
Power-Balanced VLIW Instruction Scheduling Using Rough
Programming

Shu Xiao and Edmund M-K. Lai
School of Computer Engineering

Nanyang Technological University, Singapore 639798

shu x@pmail.ntu.edu.sg, asmklai@ntu.edu.sg

Abstract

Current techniques for power-aware VLIW instruction
scheduling assumed that the power consumption parame-
ters are precisely known. In reality, there will always be
some degree of imprecision. In this paper, we propose
to apply rough programming to handle the imprecision
involved. The power-aware instruction scheduling prob-
lem is formulated as a chance-constraint rough program.
A problem-specific genetic algorithm implementation is
proposed to solve it. Experiments with various target
instruction sequences revealed that the actual occurrence
of optimal schedules obtained by integer programming
often have a large deviation of the objective function
values, due to the ignorance of imprecision accumulation.
The results justified our rough programming approach to
finding a globally optimal schedule with all the possible
realization of the power parameters considered.

Keywords: Genetic algorithm, instruction schedul-
ing, power-aware, rough programming, VLIW.

1 Introduction

Power-balanced instruction scheduling is the task of pro-
ducing a schedule of microprocessor instructions so that
the average power consumption is minimized or the power
variation over the execution time of the program is mini-
mized, while the deadline constraints are met. Previously
published works in this area make use of power consump-
tion models with parameters that are assumed to be pre-
cisely known [1–4]. However, in reality, the values of these
parameters are not precise for two main reasons. Firstly,
physical measurements, which has been an important ap-
proach to instruction-level power modelling and estima-
tion for microprocessors [5–8], are inherently imprecise.
The variations in the measured values are using handled
by using the mean or median of a large number of mea-
surements. Secondly, in order to reduce the complexity of
the power model, those instruction with consume similar
amounts of power are given the same power figure [9].

While these approximations using the average values
allow us to optimize power consumption in the average
sense, they are not good enough in power critical appli-
cations. For example, the optimal schedule obtained with
the average values fails to guarantee that a hard power
variation limit for chip reliability will not be exceeded in
real life situations. Therefore, it is desirable to find sched-
ules which guarantee good power variations for all possi-
ble realizations of the power consumption parameters. So
instead of formulating the scheduling problem as a mixed-
integer program [4], some kind of uncertain programming
formulation and solution will be needed.

There are several approaches to uncertain program-
ming [10], e.g. stochastic programming, fuzzy program-
ming and rough programming. We propose to use rough
programming approach to power-aware VLIW instruction
scheduling. Rough programming [10] is based on rough
set theory [11]. One advantage of rough set techniques
is that they do not need any prior information on the
data. This is in contrast with statistics which requires the
assumption of prior probability distributions. Similarly,
basic probability assignments are needed for those based
on the Dempster-Shafer theory [12]. For fuzzy set theory,
fuzzy membership functions are required [13].

This paper focuses on the optimization problem of Very
Long Instruction Word (VLIW) instruction scheduling for
power variation minimization. In general, a VLIW proces-
sor is a pipelined CPU that can execute a set of explicitly
parallel instructions on different functional units. This
set of instructions is statically scheduled by the compiler.
The problem is formulated as a chance-constraint rough
program. Since the objective function to be optimized
is multimodal and the search space is particularly irreg-
ular, conventional optimization techniques are unable to
produce near-optimal solutions. We proposed a problem-
specific genetic algorithm (GA) to solve it. The advantage
of genetic algorithm [14] is highly robust to avoid getting
stuck at a local optimal solution. Experiments with vari-
ous target instruction sequences revealed that the actual
occurrence of optimal schedules obtained by integer pro-
gramming often have a large deviation of the objective

1

function values due to the ignorance of imprecision accu-
mulation. The results justified our rough programming
approach to finding a globally optimal schedule with all
the possible realization of the power parameters consid-
ered.

The rest of the paper is organized as follows. The rough
programming formulation for this optimization problem is
described in Section 2. Section 3 presents our problem-
specific genetic algorithm. Our experimental results are
presented in Section 4.

2 Problem Formulation

The conventional mixed-integer program (MIP) for the
scheduling of VLIW instructions for minimal power vari-
ations is given by P1 and efficient techniques have been
proposed to solve it [4].

