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Abstract. The CMAC neural network is a well-established computational model
of the human cerebellum. A major advantage is its localized generalization prop-
erty which allows for efficient computations. However, there are also two major
problems associated with this localized associative property. Firstly, it is difficult
to fully-train a CMAC network as the training data has to fully cover the entire set
of CMAC memory cells. Secondly, the untrained CMAC cells give rise to unde-
sirable network output when presented with inputs that the network has not pre-
viously been trained for. To the best of the authors’ knowledge, these issues have
not been sufficiently addressed. In this paper, we propose a neuropsychologically-
inspired computational approach to alleviate the above-mentioned problems. Draw-
ing inspirations from the psychological aspects of the generalization of motor
skill learning, the proposed ”patching” algorithm strive to construct a plausible
memory surface for the untrained cells in the CMAC network. We demonstrate
through the modeling of human glucose metabolic process that ”patching” of un-
trained CMAC cells offers a satisfactory solution to incomplete training data.

1 Introduction

The human cerebellum is a brain region in which the neuronal connectivity is suffi-
ciently regular to facilitate a substantially comprehensive understanding of its func-
tional properties. It constitutes a part of the human brain that is important for motor con-
trol and a number of cognitive functions [1], including motor learning and memory. The
human cerebellum is postulated to function as a movement calibrator [2], which is in-
volved in the detection of movement error and the subsequent coordination of the appro-
priate skeletal responses to reduce the error [3]. It has been established that the human
cerebellum functions by performing associative mappings between the input sensory in-
formation and the cerebellar output required for the production of temporal-dependent
precise behaviors [4]. The Marr-Albus-Ito model [5] describes how the climbing fibers
of the cerebellum perform this function by transmitting moment-to-moment changes in
sensory information for movement control.

The Cerebellar Model Articulation Controller (CMAC) [6] is a neural network in-
spired by the neurophysiological properties of the human cerebellum and is recognized
for its localized generalization and rapid algorithmic computations. As a computa-
tional model of the human cerebellum, CMAC manifests as an associative memory
network [7], which employs error correction signals to drive the network learning and
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memory formation. This allows for advantages such as simple computation, fast train-
ing, local generalization and ease of hardware implementation [2], and subsequently
motivates the prevalent use of CMAC-based systems [8–10].

However, there are two significant issues associated with the effective utilization of
the CMAC network. Firstly, it is difficult to fully-train the entire CMAC network. As
CMAC is a local-learning network [11], comprehensive planning is required to gener-
ate a training data that ensures that all the network cells are trained. Furthermore, the
construction of such a training data is not always feasible in cases such as modeling
of ill-defined problems for which only limited amount of observations are available.
Secondly, the behavior of a CMAC network is undefined in the untrained regions of
the network. Although the learning convergence property of the CMAC network has
been well-established, this merely implies that the stability of a CMAC-based system is
guaranteed only within the well-trained regions of the corresponding CMAC network.
Therefore, the stability of a CMAC-based system remains very much dependent on the
careful planning of the network training. Furthermore, to the best of the authors’ knowl-
edge, there has been no previous attempt to resolve the issues of insufficient training
data in the CMAC network.

Research into the neurophysiology of the human brain has established that the
human cerebellum plays a significant role in the learning and acquisition of motor
skills [12]. Scientific studies on skill learning have provided evidences that humans as
well as animals have the innate ability to adapt and generalize skills acquired in a well-
trained motor task to novel but similar situations [12–14]. There are generally two types
of motor skill generalizations:motor adaptation[14] andcontextual interference[12].
Motor adaptation refers to the capacity to adapt the execution of a well-trained motor
task to changes in the external environment in which the task is to be performed. Con-
textual interference, on the other hand, refers to the ability of the training acquired on a
specific motor task to influence the learning process of another novel but similar task.
A number of physiological as well as psychological evidences supporting the notion of
generalized learning in motor skill acquisition have been presented in the literature [15,
16]. This generalization capability offers an insight to human behavioral responses to-
wards novel stimuli and changing working environments.

