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Abstract. Both the original Cucker-Smale flocking model and a more

recent version with collision avoidance do not have any control over how

tightly the system of agents flock, which is measured by the flock diameter.

In this paper, a cohesive force is introduced to potentially reduce the

flock diameter. This cohesive force is similar to the repelling force used

for collision avoidance. Simulation results show that this cohesive force

can reduce or control the flock diameter. Furthermore, we show that for

any set of model parameters, the cohesive force coefficient is the single

determining factor of this diameter. The ability of this modified collision-

avoiding Cucker-Smale model to provide control of the flock diameter

could have significance when applied to robotic flocks.
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1 Introduction

Swarm Intelligence is inspired by biological swarms with emergent behaviours that
evolve to collectively solve a problem. It has found applications in a diversity of
areas [4,7,10]. One of these collective behaviours is flocking which is a phenomenon
where individual autonomous agents use only limited information to self-organize
into a state of motion consensus, starting from a disordered initial state [15].
In [11], three simple rules — separation, alignment and cohesion, are used to
simulate flocking behaviour. The separation rule keeps the agents from colliding.
The alignment rule helps them to reach a common speed and direction, while the
cohesion rule keeps the flock together spatially. They have been used successfully
for computer animation of flocks of birds, etc. However, this model is not amenable
to mathematical analyses.

The first mathematical flocking model was proposed by Vicsek [14]. With this
model, a group of self-propelled particles moves at the same speed but initially
at random directions. Each particle updates its direction by averaging those of
its neighbours within a certain radius. Based on the Vicsek’s model, Cucker and
Smale [3] later proposed a flocking model governed by the following equations:⎧⎪⎨⎪⎩

𝑝𝑖 = 𝑣𝑖

𝑣𝑖 = 1
𝑁

𝑁∑︀
𝑗=1

𝜓 (‖𝑝𝑗 − 𝑝𝑖‖) (𝑣𝑗 − 𝑣𝑖)
(1)



for 𝑁 agents where 1 ≤ 𝑖 ≤ 𝑁 and the position and velocity of the 𝑖-th agent are
denoted by 𝑝𝑖 and 𝑣𝑖 respectively. The communication rate function 𝜓 quantifies
the influence between 𝑖-th and 𝑗-th agents. It is a positive decreasing function of
the Euclidean distance between the agents. With

𝜓(‖𝑝𝑗 − 𝑝𝑖‖) = 1
(1 + ‖𝑝𝑗 − 𝑝𝑖‖2)𝛽

, (2)

it has been mathematically proven that when 𝛽 < 1/2 flocking will emerge
unconditionally, while for 𝛽 ≥ 1/2 flocking could only be guaranteed under some
conditions on the initial positions and velocities of particles [3]. More recently, a
generalization to the Cucker-Smale model has been proposed to ensure that the
agents do not collide [1,2]. This is achieved by adding a repelling force function
𝑓 such that the model equations become

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑝𝑖 = 𝑣𝑖

𝑣𝑖 = 1
𝑁

𝑁∑︀
𝑗=1

𝜓(‖𝑝𝑗 − 𝑝𝑖‖)(𝑣𝑗 − 𝑣𝑖)

+
∑︀
𝑗 ̸=𝑖

𝑓(‖𝑝𝑗 − 𝑝𝑖‖2)(𝑝𝑗 − 𝑝𝑖)

(3)

This is a more realistic model in practice.
The remaining issue is related to the flock diameter. This is defined the

maximum distance between any two agents in the flock [6]. In previous studies
such as [5,8, 13], flocking is assumed to be achieved when the velocity is aligned
and this diameter attains any finite value, no matter how large. Intuitively, we
only use the term flocking to a group of agents that are moving reasonably close
to each other. However, with the Cucker-Smale system, there is no control over
the final flock diameter. In practice, for example, in the deployment of a group
of autonomous robots, we often want to be able to exert some control over the
flock diameter. The main aim of this paper is to propose a modified model based
on (3) that will allow us more control over the flock diameter. Inspired by the
idea of the repelling force for collision avoidance, we introduce a cohesive force
in order to achieve this. The effectiveness of this modified model is demonstrated
through computer simulation and the relationship between flock diameter and
the cohesive force parameter is obtained.

