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Abstract: Diabetes Mellitus or diabetes is a chronic 
disease where the body is unable to regulate the 
plasma glucose level within tight physiological 
bounds. Intensive insulin therapy to maintain long-
term near-normoglycaemia is of key importance to 
the management of diabetes. Continuous delivery of 
insulin via an algorithmic-driven insulin pump offers 
the potential for close-looped regulation of the 
plasma glucose level in the presence of disturbances. 
However, an efficient model of the blood glucose 
dynamics is crucial to the derivation of a suitable 
pump control regime. Many of the classical control 
algorithms for insulin pumps proposed in the 
literature are often static and are unable to account 
for the variability of the glucose metabolism of a 
patient, especially in the presence of disturbances. 
On the other hand, the brain is the biological 
structure responsible for learning and memory. 
Neurophysiological studies have established that the 
cerebellum is a primary biological controller of 
motor movements and is important for a number of 
cognitive functions. This paper proposes the use of a 
neurologically inspired cerebellar-based learning 
memory model (HCAQ-CMAC) for the modeling of 
the human blood glucose metabolic process. The 
modeling capability of the HCAQ-CMAC network 
has been evaluated with the glucose metabolic data 
of a healthy person and a Pearson correlation 
exceeding 90% is achieved. The results are 
encouraging. 
 
Introduction 
 

Diabetes Mellitus, or commonly known as diabetes, 
is a chronic disease where the body is unable to properly 
and efficiently regulate the use and storage of glucose in 
the blood. This resulted in large perturbations of the 
plasma glucose level, leading to hyperglycemia 
(elevated glucose level) or hypoglycemia (depressed 
glucose level). Chronic hyperglycemia causes severe 
damage to the eyes, kidneys, nerves, heart and blood 
vessels of the patients while severe hypoglycemia can 
deprive the body of energy and causes one to lose 
consciousness and can eventually become life 
threatening [1]. Currently, the treatment of diabetes is 
based on a two-pronged approach: strict dietary control 
and insulin medication. The objective of insulin therapy 
is to artificially re-create the insulin profiles of a 
diabetic patient and to regulate the blood glucose level 

within tight physiological limits (typically 60-110 
mg/dl) [2].  

Insulin can be administered subcutaneously, 
intravenously or peritoneally, and it can take the form of 
discrete insulin injections or continuous insulin delivery 
via an insulin pump. Extensive studies on the 
advantages, disadvantages and peripheral issues 
regarding these insulin delivery approaches have been 
performed and reported in the literature [3][4]. 

The key importance to a successful management of 
diabetes is essentially the ability to maintain long-term 
near-normoglycaemia level of the patient. In line with 
this interest, the therapeutic effect of discrete insulin 
injections is not ideal for the treatment of diabetes as the 
regulation of the insulin is an open-looped process [5]. 
Continuous insulin infusion through an insulin pump, on 
the other hand, is a more viable approach to a better 
management of the blood glucose level due to its 
controllable infusion rate [6]. The workings of such 
insulin pumps are algorithmic-driven, with an avalanche 
of techniques proposed, investigated and reported in the 
literature over the years [7][8]. Classical control 
methods and advanced algorithms using implicit 
knowledge or explicit models (empirical, fundamental, 
or “gray-box”) of the diabetic patient have been studied 
and examined in [9]-[11]. All such proposed methods 
required some form of modeling of the glucose 
metabolic process of the diabetic patient before a 
suitable control regime can be devised.  

However, the use of classical modeling techniques 
(data fitting, compartmentalized differential/difference 
equations, statistical or machine learning approaches 
etc) [12]-[14] to describe the dynamics of the impaired 
diabetic metabolism process generally results in a rigid 
system, which is neither dynamically evolving nor 
responsive to the inter- and intra-day variability of the 
patient’s metabolic profile. 

