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Abstract—Two issues of quadrotor control without 

deterministic dynamical equations are addressed in this paper by 
using Gaussian Process (GP) based Model Predictive Control 
(MPC) algorithm. Firstly, the first issue of modelling unknown 
dynamical motions is solved by using GP models based on 
sampled data. In this way, the model uncertainty can be 
numerically evaluated during modelling and prediction process. 
This is not easy when using other data-driven methods, such as 
Artificial Neural Networks (ANN) and Fuzzy Models (FMs). 
Then a MPC scheme based on obtained GP models is proposed to 
address the second issue of designing appropriate quadrotor 
controllers. The proposed algorithm directly takes model 
uncertainty into account when planning MPC policies, and can 
be computationally efficiently implemented through using 
analytical gradients in the optimization process. The 
performance of quadrotor control using proposed approach is 
demonstrated by simulations on a trajectory tracking problem. 

Keywords—Gaussian process; Model predictive control; 
Quadrotor control 

I. INTRODUCTION 
Recent interests in quadrotors, which are unmanned aerial 

vehicles with vertical take-off and landing abilities, are high. 
This is mainly due to their maneuverability, simplicity and 
payload capabilities [1]–[3]. They have been proposed for use 
in various military and civilian tasks [4]–[6]. 

The dynamics of the quadrotor are highly nonlinear and the 
control problem of the quadrotor is not trivial. Several control 
methods have previously been proposed, including sliding 
model control [7], back-stepping control [8] and Model 
Predictive Control (MPC) [1, 9]. A review of quadrotor control 
can be found in [9, 10]. MPC has the advantage of conceptual 
simplicity, and input and output constraints can easily be 
incorporated. 

MPC [11, 12] is a class of computer control algorithms    
that predict future responses of a plant based on its system 
model. Control actions are obtained by repeatedly solving a 
finite horizon optimal control problem. The system model of 
the quadrotor can be obtained using Newton-Euler [13] or 
Euler-Lagrange based formalisms [14, 15]. The translational 
and rotational motions are usually modelled by separately and 
controlled by two separate controllers [3, 10, 16, 17]. The main 
drawback of this approach is the difficulty in accounting for 
unmodelled dynamics and unknown perturbations. 

An alternative approach is to use data-driven modelling 
techniques. Observations or data collected from a quadrotor 
operating in a real environment can be used to create a model 
of the dynamics and perturbations through machine learning. In 
[18], the quadrotor dynamics are modelled by Artificial Neural 
Networks (ANN) while Fuzzy Models (FMs) are used in [19, 
20]. One major issue with these approaches is the difficulty in 
assessing the quality of the models learnt from data. In [21], a 
Bayesian based technique is incorporated into ANN to address 
this issue but it is computationally demanding. Another 
approach is to use direct Bayesian modelling techniques, such 
as Gaussian Process (GP) models. GP models have the 
advantage that variances are computed during the modelling 
process. These numerical variance values can be used to 
provide an indication of the quality of models created. 
Recently, it has been applied to learn partial quadrotor 
dynamics [22]. Another learning based MPC method can be 
found in [23]. 

The main issue with data-driven learning based modelling 
is that it is generally impossible to account for the full 
dynamics from the training data alone. Therefore, the main 
challenge is how to account for model uncertainties. 
Conventionally, uncertainties are assumed to be bounded, and 
control actions are computed by using the “min-max” method 
[24]. However, MPC controllers obtained in this way are 
usually too conservative since the design is based on worst-
case perturbations. Furthermore, uncertainty bounds are not 
easy to determine in practice. In [25], a Stochastic Model 
Predictive Control (SMPC) scheme is presented where model 
uncertainties are represented by probabilistic “hard-
constraints”. Unfortunately, this method is computationally 
demanding. In [26], the use of “soft-constraints” to incorporate 
model uncertainty into policy planning and evaluation in a 
straightforward manner has been proposed to address the issue. 