The rest of this paper is organized as follows. A definition of flocking and
a description of the repelling force function of collision-avoiding Cucker-Smale
system are presented in Section 2. In Section 3.1, our proposed introduction
of a a general cohesive force function to the collision-avoiding Cucker-Smale
model is discussed. The effects of this model on the flock diameter are studied
through computer simulation and the results are presented in Section 4. Finally,
Section 5 concludes the paper and discuss the future work by using nonlinear
control methods.



2 Preliminaries

2.1 Definition of Flocking

Flocking is said to be achieved for a group of 𝑁 agents if the following two
conditions are satisfied:

1. The velocity of every agent is virtually the same, i.e. for an arbitrarily small
𝛿 > 0,

|𝑣𝑖 − 𝑣𝑗 | ≤ 𝛿 (4)

for all 𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑖 ̸= 𝑗.
An equivalent measure for velocity alignment is the average normalized
velocity 𝑣𝑎 which is defined by

𝑣𝑎 =

⎮⎮⎮∑︀𝑁
𝑖=1 𝑣𝑖

⎮⎮⎮∑︀𝑁
𝑖=1 |𝑣𝑖|

(5)

Using this measure, the criterion (4) can alternatively be stated as |1−𝑣𝑎| < 𝛿′

for some arbitrarily small 𝛿′ > 0.
2. The distance between any two agents is bounded by 𝜖. That is,

sup
1≤𝑖,𝑗≤𝑁

‖𝑝𝑖 − 𝑝𝑗‖ < 𝜖 (6)

𝜖 is the upper bound on the distance between two agents that are furthest
apart. It will be referred to as the flock diameter in this paper.

2.2 Collision Avoidance

Let 𝑑0 > 0 be the minimum distance between any two particles. If ‖𝑝𝑗 −𝑝𝑖‖ < 𝑑0,
then collision is said to have occurred. Collisions could occur between agents in
the Cucker-Smale flocking system (1).

In [2], a repelling force is introduced to separate two agents that are too close
to each other. It is suggested that this repelling force function 𝑓 : (𝑑0,∞] → [0,∞)
should have the following properties for 𝑑1 > 𝑑0:

1.
∫︀ 𝑑1

𝑑0
𝑓(𝑟)𝑑𝑟 = ∞, and

2.
∫︀ ∞

𝑑1
𝑓(𝑟)𝑑𝑟 < ∞.

Incorporating this function into (1) results in (3) introduced earlier. A simple
function such as 𝑓(𝑟) = (𝑟 − 𝑑0)−𝜃 suggested by [2] will have the required
properties.



3 Flock Diameter Control

3.1 Cohesive Force

The Cucker-Smale models given by (1) and (3) do not provide any control over
the final flock diameter which is the largest distance between any two agents
when flocking condition 1 of Section 2.1 is satisfied. Inspired by the way collision
avoidance was introduced to (1) through a repelling force, flock diameter could
potentially be reduced or controlled by introducing a cohesive force.

This cohesive force function 𝜑 must be Lipschitz continuous, so that the
existence theorems and equations for Cucker-Smale model can apply. Given that
a repelling force is asserted when an agent moves within a radius of 𝑑1 of another
agent, the cohesive force should operate between agents that are at least at a
distance of 𝑑1 apart. So, 𝜑(𝑟) = 0 when 𝑟 ≤ 𝑑1. For 𝑟 > 𝑑1, 𝜑(𝑟) should be a
monotonically non-decreasing function of 𝑟.

An example of cohesive force function is given by:

𝜑(𝑟) =
{︃

0 𝑟 ≤ 𝑑1

𝑘 * 1
1+𝑒−𝑟 𝑟 > 𝑑1

(7)

where 1/(1 + 𝑒−𝑟) is a sigmoid function and is Lipschitz continuous.