P1: min P (X, ξ)
subject to

X =
⋃

xk
i i = 1, ..., n; k = 1, ..., t

xk
i ∈ {0, 1} i = 1, ..., n; k = 1, ..., t

(1)

G(X) ≤ 0
L(X) = 0 (2)

where P (X, ξ) is the power variation of a given sched-
ule X over time which we seek to minimize, and ξ de-
notes the set of the power consumption parameters. For
the two constraints given by (1), n is the number of in-
structions in X and t is the number of time slots avail-
able. The binary decision variables xk

i has a value of 1
if instruction i is rescheduled in time slot k; otherwise
its value is zero. G(X) ≤ 0 and L(X) = 0 in (2) de-
note the constraint matrix for processor-specific resource
constraints, data dependence constraints and performance
deadline constraints.

As said in the introduction, the power-aware VLIW in-
struction scheduling problem has been investigated, but
very few studies are concerned with uncertainty of the
power consumption parameters ξ in the above formulation.
In real life situations, the power consumption parameters
may vary a lot. Therefore, classical approaches replying
on precise data are disrupted. We propose to encapsulate
the imprecision of the power consumption parameters by
expressing them as rough variables and then formulate the
problem as a rough program. Definitions for rough space
and rough variables are given as follows [10].

Definition 2.1 Let Λ be a nonempty set, A be a σ-algebra
of subsets of Λ, ∆ be an element in A, and π be a set
function satisfying the following axioms:

1. π{A} ≥ 0 for any A ∈ A.

2. For every countable sequence of mutually disjoint

events {Ai}∞i=1, we have π{
∞⋃

i=1

Ai} =
∞∑

i=1

π{Ai}.

Then (Λ, ∆, A, π) is called a rough space.

Definition 2.2 A rough variable ζ on the rough space
(Λ, ∆, A, π) is a function from Λ to the real line < such
that for every Borel set O of <, we have {λ ∈ Λ|ξ(λ) ∈
O} ∈ A. The lower and the upper approximations of the
rough variable ζ are then defined as ζ = {ζ(λ)|λ ∈ ∆} and
ζ = {ζ(λ)|λ ∈ Λ} respectively.

We need to encapsulate the variations of the power con-
sumption parameters by expressing them as rough vari-
ables which can be represented by ([a, b], [c, d]) as in Ex-
ample 2.3.

Example 2.3 Suppose a rough space (Λ, ∆, A, π) where
Λ = {x|c ≤ x ≤ d}, ∆ = {x|a ≤ x ≤ b}, with c ≤ a ≤ b ≤
d. Then the function ζ(x) = x for all x ∈ Λ is a rough
variable, also expressed as ([a, b], [c, d]), where [a, b] is its
lower approximation and [c, d] is its upper approximation.
This means that the values within [a, b] are sure and those
within [c, d] are possible.

A power parameter pi ∈ ξ can be expressed as a
rough variable in the form ([a, b], [c, d]) where [a, b] is its
lower approximation and [c, d] its upper approximation
and c ≤ a ≤ b ≤ d are real numbers. In P1, if ξ is a set
of rough variables, then the values of the objective func-
tion P (X, ξ) for any given schedule X are also rough. For
our power balanced VLIW instruction scheduling prob-
lem, we choose to rank the rough returns of P (X, ξ) by
the α-optimistic value P (X, ξ)sup(α) or the α-pessimistic
value P (X, ξ)inf (α) for some predetermined confidence
level α ∈ (0, 1]. There are also other measures to rank
rough returns, e.g. the expected value E[P (X, ξ)]; the
trust measure Tr{P (X, ξ) > r} for some predetermined
level r. However, ranking the rough returns of P (X, ξ)
by these measures cannot show the power variation value
ranges of the obtained optimal schedule with all the possi-
ble realization of the power consumption parameters con-
sidered.

Definition 2.4 let ϑ be a rough variable, and α ∈ (0, 1].
Then

ϑinf (α) = inf{r|Tr{ϑ ≤ r} ≥ α} (3)

is called the α-pessimistic value to ϑ, where Tr is the trust
measure operator.

The formal definition of the trust measure operator Tr()
can be found in [10]. A rough event A must hold if its trust
measure Tr(A) is 1, and fail if its trust measure Tr(A) is
0. That is, the trust measure plays the role of probability
measure and credibility measure.