In this paper, we consider MPC control of a quadrotor with 
the full translational and rotational dynamics modelled by 
using GP. Initially, the quadrotor dynamics are assumed to be 
totally unknown and a GP model of the dynamics is learnt 
purely from observations. The advantage of using GP models is 
that model uncertainties are explicitly expressed by 
numerically computed variances, and can be propagated over 
the prediction horizon. We propose a method, called GPMPC 
to directly take GP model variances into account when de- 
signing the controller. In addition, by making use of gradients 



 

Fig. 1. Quadrotor Body-Earth Frame 

 derived analytically from the GP models, a computationally 
efficient way is presented to solve the optimization problem. 

The rest of this paper is organized as follows. Section II 
briefly introduces Euler-Lagrange based dynamical equations 
of a quadrotor. The way to learn the GP models of the 
quadrotor subsystems is presented in Section III. In Section IV, 
a hierarchical control scheme using GP MPC algorithm is 
proposed for the trajectory tracking problem. Analytical    
gradients are derived and they are used in a computationally 
efficient algorithm to solve the control optimization   problem. 
The effectiveness and efficiency of the proposed algorithm are 
evaluated through simulation and the results are presented in 
Section V. Finally, Section VI concludes the paper. 

II. DYNAMICAL MODELS OF QUADROTORS 
The dynamical equations of a quadrotor can be obtained by 

using the Euler-Lagrange formalism from the energy 
perspective. As shown in Fig.1, two reference frames are 
defined – the earth-fixed frame (E-frame) and the body-fixed 
frame (B-frame). Let [ ] [ , , ]E Tm x y z=ξ  and [ ] [ , , ]E Trad φ θ ψ=η  
be the position and angular vectors of the quadrotor in the E- 
frame and B-frame respectively, whereφ ,θ  andψ are   
corresponding Euler angles. In addition, let 

diag([ , , ])xx yy zzI I I=I  be the inertia matrix1, where ,xx yyI I  and 

zzI represent the inertial moments w.r.t the corresponding axis. 

The Lagrangian of quadrotor dynamics is given by 

 
.

( , ) T R PE E E= + −q q  (1) 

where [ ; ]E E=q ξ η  is the generalized coordinate ( ,ξ η  for 
short). Here, TE  and RE  denote the translational and rotational 
kinetic energies, and PE  is the total potential energy. Then, the 
Euler-Lagrange equation is [10, 14]: 

 .
d
dt

 
  ∂ ∂ = −    ∂   ∂ 

F
Γ qq

    (2) 

where F  is the translational force to the quadrotor, and 
[ , , ]Tφ θ ψ=Γ τ τ τ  represent the moments in the roll, pitch and 

yaw directions. 

Since the Lagrangian does not contain the combined kinetic 

energy term 
.
q  [10], (2) can be further separated into 

translational and rotational motion equations, given by 

 
..

m mg= + zF ξ e  (3) 

where m  is mass of the quadrotor and g  is gravitational 
acceleration, [0,0,1]T=ze  is a unit vector in the E-frame, and 

 
.. .

= +Γ η η   (4) 

where  and   are the Jacobian and Coriolis matrices [10]. 

By further rewriting (3) in state-space form, the 
translational subsystem can be expressed as 
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with intermediate controls 
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Where [ , , , , , ]Tx x y y z zx =x     and 1[ , , ]Tx yU u ux =u  are the state 
and input vectors, and x  denotes an external disturbance 
vector. In addition, ,x yA A  and zA  are aerodynamic forces that 
are independently applied to ,x y  and z  axis in the E-frame. 

Similarly, we can obtain the state-space representation of 
the rotational subsystem as follows. 
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 (7)     

Where [ , , , , , ]Tη φ φ θ θ ψ ψ=x  

  and 2 3 4[ , , ]TU U Uη =u  denote the 
state and control vectors, and η  represent the rotational 
external disturbance vector. In addition, L  is arm length of the 
quadrotor. RJ  denotes the inertial moment of rotors, and RΩ  
represents the overall residual angular speed of propellers. 