3.2 Modified Cucker-Smale System

Introducing this cohesive force into (3), the modified Cucker-Smale system
becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑖 = 𝑣𝑖

𝑣𝑖 = 1
𝑁

𝑁∑︀
𝑗=1

𝜓(‖𝑝𝑗 − 𝑝𝑖‖)(𝑣𝑗 − 𝑣𝑖)

+
∑︀
𝑗 ̸=𝑖

𝑓(‖𝑝𝑗 − 𝑝𝑖‖2)(𝑝𝑗 − 𝑝𝑖)

+
∑︀
𝑗 ̸=𝑖

𝜑(‖𝑝𝑗 − 𝑝𝑖‖2)(𝑝𝑗 − 𝑝𝑖)

(8)

for 1 ≤ 𝑖 ≤ 𝑁 where 𝜑 is the cohesive force function.
The second and third terms for 𝑣𝑖 in (8) could be combined since they

essentially have the same form. Hence we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑝𝑖 = 𝑣𝑖

𝑣𝑖 = 1
𝑁

𝑁∑︀
𝑗=1

𝜓(‖𝑝𝑗 − 𝑝𝑖‖)(𝑣𝑗 − 𝑣𝑖)

+
∑︀
𝑗 ̸=𝑖

𝐻(‖𝑝𝑗 − 𝑝𝑖‖2)(𝑝𝑗 − 𝑝𝑖)

(9)

When the distance between any two particles 𝑟 = ‖𝑝𝑗 − 𝑝𝑖‖ is less than collision
avoidance distance 𝑑1, then 𝐻 acts like the repelling force function 𝑓 . Otherwise,
it acts like the cohesive force function 𝜑.

Using the examples for the repelling and cohesive forces from Section 2.2 and
3.1 respectively, a possible function 𝐻 is shown in Figure 1. Here, a positive value
denotes an attractive force while negative values denote repulsion.
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Fig. 1. Force Function 𝐻(𝑟) in (9).

4 Simulation Results

The characteristics of the modified collision-avoiding Cucker-Smale system (8)
given in Section 3.2 will now be studied using computer simulation. The aim
is to evaluate how various parameters of the system affects the flock diameter.
These parameters include the cohesive force coefficient 𝑘 in (7), the initial field
size and the collision distance 𝑑1.

The agents are free to move in an infinitely large two-dimensional space. Thus
they will not encounter any boundaries. Without loss of generality, we shall not
assign units to both the distance and time. Every agent will move with the same
speed of 0.5 per unit time with a uniformly random initial direction in [0, 2𝜋).
The initial position of each agent will be randomly chosen within a circle of 𝑙
units in diameter which will be referred to as the initial field size. The value of 𝛽
in (2) is fixed at 1/4 to ensure flocking occurs. The collision avoidance distance
𝑑1 is set at 0.2. The value of 𝑑0 is 0.01. The value of parameter 𝜃 of the repelling
function is 2. The system is considered to be in a flocking state when the average
velocity 𝑣𝑎 ≥ 0.99. In every scenario for each set of parameters, the value shown
is the average over 20 independent simulation runs.

4.1 Effect of Cohesive Force Coefficient

First, we shall consider the effect of the cohesive force coefficient 𝑘 in (7) on the
flock diameter when flocking is achieved. We examine values of 𝑘 between 0 and
3 with 𝑘 = 0 indicating that cohesive force is not used. The size 𝑁 of the flock
ranges from 10 to 50 with increments of 10. The initial field size is 4.

Figure 2 shows that increasing the cohesive force coefficient leads to a sub-
stantial reduction in the flock diameter for all different values of 𝑁 . Comparing
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Fig. 2. Flock Diameter for Different Cohesive Force Coefficients

between no cohesive force and 𝑘 = 3 reveals the largest reduction in flock diameter
is for 𝑁 = 10 at 29.8%. For 𝑁 from 20 to 50, percentage reduction in flock
diameter are 12.3%, 15.1%, 14.9% and 14.5% respectively. This shows that the
cohesive force can be used to obtain a tighter group of flocking agents.