2

The rough program corresponding to P1 is given by P2.

P2: min P (X, ξ)inf (α)
subject to

X =
⋃

xk
i i = 1, ..., n; k = 1, ..., t

xk
i ∈ {0, 1} i = 1, ..., n; k = 1, ..., t

(4)

G(X) ≤ 0
L(X) = 0 (5)

The objective function is given by

P (X, ξ)inf (α) = inf{P |Tr{P (X, ξ) ≤ P} ≥ α} (6)

is based on the α-pessimistic value where α is the specified
confidence level and ξ is the set of rough power consump-
tion parameters. (4) and (5) are the same as those in P1
since there are no rough variables involved. P (X, ξ)inf (α)
is the smallest value P satisfying Tr{P (X, ξ) ≤ P} ≥ α.
This means that, for a given X, the rough return of
P (X, ξ) will be below the pessimistic value P with a con-
fidence level of α. Solving this program involves searching
for the minimum α-pessimistic value P (X, ξ)inf (α) among
all feasible schedules X. Next, we propose a problem-
specific genetic algorithm to solve the rough program.

3 Implementation of GA

The standard Genetic Algorithm was given in [14]. The
specific implementation details for obtaining optimal so-
lutions to the rough program P2 are discussed below.

3.1 Chromosome Encoding

Each chromosome is an array of integer variables each
representing an instruction. The integer value indicates
the execution time slot allocated to that instruction. As
an example, chromosome {1, 1, 4, 1, 2, 4, 1, 2, 4, 5, 5, 5, 6, 6}
means that there are 14 instructions: the first, second,
fourth and seventh instructions are allocated to the first
time slot; the fifth and eighth instructions are allocated
to the second time slot; the third, sixth and ninth in-
structions are allocated to the fourth time slot; the tenth,
eleventh and twelfth instructions are allocated to the fifth
time slot; the thirteenth and fourteenth instruction are
allocated to the sixth time slot.

3.2 Initial Population

An initial population of candidate schedules is a set
of feasible schedules created randomly and ”seeded”
with schedules obtained through conventional (non-power-
aware) scheduling algorithms. The function random-
change 1instruction() generates a new schedule by ran-
domly change the allocated time slot of an instruction. Re-
peating this process pop size times, we can make pop size

initial feasible chromosome. Function constraint check()
returns 1 if the generated new schedule does not violate
any constraints; otherwise returns 0.

3.3 Fitness Evaluation

The function −P (X, ξ)inf (α) is used to evaluate the fit-
ness of a candidate X. Rough simulation [10] plays an
important role in rough systems. In order to compute
P (X, ξ)inf (α) of a candidate X, the following rough sim-
ulation process is used. Let R be the sampling size. For
each power consumption parameter pi ∈ ξ (i = 1, 2, 3, . . .),
randomly take R samples from its lower and upper approx-
imations, lki (k = 1, . . . , R) and uk

i (k = 1, . . . , R), respec-
tively. The value of the function P (X, ξ)inf (α) is given by
the minimum value of v such that

l (v) + u (v)
2R

≥ α

where l (v) denotes the number of
P

(
X, lk1 , . . . , lki , . . .

)
inf

(α) ≤ v being satisfied when
k = 1, . . . , R respectively; and u (v) denotes the number
of P

(
X, uk

1 , . . . , uk
i , . . .

)
inf

(α) ≤ v being satisfied when
k = 1, . . . , R respectively. The rough simulation process
is summarized as in Fig. 1.

input : A feasible schedule X; lower and upper
approximations of each power
consumption parameter pi ∈ ξ;
confidence level α; let R be the sampling
size

output: Return of P (X, ξ)inf (α)

for k ← 1 to R do1

foreach power consumption parameter pi ∈ ξ2

do randomly sample lki from its lower
approximation;
foreach power consumption parameter pi ∈ ξ3

do randomly sample uk
i from its upper

approximation;
end4

l (v)← the number of5

P
(
X, lk1 , . . . , lki , . . .

)
inf

(α) ≤ v being satisfied
when k = 1, . . . , R respectively;
u (v)← the number of6

P
(
X,uk

1 , . . . , uk
i , . . .