Drawing inspirations from the neurophysiology of the human cerebellum as a move-
ment coordinator, as well as the related psychological aspects of generalization and
adaptation in human motor skill acquisition, we propose a computational approach to
alleviate the problem of insufficient training data in the CMAC network. This approach,
referred to as ”patching” in the paper, constructs a plausible memory surface for the
untrained memory cells in a CMAC network. The proposed ”patching” technique is
subsequently evaluated on the modeling of human glucose metabolic process. This ap-
plication is suitable particularly due to the fact that it is very difficult, if not impossible,
to construct a dataset that is able to capture every combination of factors influencing
the blood glucose level. The rest of the paper is organized as follows. Section 2 briefly
describes the neurophysiological aspects of cerebellar learning and outlines the basic
principles of the CMAC neural network. Section 3 presents the proposed patching tech-
nique. The modeling of human glucose metabolic process is presented in Section 4 to
evaluate the effectiveness of the ”pacthing” technique. Section 5 concludes this paper.



Generalization of Cerebellar Learning 3

2 CMAC Network and Cerebellar-based Learning Mechanism

The human cerebellum functions primarily as a movement regulator; and although it is
not essential for motor control, it is crucial for precise, rapid and smooth coordinations
of movements [2]. In order to effectively accomplish its motor regulatory functions,
the cerebellum is provided with an extensive repertoire of information about the objec-
tives (intentions), actions (motor commands) and outcomes (feedback signals) associ-
ated with a physical movement. The cerebellum evaluates the disparities between the
formulated intention and the executed action and subsequently adjusts the operations
of the motor centers to affect and regulate the ongoing movement. Studies in neuro-
science has established that the cerebellum performs an associative mapping from the
input sensory afferent and cerebral efferent signals to the cerebellar output, which is
subsequently transmitted back to the cerebral cortex and spinal cord through the tha-
lamus [17, 18]. This physiological process of constructing an associative pattern map
constitutes the underlying neuronal mechanism of learning in the human cerebellum.

The human cerebellum has been classically modelled by the Cerebellar Model Ar-
ticulation Controller (CMAC) [6, 7]. The model was proposed to explain the information-
processing characteristics of its biological counterpart. The CMAC network functions
as an associative memory that models the non-linear mapping between the mossy fiber
inputs and the Purkinje cell outputs of the cerebellum. The massive mesh of granulle
cell encoders in the cerebellum corresponds to an association layer that generates a
sparse and extended representation of the mossy fiber inputs. The synaptic connections
between the parallel fibers and the dendrites of the Purkinje cells formed an array of
modifiable synaptic weights that motivates the grid-like CMAC computing structure. In
the human cerebellum, these modifiable synaptic weights are linearly combined by the
Purkinje cells to form the cerebellar output. In CMAC, the network output is computed
by aggregating the memory contents of the active computing cells.

The CMAC network is essentially a multi-dimensional memory array, where an
input acts as the address decoder to access the respective memory (computing) cells
containing the adjustable weight parameters that constitute the corresponding output.
In the CMAC network, the memory cells are uniformly quantized to cover the entire
input space. The operation of the CMAC network is then characterized by the table
lookup access of its memory cells. Each input vector to the CMAC network selects
a set of active computing cells from which the output of the network is computed.
Similarly, CMAC learns the correct output response to each input vector by modifying
the contents of the selected memory locations.

This paper employs a generic cerebellar associative memory model which is based
on a single-layered implementation of the CMAC network. Such an associative net-
work has only one layer of network cells, but maintained the computational principles
of the CMAC network by adopting a neighborhood-based activation of its computing
cells. The layered cell activations in the original CMAC network contributed to three
significant computational aspects: (1) smoothing of the computed output; (2) facilitat-
ing a distributed learning paradigm; and (3) activating the similar or highly correlated
computing cells in the CMAC input space. These three modeling principles are sim-
ilarly conserved in the single-layered cerebellar associative memory via the introduc-
tion of neighborhood-based computations. The activation of neighboring cells corre-
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Fig. 1.The memory cells structure of a 2-input CMAC network

sponds to the simultaneous activation of the highly correlated cells in its multi-layered
counterpart, and it also contributes to the smoothing of the computed output since the
neighborhood-based activation process results in continuity of the output surface.