The motivation of this paper is therefore to approach 
the dynamic modeling of the human blood glucose 
cycle; as the first step towards the regulation and control 
of insulin by means of an insulin pump for diabetic 
treatment using a brain inspired learning memory model 
(HCAQ-CMAC Neural Network [15]).  
 
Materials and Methods 
 

The first step into constructing a model of the human 
glucose metabolic process is to determine the patient 
profile to be modeled. Due to the lack of real-life patient 
data and the logistical difficulties and ethical issues 



involving the collection of such data, a well-known 
web-based simulator known as GlucoSim [16] (Figure 
1) from Illinois Institute of Technology is employed to 
simulate a person subject to generate the blood glucose 
data that is needed for the construction of the patient 
model. The objective of the study is to apply the brain-
inspired computational models of the cerebellar memory 
system to the modeling of the glucose metabolism of a 
healthy subject. A person profile for the simulated 
healthy subject is created as in Table 1. 
 

 
Figure 1: The healthy person model in GlucoSim. 

 
Table 1: Person profile of the simulated healthy subject 

in the research project 

Profile name Subject A 

Sex Male 
Age 40 years old 
Race Asian 
Weight 67 kg (147.71 lbs) 
Height 1.70 m (5 ft 7 in) 
BMI 23.0 (Recommended for Asian) 
Lifestyle Typical office worker with 

moderate physical activities such as 
walking briskly, leisure cycling and 
swimming. 

 
The simulated healthy person, Subject A, is a typical 

middle-aged Asian male. His body mass index (BMI) is 
at 23.0, within the recommended range for Asian. Based 
on the person profile of Subject A, his recommended 
daily allowance (RDA) of carbohydrate intake from 
meals is computed using an applet from the website of 
the Health Promotion Board of Singapore [17]. 
According to his sex, age, weight and lifestyle, the 
recommended daily carbohydrate intake for subject A is 
approximately 346.9g per day. A total of 100 days of 

glucose metabolic data for Subject A are collected. 
Refer to [18] for the details on the data collection. 

Figure 2 illustrates a sample output from GlucoSim 
for Subject A. This output consists of six elements: 
blood glucose, blood insulin, intestinal glucose 
absorption rate, stomach glucose, total glucose uptake 
rate and liver glucose production rate of Subject A 
respectively over a simulated time period of 24 hours. 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2: Sample glucose data output from the 
GlucoSim simulator based on a set of ten generated 

inputs as shown in Figure 1. 
 
The peaks in the stomach glucose subplot of Figure 

2 coincide with the timings of the assumed daily four 
meals (i.e. breakfast, lunch, afternoon snack and dinner) 
while those peaks in the intestinal glucose absorption 
rate subplot reflect a delay effect (response) of food 
intake on the blood glucose level of Subject A. The 
subplots of blood glucose and blood insulin illustrate the 
insulin-glucose regulatory mechanism in a healthy 
person such as Subject A and depict the dynamics of the 
metabolic process when subjected to disturbances such 
as food intake. 

Since the glucose metabolic process depends on its 
own current (and internal) states as well as exogenous 
inputs (or disturbances) such as food intake, it is 
hypothesized that the blood glucose level at any given 
time is a non-linear function of prior food intakes and 
the historical traces of the insulin and blood glucose 
levels. To properly account for the effect of prior food 
ingestion to the blood glucose level, a historical window 
of six hours is adopted. To resolve the variability issue 
in the number of meals (and hence number of inputs) 
taken within the previous 6 hours, a soft-windowing 
strategy is adopted to partition the six hours historical 
windowing and weighting function into three conceptual 
segments, namely: Recent Window (i.e. previous 1 
hour), Intermediate Past Window (i.e. previous 1 to 3 
hour) and Long Ago Window (i.e. previous 3 to 6 hour); 
which are chosen to intuitively represent the human 
conceptual understanding and perception of time, 
resulting in only three food history inputs. Based on 
these windows, three weighting functions are introduced 
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to compute the carbohydrate content of meal(s) taken 
within the recent, intermediate past or long ago periods. 
Figure 3 depicts the weighting function for each of the 
segmented windows. 
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Figure 3: Soft-windowing weighting functions to 
compute the carbohydrate content of meal(s) in the 

segmented windows of the 6-hours food history. 
 