4.2 Effect of Initial Field Size

Table 1. Flock Diameter by Cohesive Force Coefficients (k)

Initial Field
N = 10 N = 20 N = 30 N = 40 N = 50

Size k=0 k=1 k=0 k=1 k=0 k=1 k=0 k=1 k=0 k=1

4 1.0570 0.8634 1.2835 1.1080 1.4864 1.2703 1.5771 1.3513 1.6877 1.4280

8 1.5185 1.3644 1.7080 1.6742 1.8716 1.8059 2.0552 1.9180 2.2818 1.9707

12 2.2013 1.7812 2.4258 1.9644 2.6490 2.3418 2.7641 2.4214 2.8702 2.2588

16 2.8674 2.2808 3.0995 2.3925 3.1646 2.4683 3.2858 2.6104 3.3848 2.7377

20 3.0775 2.6609 3.2935 2.8801 3.3419 2.9797 3.4430 3.0980 3.5366 3.1976

The initial field size, which reflects how closely placed the agents initially are,
may have a substantial effect on the final flock diameter. In this set of simulations,
we vary the intial field size while keeping other system parameters the same.
Figure 3 shows that increasing the initial separation of the agents does have a
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Fig. 3. Flock Diameter for Different Initial Field Size Without Cohesive Force.
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𝑘 = 1.



substantial effect on the final flock diameter. For 𝑁 = 10, when the initial field
size is increased from 4 to 20, the flock diameter is increased almost 3 times. As
𝑁 increases, the percentage increase in flock diameter is smaller. But for 𝑁 = 50,
the increase is still more than twice.

The same simulations are repeated with a cohesive force coefficient 𝑘 set to
1. The results can be found in Figure 4. The numerical values for Figures 3
and 4 are listed in Table 1 for ease of comparison. It is interesting to note that
the percentage increase in flock diameter with cohesive force is more or less the
same that without cohesive force. This is true for all values of 𝑁 . Thus the effect
of initial field size on the final flock diameter is essentially the same for both
systems.

4.3 Effect of Collision Distance
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Fig. 5. Flock Diameter in Different Collision Distances

The remaining factor that could have a substantial influence on the flock
diameter is the collision distance 𝑑1. Simulation results with 𝑘 = 1 and varying
values of 𝑑1 are shown in Fig 5. Other parameters are the same as the previous
simulations. The lowest curve shows that collision distance in 1 has approximately
2 times impact on flock diameter when collision avoidance is 0.2 for 𝑁 = 10.
Fig 5 displays a similar tendency in the different number of groups. Consider
the collision distance 𝑑1 = 0.2 as the reference. When 𝑑1 is doubled, the flock
diameter increases by 130% for all values of 𝑁 . For instance, with 𝑁 = 50, the
flock diameter is 1.8755 in 𝑑1 = 0.4 that is 1.3 times in comparison with 1.4280
of 𝑑1 = 0.2. Based on the results from Section 4.1, if 𝑑1 is increased, the only way
to reduce the flock diameter is by increasing the cohesive force.



5 Conclusions and Future Work

In this paper, we introduced a cohesive force into the collision-avoiding Cucker-
Smale flocking model. The main purpose is to provide a way to control the
diameter of the flock. Simulation results show that this cohesive force is able to
reduce this diameter, and the cohesive force is obvious a nonlinear control for
flocking diameter. Other factors such as the initial field size and collision distance
have the same effect on the system with and without cohesive force. Thus the only
significant factor in controlling the flock diameter is the cohesive force coefficient.
The ability of this modified collision-avoiding Cucker-Smale model to provide
control of the flock diameter could have significance when applied to robotic
flocks. In the future, we are exploring ideas like [9, 12] using nonlinear control for
flocking diameters.
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