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Abstract

Current instruction-level power models of embedded
VLIW processors handle the involved imprecision with
average values. However, there are applications where
it is critical to guarantee that the power consumption
within any time frame will not exceed a certain limit. In
this paper we proposes to use rough set based approach
to handle the uncertainty of the values of the parameters
in the power model. We illustrate how a rough power
model can be formulated. The model is applied to a
power-balanced instruction scheduling application based
on a VLIW digital signal processor to illustrate the
potential of this idea.

Keywords: Instruction-level power analysis, rough
set, VLIW.

1 Introduction

Power models of embedded processors can broadly be clas-
sified into instruction-level and cycle-level models. While
cycle-level models require knowledge of the detailed micro-
architecture of the processor, instruction level models can
be built using data obtained through power measurements
as instructions are executed [1–4]. However there is always
some degree of imprecision inherent in measurements. The
variations in the measured values are usually handled by
using the mean or median of a large number of measure-
ments. Furthermore, in order to reduce the complexity of
the power model, those instruction which consume similar
amounts of power are typically given the same power fig-
ure [5]. The inter-instruction effects and other related fac-
tors also complicates the model for Very Long Instruction
Word (VLIW) processors [4] and thus the power-aware
instruction scheduling solutions. Complexity could be re-
duced at the cost of precision. Software power analysis
using these models will therefore only reflect the average
values. This may cause some problems when applied to,
for instance, power-aware instruction scheduling. For ex-
ample, one cannot guarantee that the optimal schedule ob-

tained will not exceed a hard power variation limit for chip
reliability. Therefore, it is important to explicitly model
the imprecision in the instruction-level power model.

In this paper, we propose a rough set approach to model
power consumption with the imprecision encapsulated.
There are several approaches that can deal with param-
eter uncertainty. They include statistical techniques and
fuzzy sets. Statistical techniques require knowledge of the
probability distribution of each parameter. Fuzzy set tech-
niques require an assignment of grade of membership. The
main advantage of rough set is that it does not need such
prior information on the data.

The rest of this paper is organized as follows. Related
concepts in rough set theory are introduced in Section 2.
In Section 3 we describe our approach to instruction-level
VLIW power analysis with uncertainty using rough set
theory. Our results of applying the proposed approach for
modeling a VLIW digital signal processor are also given.
This technique can be employed for power-aware VLIW
instruction scheduling with uncertainty. Examples illus-
trate the potential of this idea in Section 4.

2 Rough Set Theory

We shall briefly introduce the major concepts of rough
set theory needed to understand our rough power model
formulation.

Information table: The information about the real
world is given in the form of an information table.
The columns of an information table are labelled by
attributes, rows are labelled by objects of interest and
entries of the table are attribute values. Formally,
an information system is at least a pair S = (U,A),
where U and A, are non-empty finite sets called the
universe, and the set of attributes, respectively. Let
a : U− > Va where Va is the set of all values of a
called the domain of a.

Indiscernibility relation: Any subset B of A deter-
mines a binary relation I(B) on U , which will be
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called an indiscernibility relation, and defined as fol-
lows:

x I(B) y ⇐⇒ a(x) = a(y) ∀a ∈ A, ∀x, y ∈ U
(1)

where a(x) denotes the value of attribute a for ele-
ment x. If x and y belongs to I(B) we will say that x
and y are B-indiscernible. Equivalence classes of the
relation I(B) are referred to as B-granules.

Lower/upper approximations: The definitions for the
two approximation operations on the set for an arbi-
trary concept X can be formulated as

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X} (2)

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩X 6= 0} (3)

These two sets B∗(X) and B∗(X) are called the B-
lower and the B-upper approximations of X respec-
tively. The lower approximation consists of all objects
from U which certainly belong to the concept X, em-
ploying the set of attributes B. The upper approxi-
mation contains all objects from U which possible be-
long to the concept X, employing the set of attributes
B. Obviously, the difference between the upper and
lower approximation constitute the boundary region
of the vague concept.

Accuracy of approximation: Rough set can be char-
acterized numerically by the following coefficient
called accuracy of approximation of the concept X
by B,

µB(X) =
card(B∗(X))
card(B∗(X))

(4)

where card() denotes the number of elements (car-
dinality) of a finite set. Obviously, µB(X) ∈ [0, 1].
The larger the value of µB(X), the more accurate the
rough set approximation of X is.