As a modeling tool, the HCAQ-CMAC 

(Hierarchically Clustered Adaptive Quantization 
Cerebellar Model Arithmetic Computer) Network [15] 
was developed as a neuro-physiologically inspired 
enhancement of the well-established CMAC neural 
network [19]. First proposed in 1975 as a mathematical 
model of human cerebellum, CMAC is one of the most 
popular types of associative neural network. It possesses 
characteristics such as simple computation, fast training, 
local generalization and ease of hardware 
implementation.  Thus CMAC is particularly suitable 
for real-time control and optimization [20]-[22].  

As an associative memory network, CMAC memory 
cells are organized in such a way that the cells are 
evenly distributed throughout the overall input space. 
Therefore, memory size requirement of the network is 
of the main concern. The HCAQ-CMAC network solves 
this problem by effectively allocating the available 
storage space into perceptually more important regions 
of the input, i.e. regions which contain more 
information as compared to the rest. Figure 4 shows an 
example of a CMAC memory structure, as compared to 
those of HCAQ-CMAC, as depicted in Figure 5. 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 4: An example of 2D CMAC memory structure 

 
In the HCAQ-CMAC network, agglomerative 

hierarchical clustering is employed to capture the input 
distribution and the output variation. More memory 
cells are allocated to those areas in which rapid changes 
in the target output are observed, and thereby increasing 
the resolution of the system. 

 
 
 
 
 
 
 
 

  
 
 
 
 

Figure 5: The 2D HCAQ-CMAC memory counterpart 
 

The HCAQ-CMAC neural network is then employed 
to model and determine the highly nonlinear input-
output functional associative mapping of the exogenous 
input (food history), the internal states of the metabolic 
process (past blood glucose and insulin values) and the 
output which is the current blood glucose level. 

 
Results 
 

Based on the formulated hypothesis and the 
preprocessed glucose data generated from GlucoSim, 
the HCAQ-CMAC network is employed to model the 
glucose metabolic process of the healthy person Subject 
A. The collected data set is partitioned into 2 groups: 20 
days of data as training data, and the remaining 80 days 
is used to test the performance of the network. The 
modeling accuracy of the HCAQ-CMAC network is 
compared to those of the original CMAC and the results 
are tabulated in Table 2. Figure 6 gives a 3-days 
snapshot of the modeling accuracyof the HCAQ-CMAC 
network. 
 

Table 2: Simulation results of the blood glucose 
modeling using HCAQ-CMAC and CMAC network 

Network Size RMSE P. Correlation 
HCAQ-CMAC 4 12.8054 0.95797 
CMAC 12 17.9334 0.91603 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Modeling results of the HCAQ-CMAC system 

on the glucose metabolic process of Subject A. 
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The simulation results tabulated in Table 2 clearly 
justifies the proposed use of the HCAQ-CMAC network 
for the dynamic modelling of the human blood glucose 
metabolic cycle. In contrast with its CMAC counterpart, 
HCAQ-CMAC uses a more efficient memory allocation 
scheme and hence a smaller resultant network size while 
enhancing the fidelity of the modelling process. 

 
Conclusions 
 

A brain-inspired dynamically adaptive associative 
learning memory system as a tool to model the human 
blood glucose metabolic cycle has been presented in this 
paper. The modeling capability of the HCAQ-CMAC 
network has been evaluated with the glucose metabolic 
data of a healthy person and a Pearson correlation 
exceeding 90% is achieved. Future work in this 
direction will include benchmarking against classical 
modeling techniques and using the resultant HCAQ-
CMAC model to the subsequent development of an 
algorithm-driven insulin-pump to treat diabetes. 
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