1 It is assumed that the quadrotor in this paper is symmetrical w.r.t. all three 
coordinates (or principal) axes. 



 

Fig. 2. The Overall Control Scheme for Quadrotors 

III. QUADROTOR DYNAMICS LEARNING 
For both the translational and rotational systems, the state 

equation takes the form: 

 ( )1 , ,k k k kf k+ = +x x u w  (8) 

where k  is the integer index of time, ( )f ⋅  is an unknown 
nonlinear function, and  n∈w   represents Gaussian noise with 
zero mean and variance wΣ . For the translational system, the 
states and controls are x=x x  and x=u u  respectively. 
Similarly, η=x x and η=u u  for the rotational motions. The 
system described by (8) can be modelled by GP models where 
the state-control tuples  ( , ) n m

k k k
+= ∈x x u   and state 

differences 1
n

k k kδ += − ∈x x x   are used as training inputs and 
targets respectively [27, 28]. Using state differences can be 
advantageous when changes in δx  are less than changes in x . 
The n  separate GP models are trained for each independent 
target. 

A GP model is completely specified by a mean and a 
covariance function [29]. If the mean μ  is zero and the squared 
exponential covariance, defined as  
     

2 21( , ) exp( ( ) ( ))
2

T
i j i j i js ns s= − − − +K x x x x Λ x x , is used, then 2 2,s ns s  

and matrix Λ  are the hyperparameters of the GP model. Given 
D training inputs   1[ , , ]D=X x x

 and the corresponding training 
targets 1[ , , ]TDδ δ=y x x

, the joint distribution between training 

targets and test target *δx  at a given training input *x  follows 
the Gaussian distribution. That is, 

    

   

*

* * * *

( , ) ( , )
~ 0,

( , ) ( , )

np
s

δ

   +        

y K X X I K X x
x K x X K x x

  (9) 

Furthermore, through restricting the joint distribution to only 
contain those targets that agree with collected observations, we 
can obtain the posterior distribution that also is a Gaussian with 
following mean and variance function. 
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This equation is typically only used for prediction of the 
next time-step. When conducting multiple-step predictions, it is 
necessary to iteratively propagate uncertainties over the 
prediction horizon. This issue is addressed as predictions with 
uncertain inputs in [27].  Assuming that the joint distribution of 
the training input at time k  is uncertain and follows a Gaussian 
distribution   ( ) ~ ( , )k kkp x μ Σ , the exact predictive distribution 
of training target can be defined as 

   ( ) ( ( ) | ) ( )k k k kkp p f p dδ = ∫x x x x x . This equation is analytically 

intractable, and normally approximated as a Gaussian with 
mean k

δμ  and variance k
δΣ  by using the moment matching 

technique [27, 30]. This results in 
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The distribution at time 1k +  can be further approximated by a 
Gaussian with mean and variance given by 
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More details about the computation of means and variances for 
uncertain inputs can be found in [27, 31]. 

Typically, hyperparameters [ , , vec( )]s ns s=θ Λ  are learned 
by using the evidence maximization technique [32], where 
vec( )⋅  denotes vectorization of given matrix. The resulting 
stochastic optimization problem is conventionally solved by 
using CG or BFGS approaches. More recently, PSO based 
algorithms [33] have been proposed to solve this problem. 

IV. TRAJECTORY TRACKING USING GPMPC 

A. Overall Control Scheme 
The trajectory tracking problem can be tackled by using a 

hierarchical control structure to orderly handle the tracking 
problem of the translational subsystem and the corresponding 
attitude control of the rotational subsystem [3, 10]. The block 
diagram of this structure is shown in Fig.2. In the outer loop, 
the translational subsystem is controlled to follow the sequence 
of desired positions generated by the "Trajectory Generator". 
The optimal controls 1U  are obtained by minimizing the 
tracking errors in the "Translation Controller" that also 
produces desired attitudes dθ  and dφ  from intermediate 
controls xu  and yu  given by (6). Then, the attitudes of the 
rotational subsystem are tuned to achieve the target values in 
the inner loop where the desired dψ  is always set to zero. By 
minimizing the attitude errors again, the optimal controls 2U , 

3U  and 4U  can be obtained from the ``Rotation Controller". 
Finally, those optimal control actions are applied to the 
quadrotor. 

B. Gaussian Process Model Predictive Control 
The key issue here is the design of the ``Translation 

Controller" and the ``Rotation Controller" given that the 
translational and rotational subsystems are represented by GP 



 

Algorithm 1: Analytical gradient based optimization method 

models. We propose a GP based MPC algorithm to address this 
issue. 