Figure 1 depicts the memory cell structure of such a single-layered implementation
of a CMAC network. The single-layered CMAC network employs aWeighted Gaussian
Neighborhood Output(WGNO) computational process, where a set of neighborhood-
bounded computing cells is activated to derive an output response to the input stimulus.
For each input stimulusX, the computed output is derived as follows:

Step 1: Determine the region of activation
Each input stimulusX activates a neighborhood of CMAC computing cells. The
neighborhood size is governed by the neighborhood constant parameterN , and the
activated neighborhood is centered at the input stimulus.

Step 2: Compute the Gaussian weighting factors
Each activated cell has a varied degree of activation that is inversely proportional
to its distance from the input stimulus. These degrees of activation functioned as
weighting factors to the memory contents of the active cells.

Step 3: Retrieve the PSECMAC output
The output is the weighted sum of the memory contents of the active cells.

Following this, the single-layered CMAC network adopts a modifiedWidrow-Hoff learn-
ing rule [19] to implement aWeighted Gaussian Neighborhood Update(WGNU) learn-
ing process. The network update process is briefly described as follows:

Step 1: Computation of the network output
The output of the network corresponding to the input stimulusX is computed based
on the WGNO process.

Step 2: Computation of learning error
The learning error is defined as the difference between the expected output and the
current output of the network.

Step 3: Update of active cells
The learning error is subsequently distributed to all of the activated cells based on
their respective weighting factors.
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3 Generalization in The Neighborhood of Untrained CMAC Cells

It is not always feasible to generate a training data that ensures that all the memory
cells in the CMAC network are trained. In such cases, theempty cell’s phenomenon
occurs whenever the test input falls within the clusters of untrained cells, resulting in an
undesirable network output. However, this problem can be alleviated by constructing a
plausible memory surface for the untrained cells of the untrained CMAC network cells.
Such a construction process is referred to as ”patching” in this paper.

The ”patching” algorithm proposed in this paper is inspired by the neuropsycholog-
ical aspects of human motor skill learning. In the research of human and animal motor
skills, thetransfer of learning[13] or motor skill generalizationis a well-established
property of skill acquisitions. It has been demonstrated that humans, as well as animals,
have innate abilities to adapt and generalize skills acquired in a well-trained motor task
to novel but similar situations [12, 13]. Such adaptation enhances the execution as well
as shortens the learning curves of various motor skills.

Motor skill generalization capability can be broadly categorized into: (1) motor
adaptation [14] and (2) contextual interference [12]. The motor adaptation process
refers to the capacity to adapt the execution of a well-trained motor task to changes
in the external environment where the task is to be performed [15]. Such generaliza-
tion capability was demonstrated in a study conducted by Palmer and Meyer [20]. In
that study, experienced pianists were first asked to learn a new piece of music and were
subsequently asked to play a variation of the melody which required different combina-
tions of hand and finger movements. The study eventually concluded that motor learn-
ing is not simply a matter of acquiring specific muscle movements, because experienced
learners are able to transfer their skills to new situations that require them to produce the
same general pattern of movements using different muscle groups [20]. Contextual in-
terference, on the other hand, covers a broader scope of skill generalization. It refers to
the ability of training acquired on a specific motor task to influence the learning process
of another novel but similar task. Such generalization capability was demonstrated and
studied in [21, 16]. Although much less is known about the exact neurophysiological
processes underlying this motor generalization phenomena, psychological studies [12]
have suggested that there is a correlation between the amount of skill transfer and the
similarity in the natures of skill executions. Generally, as more similarities are observed
between the two tasks, the greater is the influence of one over the other [13].

