
CONVOLUTIONAL AUTOENCODER FOR SINGLE IMAGE DEHAZING 
 

Rongsen Chen and Edmund M-K Lai 
 

Department of Information Technology & Software Engineering 
Auckland University of Technology, Auckland, New Zealand 

 
 

ABSTRACT 
 
In this paper, we present a Convolutional AutoEncoder 
(CAE) for single image dehazing. Our CAE makes us of 
Densely Connection Networks as its encoder and decoder. It 
is trained with the corresponding hazy and clean images at 
the input and output, enabling it to remove the haze without 
having to rely on an atmospheric scattering model. The CAE 
is trained and tested with the RESIDE dataset. Experiment 
results show that this CAE outperforms eight state-of-art 
methods. The trained CAE is also applied to some real-life 
hazy images, and decent dehazing results are obtained. 
Moreover, our method is computationally efficient enough to 
run on computers without GPU units.  
 
Index Terms — Single image dehazing, autoencoder, 
convolutional neural network 
 

1. INTRODUCTION 
 
Hazy weather conditions such as those involving fog and mist 
could greatly lower the visibility and clarity of the scenes 
captured by a camera. Haze could cause the best computer 
vision algorithms for object detection and tracking that were 
trained with clear images to perform poorly. The simplest 
solution to such problems is to include hazy images in the 
training data. However, it is infeasible to collect images under 
all kinds of different hazy weather conditions for all the 
classes of images in the training set, especially when the 
number of classes is large. An alternative solution is to 
remove the haze to obtain relatively clean images. 
 
Dehazing through the use of a single image is a challenging 
task. Several single image dehazing algorithms have been 
developed in the past decade [1-6]. They are based on a model 
of how hazy images are produced from a clean image. This 
model, known as the atmospheric scattering model, can be 
expressed mathematically as 
    ( ) ( ) ( ) ( ) ( )[ ]1I x J x t x x t xα= + −  (1) 
where 𝐼𝐼 is the observed hazy image, 𝐽𝐽 is the clean image to 
be recovered, t is the medium transmission map, α is the 
global atmospheric light, and x are the pixel locations in the 
images. Based on this model, J could be recovered from I if 
the medium transmission map and the global atmospheric 

light for the given image is known. Thus a major part of these 
algorithms involves the estimation of these parameters. 
 
Recently, deep neural network (DNN) based dehazing 
methods [1-4] have been proposed. In these methods, DNNs 
are used to find the optimal values of t and α for the given 
hazy images. Experimental results show that DNNs are able 
to produce more accurate estimates. However, due to the fact 
that it is generally difficult to estimate the perfect t and α with 
single image dehazing, the dehazed images often exhibit 
strong artifacts.  
 
To overcome this problem, more recent research [5, 6] have 
proposed the use of DNN methods that perform single image 
dehazing directly without assuming an atmospheric 
scattering model. The results reported in [6] is very good for 
the NITRE challenge dataset [13]. However, it has been 
shown that this DNN severely overfits the small test data of 
this challenge [7]. Nevertheless, it still shows that CNN based 
methods can perform effective dehazing without the 
atmospheric scattering model.  
 
This paper presents a convolutional autoencoder (CAE) that 
can perform effective single image haze removal, without 
needing the help of the traditional atmospheric scattering 
model. The fundamental idea is that hazy images can be seen 
as images that have been heavily affected by noise (haze). 
Therefore, if we train a CAE with a set of clear and hazy 
images, the CAE should be able to effectively remove haze 
from the hazy images just like it is able to remove noise from 
noisy images. To illustrate the effectiveness of this CAE, its 
performance is compared with other published state-of-the-
art methods using the RESIDE standard dataset [19] as well 
as some real world images. 
 
The rest of this paper is structured as follows. Section 2 gives 
an overview of convolutional autoencoders and densely 
connected networks on which our network architecture is 
based. Our proposed autoencoder is then described in detail 
in Section 3. In Section 4, the computational experiments are 
described, together with the results that compare the 
performance of our method to eight other representative 
methods. Finally, the conclusions are presented in Section 5. 
 