Consider an unconstrained MPC control problem of the 
system given by (8) with the following objective function 

 *
( ) 1min ( , )k k k⋅ −= uV x u  (13) 

where the cost function is given by 

 { }1 1 1
1

( , ) ( ) ( )
H

T T
k k k i k i k i k i k i k i

i

Q R− + + + + + − + −
=

= − − +∑x u x r x r u u  (14) 

Here, r  denotes the target positions in translational 
subsystem, or the target attitudes in rotational subsystem. 

n nQ ×∈  and m mR ×∈  are positive definite weighting matrices, 
and the prediction horizon H  is assumed to be same as the 
control horizon. In addition, because kx  are GP predictions, 
(13) actually becomes a stochastic one [25, 34]. 

 [ ]*
( ) 1min ( , )k k k⋅ −= uV x u   (15) 

The expected value of the cost function can be derived as 
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Since the values of the controls are deterministic in 
practice, the joint distribution of the state-control tuple at 
sample time k  can be expressed by 
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  (17) 

where [ , ]k kx u , [ , ]k ku x  and [ , ]k ku u  are zero. 
Thus the cost function (16) can be simplified to 

 [ ] {
}

1
1

1 1

( , ) ( ) ( )

trace( )

H
T

k k k i k i k i k i
i

T
k i k i k i

Q

Q R

− + + + +
=

+ + − + −

= − −

+ +

∑x u μ r μ r

Σ u u

   (18) 

This simplification essentially transformed the stochastic cost 
function into a deterministic one. Therefore most linear and 
nonlinear optimization methods can be used to solve the 
problem. In addition, the propagated uncertainties are included 
in the cost function. This provides a straightforward way to 
compute desired controls with the consideration of model 
uncertainties. 

C. Gradient Based Optimization 
Solving (15) is computationally demanding. The 

computational complexity of the one-step moment matching in 
(11) alone requires 2 2( ( ))D n n m+D  operations. With the 
complexities of hyperparameters learning, i.e. 3( )nDD , only 
problems with limited dimensions (under 12 as suggested by 
most publications) and limited size of training data can make 
use of GP based MPC. In this section, we shall describe our 

gradient-based algorithm that is significantly less demanding 
computationally. 

Assuming 1( ) [ ( , )]k kh z −= x u  , the optimization problem 
(15) can be expressed more compactly as 

 * arg min ( )
z

z h z
∈

=
z

 (19) 

( )h ⋅  is a value-based differentiable function over the whole 
solution domain m⊆z 

. *z denotes an optimal solution that 
satisfies *( ) 0zh z =▽  and 2 *( ) 0zh z ≥▽ . Since the optimization 
approaches using second-order derivatives 2 ( )zh ⋅▽ , such as 
Newton's method, can improve accuracy but is computational 
demanding, we only use first-order derivatives ( )zh ⋅▽ . Note that 
both derivatives are available when using GP models [27]. 

The optimal solution *z  can be obtained by iteratively 
conducting a linear or steepest descent search where  

 ( 1) ( ) ( ( ))s zz i z i h z iα+ = + ▽  (20) 
with initial guess 0

mz ⊆   until one that satisfies *( ( )) ( )h z i h z− ≥   
is reached. Here,   is a predefined tolerance, and sα  is the 
search step size. Using this method, suboptimal solutions can 
still be found even if the problem is non-convex. 

The key issue in implementing this gradient-based method 
on problem (15) is computing the gradients that are derivatives 
of the value function w.r.t. controls. Numerical methods such 
as finite difference are often used to approximate the gradients 
[36]. They are easy to implement but may lead to poor 
gradients due to the nature of the approximation methods [37]. 
With the use of GP models, the gradients can be readily 
obtained analytically without the need for numerical 
approximations. Let 

 1 1( ) ( ) trace( )T T
i k i k i k i k i k k i k iQ Q R+ + + + + − + −= − − + +μ r μ r Σ u u=  (21) 

Then from (18), [ ]1
1

( , )
H

k k i
i

−
=

=∑x u  = . The gradients can be 

expressed, using the chain-rule, as 



TABLE I.  MSE VALUES OF POSITION TRACKING AND ATTITUDE 
CONTROL USING  GP  BASED  MPC  SCHEMES  IN  THE  “LORENZ”   
TRAJECTORY TRACKING PROBLEM. 