3 Instruction-Level Model with Uncer-
tainty

Suppose a program block W consists of N very long in-
structions

W =< w1, ..., wn−1, wn, ..., wN >

An estimation of the power consumed by the processor
core during the execution of W can be obtained by [6]

P (W ) ≈
∑

∀n∈N

(U(0|0)+
∑

∀s∈S

∑

∀k∈K

vs(wk
n|wk

n−1)+σn +µn)

(5)

where U(0|0) is the base power cost that represents the
power consumed during an execution of a very long in-
struction constituted entirely by no-operation instructions
(NOPs). S is the set of execution stages; the summations
of vs(wk

n|wk
n−1) is the additional power contributions due

to the change of instructions on the same functional unit
(wk

n represents the instruction executed on functional unit
k in the very long instruction wn); σn is the average power
consumption due to a miss event on the data cache oc-
curred when wn is being executed; µn is the average power
consumption due to a miss event on the instruction cache.

The number of instruction pairs to be considered for
vs(wk

n|wk
n−1) in (5) could become too large to be char-

acterized, since two instructions differ either in terms of
functionality (i.e., opcode), addressing mode (immediate,
register, indirect, etc.), or data differences (either in terms
of register names or immediate values). The complexity
is reduced by instruction clustering in existing work [5,6],
that is instructions are categorized into classes (clustered)
beforehand, such that the instructions in a given class are
characterized by very similar power cost.

Assuming that the Instruction Set Architecture (ISA) of
the target VLIW processor is clustered, the vector of pa-
rameters in (5) are estimated as exact values indicating av-
erage cases in existing work [6]. In contrast with the above
approach, our rough set theory based approach character-
izes power parameters in (5) with their lower/upper ap-
proximations which can indicate the uncertainty involved.
We shall now describe the procedures involved in building
the rough power model.

3.1 Building the information table

Assuming that the ISA of the target VLIW processor is
clustered, repeated power measurements for each param-
eter in (5) are made. For a cluster of instructions, we ran-
domly choose instances with different opcodes, addressing
modes, operands or the preceding opcodes. Principles for
the design of experiments can be applied to reduce the
impact of nuisance factors [7].

We shall denote the obtained information table by
(U,A ∪ d), where U = {X1, ..., xn} is a set of measure-
ments; A = {a1, ..., ak} is the condition attribute set,
including attributes such as opcode, addressing mode,
operands, preceding opcode and current reading; and d
is decision attribute (power parameters). Let a ∈ A be
the attribute (current reading) which indicates power con-
sumption.

3.2 Discretization

Rough set methods require discrete attributes. When the
value set of any attribute in an information table is contin-
uous values, it is likely that there will be few objects that
will have the same value of the corresponding attributes.
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In such a situation the number equivalence classes based
on that attribute, defined as indiscernibility, will be large
and there will be very few objects in each of such equiv-
alence classes. This will lead to the generation of a large
number of classification rules, therefore making rough set
theoretic classifiers inefficient.

Our task involves a real value attribute, i.e. a (power
consumption). Therefore, a preprocessing step is neces-
sary to discretize this attribute. Discretization is a process
of searching for partition of attribute domains into inter-
vals and unifying the values over each interval. Hence dis-
cretization problem can be defined as a problem of search-
ing for a suitable set cuts (i.e. boundary points of inter-
vals) on attribute domains.

Let Va be valuable domain of the attribute a (power
consumption). Let Va = [la, ra] ∈ R where R is the set of
real numbers. We have the following definition according
to [8].

Definition 3.1 Any pair (a, c), where a ∈ A and c ∈ Va,
defines a partition of Va into two intervals. The pair (a, c)
is called a cut on Va.

