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ABSTRACT 
The Common Subexpression Elimination (CSE) techniques 
address the issue of minimizing the number of adders needed to 
implement the coefficient multipliers in digital filters. Two 
classes of Common Subexpressions (CS) occur in the Canonic 
Signed Digit (CSD) representation of coefficients, called the 
horizontal and the vertical CS. Previous works have not 
addressed the trade-offs in using these two types of CS on the 
delay and the number of adders of multiplier blocks. In this 
paper, we provide a comparison of hardware reductions achieved 
using the horizontal and the vertical CS in realizing digital 
filters. We show that the CSE technique employing horizontal 
CS offer better reductions in the number of adders as well as 
critical paths than their vertical CS counterpart in practical 
Linear Phase Finite Impulse Response (LPFIR) filter 
implementations. Our simulation results show that the hardware 
reductions offered by the vertical CS are improved in 
implementing infinite impulse response (IIR) filters than their 
LPFIR counterparts. 
 

1. INTRODUCTION 
The number of adders (subtractors) used to implement the 
coefficient multiplications determines the complexity of LPFIR 
filters. Hence, the algorithms that minimize the complexity of 
multiplication in LPFIR filters focus on reducing the number of 
adders (subtractors) used to implement the multipliers. Multiple 
Constant Multiplication (MCM) is a transformation closely 
related to the widely used substitution of multiplications with 
constants by shifts and additions [1]. While the latter considers 
multiplication of only one constant at a time, the MCM considers 
multiplication of one variable with multiple constants.  
 
The CSE tackles the MCM problem by minimizing the number 
of additions through extracting common parts among the 
constants represented in CSD [2]-[7]. The goal of CSE is to 
identify multiple occurrences of identical bit patterns that are 
present in the coefficient set. Since the computation of multiple 
identical expressions needs to be implemented only once, the 
resources necessary for these operations can be shared. In [2], an 
algorithm based on a coefficient subexpression graph for the 
identification and elimination of two nonzero bit subexpressions 
was proposed. A method to eliminate the most commonly 
occurring 2-bit subexpressions was proposed in [3]. As an 
additional criterion in the subexpression identification process, 

an estimation of a latch count improvement was also used in [3]. 
A modification of the 2-bit CS optimization technique presented 
in [2] for identifying the “proper” patterns for elimination to 
maximize the optimization impact is proposed in [4]. In [5], a 
nonrecursive signed CSE algorithm has been proposed as a 
modification of the technique in [3] that minimizes the logic 
depth into the digital structure. In general, the methods proposed 
in [2]-[5] utilize two types of CS – the horizontal CS (HCS) that 
occurs within each coefficient and the vertical CS (VCS) that 
occurs across the adjacent coefficients. These techniques are 
called the Horizontal Common Subexpression Elimination 
(HCSE) and the Vertical Common Subexpression Elimination 
(VCSE) respectively. Recently, it has been shown in [6] that the 
VCSE technique offers better reduction of adders than the HCSE 
technique in realizing LPFIR filters. In their work [6], the 
authors exploit the fact that many VCS exist in LPFIR filters 
since their adjacent coefficients have similar patterns in the most 
significant bits. However, the constraints in utilizing the 
symmetry of the coefficients in LPFIR filters have not been 
properly addressed in the VCSE method [6]. Furthermore, the 
VCSE method does not consider the critical path of the 
multiplier, which determines the delay. In this paper, we analyze 
the impact of the symmetry of LPFIR filter coefficients on 
hardware (number of adders) and critical path reductions in 
HCSE and VCSE implementations. 
 

The paper is organized as follows. In section 2, we provide a 
brief review of the CSE approach and illustrate the HCSE 
technique. The VCSE technique and its comparison with the 
HCSE are presented in section 3. In section 4, we illustrate the 
realization of digital filters using these techniques. Section 5 
provides our conclusions. 

 

2. THE HCSE TECHNIQUE 
A 6-tap LPFIR filter designed using Parks-McClellan algorithm 
is used to illustrate the CSE methods. The pass-band and stop-
band edges of the filter are π2.0  and π25.0  respectively. The 
16-bit CSD form of the coefficients is shown in Fig. 1. The 
numbers in the first row represent the number of bitwise right 
shifts. The HCSE technique utilizes the most common horizontal 
subexpressions that occur within each coefficient to eliminate 
redundant computations. In general, these methods use Hartley’s 
[3] two most common HCS, i.e., [1 0 1] and [1 0 –1] and their 



negated versions. If 1x  is the input signal and j−2  represents 
shift right by j, the HCS ([1 0 1] and [1 0 –1]) shown inside the 
solid rectangles in Fig. 1 are given by: 
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where [-k] represents a delay of k. Fig. 2 shows the filter 
implementation using the HCSE method. The numerals adjacent 
to the data paths in Fig. 2 represent the number of bitwise right 
shifts. The function of the Multiplier Block (MB) shown in Fig. 2 
is to compute the sum of partial products obtained when the input 
signal )( 1x  is convolved with the filter coefficients ).( kh   
 