2. RELATED WORKS 
 

2.1. Convolutional AutoEncoder 
Autoencoder is a type of artificial neural network that is 
capable of learning the representation of the given data 
through an encoding and decoding process in an unsupervised 
manner. A Convolutional AutoEncoder is an AutoEncoder 
where its encoder and decoder are convolutional neural 
networks. It has been proven to be useful in image denoising 
tasks. For instance, in [8], good denoising performance with 
a small medical image dataset is achieved using a CAE. 
Another example can be found in [9] where a CAE with 
symmetric skip connections outperforms most of the (at the 
time) state-of-art denoising methods. 
 
2.2. Densely Connected Network  
The Densely Connected Network (DenseNet) proposed in 
[10] is a CNN that is capable of overcoming the vanishing 
gradient problem. It also enables feature reuse and is able to 
learn effectively with fewer parameters. It has been shown to 
work well with relatively small training sets. 
 
Recently, in [4], Zhang and Patel combined DenseNet and U-
Net to build a Generative Adversarial Network (GAN) to 
jointly predict the medium transmission map and the global 
atmospheric light of a given hazy image. The result is a much 
more accurate estimation compared to previous methods [1-
3], and thus produced better dehazing results. In [6], 
DenseNet and the Residual Network (ResNet) are combined 
to build a specially designed generative network. This 
network achieved first place in the NTIRE 2018 Dehaze 
Challenge [11] in the indoor task and second place in the 
outdoor task. In the same challenge, a network called 
DenseNet for Dehaze (DND) is ranked third place in the 
indoor task and first place in the outdoor task. These works 
showed that DenseNet is a very suitable type of CNN for 
image dehazing. 
 

3. METHOD 
 

3.1. Overall Architecture 
The main feature of our proposed CAE for single image haze 
removal is that the mapping between the hazy and the clean 
images is learnt directly without having to learn the 
atmospheric scattering model in (1), in contrast to most 
previous CNN based methods [1-4][3-6]. Hence, our CAE 
network takes a set of hazy images as input and directly 
generate the corresponding haze-free images as output.  
 
Figure 1 illustrates the overall architecture of our CAE for an 
input image size of 512 × 512  pixels. The input to the 
encoder of the CAE is a hazy image. The encoder extracts the 
desired features through a series of convolutional layers. The 
decoder then takes the extracted feature maps as input, and 
use them to reconstruct the desired output, which in this case, 
is the haze-free version of the input. 

 

 
 

Figure 1. The overall architecture of our CAE 
 
 
 

 
 

Figure 2. Overview of the Transpose Dense Block 
 
 
 

TABLE I. THE DETAIL OF THE CONVOLUTIONAL AND 
TRANSPOSE CONVOLUTIONAL SETTING IN THE NETWORK 

 

 
 

 
The encoder part of the CAE starts with a convolutional layer, 
followed by three dense blocks. There is also a transition 
blocks after each dense block. Each transition block consists 
of a series of three processes – batch-normalization [12], 
ReLU [13], and convolution. 
 
The decoder basically has the same structure as the encoder, 
with the convolution operations replaced by transposed 
convolution operations [14] and larger size filters. Thus the 



dense blocks in the decoder are called transposed dense 
blocks. A transposed dense block is illustrated in Figure 2. 
Since the transposed convolution operation is the inverse of 
convolution operation, the decoder has the ability to restore 
the convolutional results to its previous form. Moreover, 
since the transposed convolution has learnable filters that can 
be adjusted through backpropagation, it is capable not only of 
restoring the data, but also restoring the data in a way that we 
want it to present. Therefore, the decoder has the ability to 
generate haze-free images from the hazy inputs if it is trained 
properly. Table I provides the dimensional details of each 
layer. 
 
3.2. Loss Function 
Choosing an appropriate loss function is a critical part in 
designing CNNs as it directly affects the quality of learning 
during the backpropagation process. It is known that using 
only L2  loss functions will produce blurry outputs [6]. 
Furthermore, recent research has shown that using multiple 
loss functions in DNN based dehaze network will help  
improve the quality of the result [15]. Based on this 
knowledge, a combined loss function is chosen for training 
our CAE. More specifically, this combined loss function is 
given by 
 2 fL L L= +  (2) 
where L2 is the traditional L2 loss function defined by 
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Here, 𝐼𝐼 is the ground truth (clean) image, 𝐽𝐽 is the dehazed 
image and n  is the number of pixels. 
 