The local generalization characteristic of the CMAC network is based on the prin-
ciple that similar inputs should produce similar outputs. Governed by this notion, this
paper proposes a ”patching” approach to the construction of a plausible memory surface
for the untrained CMAC memory cells to alleviate the problem of insufficient training
data in a CMAC network. The principle behind the proposed ”patching” algorithm is
the interpolation of memory surfaces from the trained memory cells to the regions of
untrained memory cells. Starting from the outer edge of an untrained region, the mem-
ory content of an untrained memory cell is computed as the weighted average of the
memory contents of its trained direct neighbors. For an arbitrary cellci,j at the edge of
an untrained region (see Figure 2), the ”patched” value of the memory contentwi,j is
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Fig. 2.The workings of the proposed ”patching” algorithm
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wheredk,l denotes the distance between the empty cellci,j and its fully-trained neigh-
boring cell ck,l. The interpolated values are then propagated iteratively towards the
center of the ”hole”. This is illustrated in Figure 2. This results in smooth transitions of
the characteristic surface in the regions of clusters of untrained cells.

4 Case Study: The Modeling of The Human Glucose Metabolism

Diabetes is a chronic disease where the body is unable to properly and efficiently reg-
ulate the use and storage of glucose in the blood. This resulted in large perturbations
of the plasma glucose level, leading tohyperglycemia(elevated glucose level) orhy-
poglycemia(depressed glucose level). Chronic hyperglycemia causes severe damage to
the eyes, kidneys, nerves, heart and blood vessels of the patients while severe hypo-
glycemia can deprive the body of energy and causes one to lose consciousness and can
eventually become life threatening. Currently, the treatment of diabetes is based on a
two-pronged approach: strict dietary control and insulin medication.

The key component to a successful management of diabetes is essentially the ability
to maintain a long-term near-normoglycaemiastate of the patient. With respect to this
notion, the therapeutic effect of discrete insulin injections is not ideal for the treatment
of diabetes as the regulation of insulin is an open-looped process. Continuous insulin
infusion through an insulin pump, on the other hand, is a more viable approach to a
better management of the blood glucose level due to its controllable infusion rate [22].
Such insulin pumps are algorithmic-driven, with an avalanche of techniques proposed,
investigated and reported in the literature over the years [23, 24]. All such proposed
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methods required some forms of modeling of the glucose metabolic process of the dia-
betic patient before a suitable control regime can be devised.

In this section, the performance of the proposed ”patching” algorithm is evaluated
on the modeling of the dynamics of the human blood glucose cycle. This application is
suitable particularly due to the fact that it is very difficult to collect a dataset that is able
to capture every combination of factors influencing the blood glucose level.

4.1 Materials and Method

The first step into constructing a model of the human glucose metabolic process is to
determine the patient profile to be modeled. Due to the lack of real-life patient data
and the logistical difficulties and ethical issues involving the collection of such data, a
well-known web-based simulator known asGlucoSim[25] from the Illinois Institute of
Technology (IIT) is employed to simulate a person subject to generate the blood glucose
data that is needed for the construction of the glucose metabolism model. The objective
of the experiment is to apply the CMAC network, both with and without the ”patching”
algoritm, to the modeling of the glucose metabolism of a healthy subject.

The simulated healthy person, Subject A, is a typical middle-aged Asian male. His
body mass index (BMI) is23.0, which is within the recommended range for Asian.
Based on the person profile of Subject A, his recommended daily allowance (RDA) of
carbohydrate intake from meals is obtained from the website of the Health Promotion
Board of Singapore [26]. According to his sex, age, weight and lifestyle, the recom-
mended daily carbohydrate intake for Subject A is approximately346.9g per day.