A set of cuts on Va : Ca = {(a, ca
1), (a, ca

2), ..., (a, ca
ka

)}
defines a partition Pa on Va (for a ∈ A) into subintervals,
i.e. Va = [ca

0 , ca
1)∪ [ca

1 , ca
2)∪ ...∪ [ca

ka
, cka

a+1
], where ka ∈ N

and la = ca
0 < ca

1 < ca
2 < ... < ca

ka
< ca

ka+1 = ra. So
the original (U,A ∪ d) is transformed, with xa = i, into
discreet (U,A′ ∪ d), with xa′ = [ca

i , ca
i+1), where x ∈ U ,

a ∈ A, a′ ∈ A′, and i ∈ [ca
i , ca

i+1).
The task of discretization is to search for a minimal set

of cuts on attribute domains Va that preserves the dis-
cernibility relation between measurements among U from
different d (power parameters), i.e.

• Consistency : For any measurements u, v ∈ U , they
are satisfying if u, v are discerned by A, then u, v are
discerned by A′;

• Optimality : For any C ′a satisfying consistency, it fol-
lows card(Ca) ≤ card(C ′a), then Ca is the optimal set
of cuts.

3.3 Lower/upper approximations

For each power parameter in attribute d, compute its lower
and upper approximations in the discretized information
table (U,A′ ∪ d) according to the definitions by 2 and 3
introduced in Section 2. Thus, for measurements in lower
approximation of each power parameter, their values of
attribute a are the union of intervals representing certain
power consumption values of this power parameters. For
measurements in upper approximation of each power pa-
rameter, their values of attribute a are the union of in-
tervals representing possible power consumption values of
this power parameters.

3.4 An Example: Analysis of TMS320C6711

Our target processor is TMS320C6711 [9] which is a VLIW
digital signal processor. An instruction clustering pro-
cess has been done beforehand. The instruction set of
TMS320C6711 is coarsely partitioned into four clusters: 1)
memory access cluster, 2) double-precision floating-point
arithmetic function cluster, 3) single-precision floating-
point arithmetic function and fixed-point arithmetic func-
tion cluster and 4) miscellaneous cluster. Instructions in
the same cluster can vary in terms of operands, condi-
tional registers, cross registers, functional units or inter-
instruction effect. Therefore, parameters in (5) turn into
p1, p2, p3, p4 respectively in this example.

3.4.1 Building Information Table

we randomly conducted repeated measurements for each
parameter using the experimental setup as in [2, 10].
Different instances are considered in terms of opcode,
operands, conditional registers, cross registers, functional
units or inter-instruction effect.

3.4.2 Discretization and Lower/Upper Approxima-
tions

The builded information table is input into Rosetta [?,11].
Rosetta includes several important discretization algo-
rithms. These discretization algorithms are separately
executed on the obtained information table. Then the
genetic algorithm in Rosetta is executed to produce the
classification rules. According to these rules, the lower and
upper approximations for each parameter are obtained ac-
cording to the definition (2) and (3).

Table 1 shows the experimental results of comparing
equal frequency binning, naive algorithm, semi-naive al-
gorithm, entropy/MDL algorithm, and boolean reasoning
algorithm on the obtained information table. We include
comparisons with respect to both the effect of discretiza-
tion to the simplicity of the produced classifier (measured
in terms with the number of discretization split points
and the number of rules) and the predictive accuracy of
the classifier.

The simplest discretization algorithm, equal frequency
binning, merely divides a continuous attribute into k bins
where (given m objects) each bin contains m/k (possibly
duplicated) adjacent values. k is a user-supplied param-
eter. Here in the experiments, k is set to be 6 and 12.
This type of discretization is vulnerable to outliers that
may drastically skew the range. Since these unsupervised
algorithms do not utilize the decision attributes in setting
partition boundaries, it is likely that classification infor-
mation will be lost by binning as a result of combining
values that are strongly associated with different decision
attributes into the same bin. This is indicated by the low
value of ”average accuracy”.
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Table 1: Comparison of discretization algorithms.
discretization no. of split points no. of rules avg. accuracy

equal freq. binning 5 25 0.04
equal freq. binning 11 47 0.26

naive 42 107 0.40
semi-naive 12 40 0.33

entropy/MDL 21 52 0.42
boolean reasoning 24 64 0.39

Table 2: Lower/upper current reading ranges of each
power parameter.

p1 (∅, [215, 233])
p2 (∅, [205, 233])
p3 (∅, [190, 213])
p4 (∅, [190, 207])

Relatively, the supervised algorithms have higher val-
ues of ”average accuracy”. However, the result obtained
by naive algorithm obviously includes many unnecessary
split points. If both the predictive accuracy and the sim-
plicity (measured by the number of the split point and the
number rules) of the classifier are considered, semi-naive
algorithm, entropy/MDL algorithm or boolean reasoning
algorithm are good choices.