The second part of (2), 

f
L , is the perceptual loss introduced 

in [16]. Perceptual loss has been selected because it enables 
the CAE to identify the feature loss during image 
reconstruction in the decoding step. It is defined as 
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where V represents a CNN structure that extracts the low-
level features of the given ground truth image I and the 
dehazed result J. G is the grim matrix [17] and i is the selected 
layer of the CNN structure. Similar to previous works [4, 5] 
we use a pretrained VGG-16 network to extract the low-level 
features. Furthermore, the selected layer l has been set to conv 
3_1.  
 

4. EXPERIMENTS AND RESULTS 
 
4.1. Experimental Setting  
4.1.1. Dataset 

Most of the previous CNNs based dehazing methods [1-4] 
were trained with customized synthesized haze dataset. As 
the dataset is customized it could give the proposed method 
advantage in comparison to other methods, which is not fair. 
To overcome this unfairness, we will use the benchmark 
dataset that has recently has been introduced to the research 
community called the RESIDE dataset [17]. The RESIDE 
dataset has two versions – the RESIDE standard, and the 
RESIDE-β . The one we used in our experiments is the 
RESIDE standard dataset. 
 
The RESIDE standard dataset contains one training set and 
two test sets. More specifically, the training set called Indoor 
Training Set (ITS) contains 13990 synthetic indoor hazy 
images, generated using 1399 clear images from NYU2 [18] 
and Middlebury stereo [19]. The first test set, known as the 
Synthetic Objective Testing Set (SOTS) contains 500 
synthetic indoor hazy images, generate using images in 
NYU2 that are different from the training images. The second 
test set is known as the Hybrid Subjective Testing Set 
(HSTS), which contains 10 synthetic outdoor hazy images, 
and 10 real-world outdoor images to evaluate qualitative 
visual performance. 
 
4.1.2. Training setting 
We use ADAM [20] to help optimize our CAE during 
training, with a standard learning rate of 1 × 10−4 . All 
training images are in size of 460 × 620 pixels as provided 
in the dataset. We feed the training images into the CAE with 
a batch size of 1 and train the CAE for 20 epochs. 
 
4.1. Result 
Table II shows the SSIM and PSNR scores of our CAE 
compare to eight other state-of-the-art methods [1-3, 21-25] 
for the SOTS test set. The results of previous methods are 
from [17]. Nonetheless, since we are running our method on 
the exact same dataset, the compare is fair. As shown in this 
table, our CAE has significantly outperformed all the other 
methods. More specifically, the PSNR score for our CAE is 
3.42 higher than the second highest score (the DehazeNet) 
and the SSIM score is 0.0622 higher than the second highest 
score (the GRM). These results show that our CAE is much 
more capable than other methods listed in the table, in 
dehazing indoor hazy image. 
 
To further test whether our CAE has overfitted the indoor 
synthetic hazy environment after training, we directly apply 
the trained network to the HSTS test set. In contrast to ITS, 
the HSTS contains outdoor synthetic hazy images only. Thus 
we are testing the performance of the network trained with 
indoor images on outdoor images. The results are shown in 
Table III. In this case, the DehazeNet achieved the highest 
PSNR and SSIM scores while our CAE is third highest, with 
AOD-Net being second. 
 
 



The reason why our CAE performance dropped for the 
outdoor images can be attributed to the fact that the light 
conditions between outdoor and indoor environment are 
vastly different. Hence the extracted feature maps will exhibit 
huge differences, impacting the recovery process and 
consequently produce worse results.  
 
While the objective scores for our CAE for outdoor images 
are not the best, Figure 3 shows how it behaves compared 
with 5 other methods with two real-world outdoor hazy 
images. As can be observed, the methods from [1-3] failed to 
remove haze and the one from [25] produces visually poor 
results. It seems that DehazeNet [1] and AOD-Net [3], the 
two methods that outperform our CAE in Table III, is 
overfitting the synthetic hazy conditions. Meanwhile, our 
CAE is able to produce a decent result. Therefore, it is 
confident to say our method is better in real-world situations. 
 
Table IV shows the average run-time per image on an Intel 
Core i7 processor with no GPU support. It shows that our 
CAE requires on average 1.13s per image, which is the 
second fastest among the methods compared. Thus it is 

among the most computationally efficient methods for single 
image dehazing.  
 

5. CONCLUSIONS 
 
This paper presented a CAE with DenseNet as encoder and 
decoder for effective single image dehazing. Experimental 
results have demonstrated that it outperforms other state-of-
the-art methods, especially in dehazing real-world hazy 
images. Furthermore, our CAE is computationally efficient 
enough to run on computers without GPU support. 
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