)
inf

(α) ≤ v being satisfied
when k = 1, . . . , R respectively;
Find the minimal value v such that7

l (v) + u (v)
2R

≥ α

Return v;8

Figure 1: Rough Simulation algorithm.

3

3.4 Selection, Crossover, and Mutation

The chromosomes in the population are sorted non-
increasingly in terms of their fitness. The chromosome
selection for the next generation is done on the basis
of fitness. Our design adopts the rank-based roulette-
wheel selection scheme [14]. The ith chromosome is as-
signed a probability of selection by a nonlinear function,
q(i) = a(1− a)i−1. The actual selection is done using the
roulette wheel procedure as in Fig. 2.

q0 = 0;1

for i ← 1 to pop size do2

Calculate accumulative probabilities for the3

ith chromosome qi←
i∑

j=1

q(j);

end4

Generate a random number r within [0, qpop size];5

Select the ith chromosome such that6

pi−1 < r < pi;
Figure 2: Chromosome selection by roulette wheel
(pop size: population size).

The above selection process is done repeatedly from
i = 1 to pop size. The selected parents for crossover oper-
ation are denoted by V ”

1 , V ”
2 , V ”

3 , . . . and divided into pairs:
(V ”

1 , V ”
2), (V ”

3 , V ”
4), (V ”

5 , V ”
6), We use 2-point crossover

operator which chooses 2 cutting points at random and al-
ternately copies each segment out of the two parents. The
crossover process may produce unfeasible schedules due to
violations of constraints described in Section 2. To avoid
the creation of unfeasible schedules, constraints check op-
erators have been included. If feasible offsprings cannot
be created, the parents will not be replaced.

The motivation for using mutation, then, is to prevent
the permanent loss of any particular bit or allele (prema-
ture convergence). This may be particularly be a prob-
lem if one is working with a small population. Suppose
the function randomchange 1instruction() generates a new
schedule by randomly change the allocated time slot of an
instruction. Let X be the schedule to be mutated. Then
randomchange 1instruction(X) is repeated until a new fea-
sible schedule is created.

When a pre-determined number of generations is
reached, the algorithm stops. The maximum number of
generations depends on the size of the problem, i.e. the
number of instructions and the number of available time
slots.

4 Experimental Results

The target processor of our scheduling experiments is the
TMS320C6711 [15] which is a VLIW digital signal proces-

sor. Fig. 3 shows the internal organization of the proces-
sor. The functional units are classified into four types: L,
M, S and D. There are two functional units for each type
in data path A and B separately. In order to describe the
knowledge about the power consumption parameters by
rough variables, we use the following method of obtain-
ing the rough quantities from the experiments. Repeated
measurements for each parameter are randomly conducted
using the experimental setup as in [6]. Based the measured
data, the possible current values on real line are discretized
using the Boonlean reasoning algorithm. After discretiza-
tion, the lower and upper approximations for each power
parameter are generated using the Rosetta Toolkit [16].

GA and rough program formulation are tested using the
digital signal processing benchmarks from Trimaran [17].
Trimaran is an integrated compilation and performance
monitoring infrastructure for research in instruction-level
parallelism. Instruction blocks with various problem di-
mensions (characterized by the number of instructions and
the number of time slots as the performance deadline) are
selected.

The confidence level α is set to 0.9 in all of our experi-
ments. For the genetic algorithm part, no systematic pa-
rameter optimization process has so far been attempted,
but the following parameter set was used in our experi-
ments. In our problem, the crossover operators often can-
not create enough feasible offsprings due to violations of
the constraints. Therefore, in order to prevent the per-
manent loss of any particular bit or allele, the crossover
probability P CROSSOV ER is set to a low value while
the mutation rate P MUTATION is set to a high value.
Tuning the values to be suitable for a specific data set may
give rise to improved performance.

POP SIZE (population size) = 30
P CROSSOVER (crossover probability) = 0.2
P MUTATION (mutation rate) = 0.8
a (in rank-based selection) = 0.05
GEN (maximum generation): dependent on data set
For any given target instruction block, we conduct in-

struction scheduling by means of integer programming and
rough programming separately. Current deviations (from
the mean) of the schedules obtained by rough program
formulation are compared with those of the schedules ob-
tained by mixed integer program formulation, with respect
to their deviations of their objective function values under
all realization of the power parameters. Next, we give a
simple example to illustrate this comparison.

