We 
observed out-of-phase synchronization phenomenon appearing 
in Veno’s window evolution, this desired nature leads to 
Veno’s better utilization of wired link. Our further study 
verifies that either Veno or Reno would not bring about any 
bias for any connection initiated later, and they can fairly share 
bottleneck link bandwidth in wired networks. From the 
practical viewpoint, this advantage will be definitely helpful to 
deploy sending-side based Veno TCP in current Internet with 
hybrid wired and wireless links. 
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