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Abstract

This paper presents an efficient branch-and-bound algorithm for VLIW
instruction scheduling that miminizes power consumption variations. Our
experimental results show that our algorithm is much more efficient com-
pared with previously presented approaches. We also briefly discuss a
rough set approach to model imprecision inherent in an instruction-level
power model.
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1 Introduction

For VLIW (very long instruction word) processors, instantaneous power con-
sumption can vary significantly different depending on how the parallel sched-
ule is generated by the compiler. It is desired that instantaneous power varia-
tions in time be minimized in order to avoid excessive power supply noise and
reduce battery exhaustion. Previously published works in this area are few.
Yun [1] extended iterative modulo scheduling by adding a heuristic for power-
aware scheduling of VLIW processor cores. Yang [2] proposed a mixed integer
programming formulation to derive the optimal schedules. He used a commer-
cial library (ILOG CPLEX) to obtain the solutions. However, due to lack of
problem-specific information, the average time used to solve the mixed integer
problem is quite unacceptable for ILP compilers. In this paper, we also formu-
late the instruction scheduling problem as a mixed-integer program. However,
we developed a branch-and-bound algorithm to solve it efficiently. The algo-
rithm is evaluated on a set of signal processing benchmarks of various sizes.
The results show that our algorithm obtained the same optimal results as [2]
but with much shorter computation times.

2 Mixed Integer Program

Given a power model for the processor and an instruction schedule X, the power
deviation PV (X) from the mean value can be calculated. The objective is to
minimize this deviation. Assuming that we have an initial schedule generated
from a speed optimized compiler, the number of instructions n and the number
of time slots t for execution are known. We may then formulate problem as the
mixed-integer program P1.
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P1 : min PV (X) (1)
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The binary integer variables xk
i = 1 if instruction i is allocated to time slot

k. Constraint (3) makes sure that each instruction can only be issued once.
(4) are deadline constraints, where Di is the number of the execution stages of
instruction i. For the resource constraints (5), u is the number of functional
unit types and cj is the number of functional units of type j. The binary
variable aj

i = 1 if instruction i corresponds to functional unit type j. (6) are
the program flow dependency constraints, where v is the number of dependency
pairs < l,m >.

3 Branch and Bound Algorithm

Starting with an initial schedule X1, a sequence of schedules Xr are generated
using the branch-and-bound algorithm until the optimal solution is found. The
initial schedule X1 can be generated by a conventional performance optimized
scheduling algorithm. There are three important elements in the branch-and-
bound algorithm: the rules for branching to a set of new schedule Xs from a
certain schedule Xr, the lower bound estimate for a schedule Xr, and the rules
for selecting a certain schedule Xr from the produced schedule pool.

Branching Rules: The task of branching is to generate a sequence of
new schedules (branches) from a selected active leaf schedule (node) Xr, by
rescheduling an instruction to all of its feasible time slots. The rescheduled
instruction is one of the non-rescheduled instructions along the path from the
initial schedule X1 to the current selected one Xr. Therefore, the rules for
branching can be divided into two categories. One category is used to determine
which instruction to reschedule among the non-rescheduled instructions along
the path from X1 to Xr. The other is used to identify the feasible time slots
of the selected instruction. These rules help to greatly cut infeasible branches,
and thus the size of the produced schedule pool is greatly reduced.

Lower Bounds: Given a selected active leaf schedule Xr, a lower bound
of the objective function is estimated to see if a better schedule may be found
in its successors. If the lower bound of the objective function for Xr is worst
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(larger power variation) than the best objective value to date, then Xr is marked
as ”inactive” and this branch is cut. Otherwise, generate branches from Xr

according to the branching rules.
Selection Rules: Compute the lower bounds of the objective function for

the successors of each active leaf schedule. The active leaf schedule with smaller
lower bound value of the objective function (lower power variation value) has
higher priority.

4 Performance Evaluation

The proposed algorithm is compared with the general integer program solver in
CPLEX90 used by [2], in terms of time used to find the optimal schedule. For
comparison, we use the same power model as in [2]. We load the performance
optimized schedule from Trimaran [3] ILP compiler and execute our algorithm
to reschedule instructions to minimize the power variation across time steps.
All instances used for testing were taken from the benchmarks with Trimaran.
Instruction blocks with various problem dimensions (characterized by the num-
ber of instructions and the number of time slots as the performance deadline),
ranging from (6, 14) to (35, 34), are selected. The results show, in comparison
to using the integer program solver in CPLEX90 adopted by [2], the proposed
algorithm obtains the same optimized power variation values while an improve-
ment in required computation time ranging from 18.97% to 100.00% with an
average of 80.20%.

5 Instruction-level VLIW Power Model

The scheduling problem formulation and our solution discussed above are inde-
pendent of the power model of the processor. However, it does assume that the
power is precisely known. In reality, the values of the parameters in the model
are not precise for two main reasons. Firstly, physical measurements, which
has been an important approach to instruction-level power modelling and es-
timation for microprocessors [4–6], are inherently imprecise. The variations in
the measured values are usually handled by using the mean or median of a
large number of measurements. Secondly, in order to reduce the complexity of
the power model, those instruction with consume similar amounts of power are
typically clustered together and given a the same power figure [7]. While these
approximations allow us to optimize power consumption in the average sense,
we are not able to get any idea of the deviations from the average that may
actually occur. The recently developed rough set theory [8] approach can be
applied to model the uncertainty inherent in the power model parameters. The
instruction scheduling problem can be formulated as a rough program [?]. We
can substitute (1) in P1 by min PV (X, ξ), where ξ denotes the set of the power
consumption parameters described as rough variables rather than precise num-
bers. Then the rough returns of PV (X, ξ) may be ranked by 1) the expected
value; 2) the α-optimistic value or the α-pessimistic value, for some predeter-
mined confidence level α ∈ (0, 1]; 3) the trust measure for some predetermined
level r.
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6 Conclusion

The power balanced VLIW instruction scheduling problem is formulated as a
mixed integer program. A branch-and-bound algorithm has been presented
to solve this problem. This algorithm arrives at the optimal solution much
faster than previously reported results for a set of example programs. The
imprecision inherent in an instruction-level power model is briefly discussed. A
rough set based approach is suggested to overcome the problems of parameter
imprecision. It is a first attempt to apply rough set theory to instruction-level
power modelling. Further work is currently being carried out in this direction.
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