Example 4.1 The target instruction block consisting of
fourteen instructions is given as {addaw, add, addaw, add,
ldw, mv, addaw, stw, b, addaw, cmpeq, stw, ldw, b}. The
data dependence graph is shown in Fig. 4.

If the power consumption parameters of target pro-
cessor are given as average values, the scheduling
problem is formulated as a mixed integer program

4

Figure 3: Internal Organization of the TMS320C6711 DSP processor.

Figure 4: Data dependency graph for instructions in Ex-
ample 4.1.

and solved by a branch and bound algorithm as
in [4], we obtain the optimal schedule XMIP =
{x1

1, x
1
2, x

4
3, x

1
4, x

2
5, x

4
6, x

1
7, x

2
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

where the superscripts indicate the time slot in which the
instruction is being scheduled.

If the power parameters of target processor are de-
scribed by rough variables as in Table 1, the schedul-
ing problem is formulated as a rough program as
proposed in this paper, we obtain another sched-
ule using the proposed genetic algorithm XRP =
{x1

1, x
1
2, x

4
3, x

1
4, x

2
5, x

5
6, x

2
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}.

Conducting rough simulation of these two schedules with
the possible realization of the power parameters, we have

P (XRP , ξ)inf (0.9) = 14798 (7)

P (XMIP , ξ)inf (0.9) = 17713 (8)

where ξ denotes the set of power consumption parameters
described in Table 1. (7) means, with confidence level 0.9,

the current deviations (from the mean) of schedule XRP

are less than 14798 under all the possible realization of the
power parameters in ξ. (8) means, with confidence level
0.9, the current deviations (from the mean) of schedule
XMIP are only less than 17713 under all the possible re-
alization of the power parameters in ξ. We can see that
the schedule obtained by integer programming is far from
a globally optimal one if considering all the possible real-
ization of the power parameters.

Table 2 shows the comparison results of the schedules
obtained from 18 problem instances with different prob-
lem dimensions. For each problem instance, the problem
dimension (Dim.) indicates the number of time slots and
the number of instructions respectively in the instruction
block. The objective function values of the optimal sched-
ules obtained through MIP (Column ”MIP”) are gener-
ally much larger than those obtained through rough pro-
gramming (Column ”RP”). This implies that the optimal
schedules obtained by integer programming often have a
larger deviation of the objective function values, with all
the possible realization of the power parameters consid-
ered. It is a result of the ignorance of uncertain in the
power parameters. Compared with the MIP solutions, the
results show that the rough programming approach pro-
duces schedules with the better objective function values.

5 Conclusions

Rough programming has been applied to the problem
of power-balanced VLIW instruction scheduling with un-
certainties. We formulated the scheduling problem as a
chance-constraint rough program and a problem-specific
genetic algorithm is developed to solve it. The experimen-
tal results show better instruction schedules are obtained
using the rough programming approach compared to the
conventional mixed-integer programming approach. Fur-

5

Table 1: Rough power consumption parameters in Example 4.1.
paddaw,padd,pmv,pcmpeq pldw,pstw pb

(∅, [190, 214]) (∅, [214, 233]) (∅, [190, 207])

Table 2: Experimental results on instruction blocks of various sizes from Trimaran’s benchmark program.
Dim. Source MIP(mA) RP(mA) Improvement(%)
(6,14) Wave 17713 14798 16.5
(11,11) Fib 52646 52642 0
(9,14) Wave 48225 30552 36.6
(13,14) Fir 99643 82177 17.5
(10,20) Bmm 94124 71452 24.1
(14,15) Bmm 106120 72826 31.4
(10,22) Bmm 72757 45416 37.6
(15,15) Fib-mem 113961 113961 0
(12,19) Fir 107432 83827 22.0
(12,22) Bmm 137611 104337 24.2
(17,16) Fib-mem 141390 130557 7.7
(20,21) Wc 212336 212256 0
(19,23) Fir 255739 230823 9.7
(21,21) Bmm 240921 212049 12.0
(13,35) Bmm 228399 134942 40.9
(23,22) Bmm 273203 221874 18.8
(23,24) Bmm 320020 319856 0
(25,24) Bmm 286887 168803 41.2
(27,24) Fir 316431 152204 51.9
(29,29) Bmm 507000 506639 0
(31,30) Bmm 537007 491859 8.4
(33,33) mm-dyn 661606 661038 0
(35,34) mm-dyn 704769 666751 5.4

6

thermore, the schedules obtained through rough program-
ming have actual power variations which are guaranteed
to the desired level of confidence.