Theoretically, semi-naive algorithm or entropy/MDL al-
gorithm is not expected to exhibit as good performance as
boolean reasoning algorithm. In our results, they show
almost same performance because our test data have only
one continuous attribute (current reading), which makes
the advantages of boolean reasoning algorithm not used:
semi-naive algorithm or entropy/MDL algorithm consid-
ers only one condition attribute at a time; boolean rea-
soning algorithm considers all condition attributes simul-
taneously.

Based on our comparison results in Section 3.4.2, we
can choose to use boolean reasoning algorithm. Then the
corresponding lower/upper current reading ranges of each
power parameter are obtained and shown in Table 2, which
describe the imprecision of each power parameter.

4 Application

This technique can be employed for power-aware VLIW
instruction scheduling with uncertainty. As discussed in
introduction, the power-aware instruction scheduling tech-
niques, using the conventional power models, can only
optimize power consumption in the average sense. Se-
vere difficulties may be caused in the application of the
obtained optimal instruction schedule. On the contrary,
new power-aware instruction scheduling techniques [12],
employing the proposed power model, can find schedules

Figure 1: Data dependency graph for instructions in Ex-
ample 4.1.

which guarantee good power variations for all possible re-
alizations of the power consumption parameters. A simple
example is given to illustrate the potential of this idea.

Example 4.1 The target processor is TMS320C6711.
The target instruction block consisting of fourteen instruc-
tions is given as {addaw, add, addaw, add, ldw, mv, ad-
daw, stw, b, addaw, cmpeq, stw, ldw, b}. The data depen-
dence graph is shown in Fig. 1. The task is to produce a
schedule so that the power variation over the execution of
the program is minimized, while the deadline constraints
are met.

In the case of the power parameters of target
processor are given average values, the schedul-
ing problem is formulated as an integer program
and solved by a branch and bound algorithm as
in [13], we obtain the optimal schedule XMIP =
{x1

1, x
1
2, x

4
3, x

1
4, x

2
5, x

4
6, x

1
7, x

2
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

where the superscripts indicate the time slot in which the
instruction is being scheduled.

In the case of the power parameters of target pro-
cessor are described as in Table 2, the scheduling
problem is formulated as a rough program as pro-
posed in [12], we obtain another schedule XRP =
{x1

1, x
1
2, x

4
3, x

1
4, x

2
5, x

5
6, x

2
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}.

Rough simulations [14] of these two schedules with the
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possible realization of the power parameters show

P (XRP , p1, p2, p3, p4)inf (0.9) = 14798 (6)

P (XMIP , p1, p2, p3, p4)inf (0.9) = 17713 (7)

(6) means, with confidence level 0.9, the current deviations
(from the mean) of schedule XRP are less than 14798 un-
der all the possible realization of the power parameters in
ξ. (7) means, with confidence level 0.9, the current de-
viations (from the mean) of schedule XMIP are only less
than 17713 under all the possible realization of the power
parameters in ξ. We can see that the schedule obtained by
integer programming is far from a globally optimal one if
considering the possible realization of the power parame-
ters.

The optimal schedules obtained by mixed-integer pro-
gramming often have larger deviations from the optimal
objective function values due to the ignorance of impre-
cision accumulation. However, the rough programming
approach takes parameter imprecision into account in a
natural way.

5 Conclusion

A rough set theory based approach has been proposed
to the problem of instruction-level VLIW power mod-
elling with uncertainties. The involved imprecision in
power parameters are described with their lower/upper
approximations. Experiments have been applied on TI
TMS320C6711. This technique can be employed for
power-aware VLIW instruction scheduling with uncer-
tainty. The main benefit is that the computed schedule is
globally optimal with the possible realization of the power
parameters, not only optimal in the average cases. Exam-
ples illustrate the potential of this idea.
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