Since the glucose metabolic process depends on its own current (and internal) states
as well as the exogenous inputs in the form of food intakes, it is hypothesized that the
blood glucose level at any given time is a non-linear function of prior food intakes and
the historical traces of the insulin and blood glucose levels. To properly account for the
effects of prior food ingestions to the blood glucose level, a historical window of six
hours is adopted. A soft-windowing strategy is adopted to partition the six-hours his-
torical window into three conceptual segments, namely:Recent Window(i.e. previous 1
hour),Intermediate Past Window(i.e. previous 1 to 3 hour) andLong Ago Window(i.e.
previous 3 to 6 hour). Based on these windows, three normalized weighting functions
are introduced to compute the carbohydrate content of the meal(s) taken within the re-
cent, intermediate past or long ago periods. Thus, inclusive of the blood glucose and
insulin levels, there are total of five inputs to the CMAC network.

Based on the formulated hypothesis and the preprocessed glucose data generated
from GlucoSim, a total of100 days of glucose metabolic data for Subject A are col-
lected. The carbohydrate contents and the timings of the daily meals were varied from
day-to-day during the data collection phase. This ensures that the networks are not be-
ing trained on a cyclical data set, but are employed to discover the inherent relationships
between the food intakes and the glucose metabolic process of a healthy person. The
collected data set is partitioned into2 groups:80 days of data as training data and the
remaining20 days is for testing.
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Fig. 3.Modeling results of the CMAC network on the glucose metabolic process of Subject A
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Fig. 4.Modeling results of the CMAC network on the glucose metabolic process of Subject A

4.2 Results

To model the blood glucose dynamics, a CMAC network with a memory size of8
cells per dimension was constructed. The network was trained using the training dataset
in 1000 training iterations, employing a learning constant of0.1. At the end of the
training iteration, aRoot Mean Square Error(RMSE) of6.3187 mg/ml and aPearson
Correlation of 98.97% were achieved. The trained network was subsequently tested
to model the 20-days testing set. Figure 3 gives a 3-days snapshot of the modeling
accuracy of the trained CMAC network.

The empty cells phenomena in the CMAC-based glucose metabolism model ob-
served in this study are highlighted in Figure 4. Figure 4 depicts a one-day snapshot
of the modeled blood glucose cycle during the testing phase. As the CMAC network
was initialized to zero prior to the training process, the access of untrained CMAC cells
result in zero network outputs. One can observe that empty cells phenomena results in
poor and inaccurate performances of the CMAC glucose metabolic model.
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Fig. 5.Modeling results of the CMAC network on the glucose metabolic process of Subject A

Table 1.Testing results of the CMAC-based blood glucose modeling

CMAC Network Maximum Error RMSE Pearson Correlation
(mg/ml) (mg/ml) [%]

Before ”patching” 190.006 10.7788 96.73
After ”patching” 44.635 8.2548 98.08

The proposed ”patching” technique is subsequently applied to the trained CMAC
network to remove the untrained cells. Figure 5 depicts the performance of the ”patched”
network for the same day in the testing phase of Figure 4. It can be observed that the
”patching” technique eliminates the empty cells phenomena and results in a signifi-
cantly improved performance of the network. As a quantitative measure, Table 1 out-
lines the performances of the CMAC network before and after the ”patching” process.
Simulation results shown in both Figure 5 and Table 1 have justified the effectiveness
of the ”patching” technique in eliminating the problem of insufficient training data.

5 Conclusions

In this paper, we have presented a novel neuropsychologically-inspired computational
approach to overcome the problem of insufficient training data in a CMAC-based sys-
tem. An empty cells phenomenon occurs whenever the CMAC test inputs fall within
the clusters of untrained CMAC memory cells, resulting in undesirable network out-
put. The proposed ”patching” technique alleviates this deficiency by interpolating the
memory surfaces around the regions of untrained cells to construct a plausible mem-
ory surface for these untrained memory cells. The proposed technique was evaluated
through the modeling of human glucose metabolic process. The experimentation re-
sults have sufficiently demonstrated the effectiveness of the ”patching” technique, as
significant improvements were noted in the performance of the ”patched” networks.
Further research in this direction includes a more detailed evaluation of the ”patching”
technique as well as the extension of the algorithm to more sophisticated problems.
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