References
[1] M. T. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analy-

sis and minimization techniques for embedded DSP software,”
IEEE Trans. on Very Large Scale Integration Systems, vol. 5,
no. 1, pp. 123–135, Mar. 1997.

[2] H. Yun and J. Kim, “Power-aware modulo scheduling for high-
performance VLIW processors,” in Proc. Int. Symp. on Low
Power Electronics and Design, Huntington Beach, California,
USA., Aug. 2001, pp. 40–45.

[3] C. Lee, J. K. Lee, T. T. Hwang, and S. C. Tsai, “Compiler opti-
mization on VLIW instruction scheduling for low power,” ACM
Trans. on Design Automation of Electronic Systems, vol. 8,
no. 2, pp. 252–268, Apr. 2003.

[4] S. Xiao and E. M.-K. Lai, “A branch and bound algorithm for
power-aware instruction scheduling of VLIW architecture,” in
Workshop on Compilers and Tools for Constrained Embedded
Systems, Washington DC, USA, Sep. 2004.

[5] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embed-
ded software a first step toward software power minimization,”
IEEE Trans. on Very Large Scale Integration Systems, vol. 2,
no. 4, pp. 437–445, Dec. 1994.

[6] J. T. Russell and M. Jacone, “Software power estimation and
optimisation for high performance, 32-bit embedded proces-
sors,” in Proc. Int. Conf. on Computer Design, Oct. 1998, pp.
328–333.

[7] C. Gebotys, “Power minimization derived from architectural-
usage of VLIW processors,” in Proc. Design Automation Conf.,
Los Angeles, USA, 2000, pp. 308–311.

[8] N. Julien, J. Laurent, E. Senn, and E. Martin, “Power consump-
tion modeling and characterization of the TI C6201,” IEEE
Micro, vol. 23, no. 5, pp. 40–49, Sep.-Oct. 2003.

[9] A. Bona, M. Sami, D. Sciutos, C. Silvano, V. Zaccaria, and
R.Zafalon, “Energy estimation and optimization of embedded
VLIW processors based on instruction clustering,” in Proc. De-
sign Automation Conf., vol. 39, New Orleans, USA, 2002, pp.
886–891.

[10] B. Liu, Theory and practice of uncertain programming. Hei-
delberg: Physica-Verlag, 2002.

[11] Z. Pawlak, Rough Sets: theoretical aspects of reasoning about
data. Boston, MA: Kluwer Academic Publisher, 1991.

[12] G. Shafer, A Mathematical Theory of Evidence. Princeton:
Princeton University press, 1976.

[13] L. A. Zadeh, “Outline of a new approach to the analysis of
complex systems and decision processes,” IEEE Trans. Syst.,
Man, Cybern., vol. 3, pp. 28–44, Jan. 1973.

[14] D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning. MA: Addison-Wesley, 1989.

[15] TMS320C621x/C671x DSP Two-Level Internal Memory Ref-
erence Guide, Texas Instruments, Aug. 2002, application Re-
port, SPRU609.

[16] J. Komorowski, A. Skowron, and A. Øhrn, “The rosetta
toolkit,” in Handbook of Data Mining and Knowledge Discov-
ery, W. Kl Ed. Oxford University Press, 2000.

[17] Trimaran: An infrastructure for research in instruction-level
parallelism. http://www.trimaran.org. Hewlett Packard Labo-
ratories, University of Illinois and Georgia Institute of Technol-
ogy.

Shu Xiao obtained her B.E.and M.S. degrees from Wuhan Univer-
sity, China in 1998 and 2001 respectively. She is currently a PhD
student in the School of Computer Engineering, Nanyang Technolog-
ical University, Singapore. Her research interests are in power-aware
VLIW instruction scheduling.

Edmund M-K. Lai obtained his B.E.(Hons) and PhD degrees from
the University of Western Australia in 1982 and 1991 respectively.
He is currently an associate professor in the School of Computer
Engineering, Nanyang Technological University, Singapore. His re-
search interests are in digital signal processing and information the-
ory.

7