 MSE Values 
G-PMPC PMPC 

Position X 3.3418 × 10−4 4.3401 × 10−4 
Position Y 5.1399 × 10−5 1.6264 × 10−5 
Position Z 0.0010 0.0010 
Attitude ϕ 1.5743 × 10−8 4.3030 × 10−9 
Attitude θ 5.5213 × 10−9 2.5044 × 10−9 
Attitude ψ 6.4365 × 10−14 6.4368 × 10−14 

 

 
 

Fig. 3. Controlled positions and attitudes in the ``Lorenz" tracking 
task. 
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where 
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 1
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k i
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∂
∂
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 can be easily obtained as well. 

V. NUMERICAL SIMULATIONS 
The performance of the proposed approach to trajectory 

tracking is evaluated by computer simulation. A "Lorenz" 
trajectory (shown as red dotted line in Fig.5) is used in the 
presence of external Gaussian white noise with zero mean and 
unit variance. The aerodynamic forces and moments, as well as 
other parameters used in translational and rotational dynamical 
equations are the same as those used in [3]. All simulations are 
conducted 50 times on a computer with a 3.40 GHz Intel® 
Core™ 2 Duo CPU with 16 GB RAM, using Matlab® version 
8.1. 

To collect training data, we use the hierarchical scheme 
shown in Fig.2 but based on deterministic dynamical models 
(5) and (7), and the ``min-max Nonlinear Model Predictive 
Control (NMPC) method proposed in [24]. 170 observations 
including states and controls are used to train the GP models of 
two subsystems. For the rotational subsystem, the data are 
scaled to the range [ ]0.1,  0.9 . This is necessary mainly due to 
the large numerical ranges in the original data. For example, 
the unscaled angle φ  lies in the range [ 1.57,1.57]−  while input 

4U  lies in the range 8[ 3.2,6.2] 10−− × . The scaled data leads to 
much improved training results. The training of all GP models 
takes 4.5 seconds. The Mean Squared Error (MSE) values of 
obtained models for two subsystems are very small, i.e. 

71.8693 10−×  and 98.5238 10e −×  respectively for the 
translational and rotational models. This implies that the 
models are well trained. 

These GP models are used to predict future quadrotor positions 
and attitudes in the process of designing "Translation 
Controller" and "Rotation Controller". Theoretically, a 
"sufficiently long" prediction horizon H is required to 
guarantee stability of the MPC scheme [38]. Here, we use the 
shortest prediction and control horizon of 1 to test our control 
method at extreme conditions. The positions and attitudes 
produced by using GPMPC schemes are shown in Fig.3a and 
Fig.3b. The "Reference" is the Lorenz trajectory. "G-PMPC" 
denotes the GPMPC solved by our analytical gradient based 
algorithm, and ``PMPC" denotes the one solved without using 

gradient information. These two figures show that both 
"PMPC" and "G-PMPC" closely follow the reference positions 
and attitudes over the whole trajectory. The tracking MSE 
given in Table.1 shows that "PMPC" generally produces 
slightly better results than "G-PMPC". These are to be 
expected as they solved the same problem. The difference lies 
mainly in the computational efficiency. "G-PMPC" takes only 
27% and 32% of the time required by "PMPC" for position and 
attitude control respectively while producing very similar 
control performances. This shows that the gradient based 
algorithm is both efficient and effective. 

The overall trajectory tracking results are depicted in Fig.4. 

VI. CONCLUSIONS 
A GP based MPC strategy is proposed for the trajectory 

tracking problem of a quadrotor. The overall control structure 
is a hierarchical scheme that consists of two separate MPC 
controllers for the translational and rotational subsystem 
respectively. GP models of the dynamics of these two 
subsystems are learnt from empirical data. The GPMPC 



scheme is able to account for model uncertainties when 
computing MPC controls. In addition, a computationally 
efficient analytical gradient based algorithm to solve the 
GPMPC optimization problem is proposed. Simulation results 
show that the GPMPC is able to track a non-trivial trajectory 
very well. They also show that the analytical gradient based 
algorithm significantly reduces computational demand in 
solving the optimization problem. 
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