Definition 1 (Multiplier block adders): The adders used in the 
MB to compute the sum of partial products formed when 1x  is 
multiplied with kh  are called Multiplier Block Adders (MBA). 
Definition 2 (Structural adders): The inter-tap adders used to 
compute the sum of convolved signals (shown between each 
delay stage in Fig. 2) are called Structural Adders (SA). The 
number of structural adders in a filter structure is same as that of 
the number of distinct delay stages. 
Definition 3 (Critical path): The number of addition stages 
(adder-steps) in a maximal path of decomposed multiplications is 
called the critical path of the MB. In a tree-structured multiplier 
that performs parallel addition, the critical path is the height of 
the tree. 
 
The focus of multiplier block reduction methods is to reduce the 
number of MBA’s since they dominate the hardware cost. If bN  
represents the number of nonzero bits in the symmetric half 
coefficient set of an FIR filter of length N, the total number of 
MBA’s, ,mbaT  needed to realize the filter using direct method 
(i.e., without using CSE techniques) is 
                                2/NNT bmba −=                                     (3) 
In this case, bN  is 18 and N is 6. Therefore, fifteen MBA’s are 
required to realize the filter using direct method. 
 
In the HCSE method, since all the nonzero bits forming an HCS 
exist within the coefficient, its symmetric counter-part can be 
easily implemented using delays and SA’s, i.e., no additional 
MBA’s are required for the symmetric part. Note that the 
coefficients, ( )3(h  - ),5(h  are symmetric with respect to )0(h  - 

),2(h  and hence their outputs can be shared as shown in Fig. 2 
using the symbol ‘@’. Thus, only eleven MBA’s are needed for 
the HCSE implementation as shown in Fig. 2. Note that critical 
path of the MB is three adder-steps. 

3. THE VCSE TECHNIQUE 
The VCSE technique utilizes the subexpressions (VCS) that 
occur across the adjacent coefficients to tackle the MCM. The 

VCS, [1 1] and [1 –1], that exist across the coefficients, shown 
inside the dotted rectangles in Fig. 1 are given by: 
                     ]1[114 −+= xxx  and ]1[115 −−= xxx               (4) 
With these VCS, the filter output in VCSE implementation can 
be represented as 
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Fig. 3 shows the realization of the filter using the VCSE 
technique. Note that thirteen MBA’s are required for VCSE 
implementation of the filter shown in Fig. 3. Since the bits that 
form VCS in VCSE method occur across the coefficients, the 
symmetry of VCS cannot be exploited when the bits are of 
opposite sign. Hence in VCSE implementations, additional 
MBA’s are required to obtain the symmetric part of the 
coefficients when more than one VCS with bits of opposite signs 
exist. For example, consider the VS across the coefficients )0(h  
and )1(h  in Fig. 1: 
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Its symmetric VS part across the coefficients )4(h  and )5(h  is 
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Note that (7) cannot be directly obtained from (6) by simple 
delay operation since the signs and delays of certain terms of (7) 
are different from that of (6). Therefore, (7) needs to be obtained 
from (6) using (8) and (9): 
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where ‘[4]’ represents 4 units delay and ‘-’ represents negation. 
The adders, 43  , AA  and 5A  compute (8) and 6A  computes (9) 
as shown in Fig. 3. The outputs of 5A  and 6A  corresponding to 
the LHS of (8) and (9) are utilized by 12A  and 13A  respectively, 
to obtain the RHS of these expressions and hence extra adders 
are not required in this case. However, the term 1

62 x−  in (6) and 

]4[2 1
4 −− − x  in (7) requires two additional MBA’s, 7A  and 

.12A  (But, the term ]1[2 1
4 −− − x  in (6) does not require an MBA 

since no other terms that has an identical delay exist and same is 
the case with ]5[2 1

6 −− x  in (7). Therefore, these terms can be 
realized using structural adders, 2SA  and ,4SA  respectively). 
Due to this constraint in exploiting the symmetry, the VCSE 
implementation requires more MBA’s (thirteen in this case) than 
the HCSE method (eleven) despite the fact that the number of 
VCS (sixteen) is more than the number of HCS (twelve). 
Furthermore, the critical path of the MB in VCSE 



implementation (five adder-steps) is larger than the HCSE. 
Hence the VCSE method results in increased delay.  
 

4. EXPERIMENTAL RESULTS 
We have examined the reduction of adders (MBA’s) for LPFIR 
filters of different lengths and frequency response specifications. 
The specification of those filters are summarized in Table I, 
where pω  and sω  are the pass-band and the stop-band 
frequencies, N is the filter length.  
 

Table I. Test Filter Specification 

 pω  sω  N 

Filter 1 (F1) π2.0  π3.0  30 
Filter 2 (F2) π2.0  π3.0  50 
Filter 3 (F3) π2.0  π25.0  80 
Filter 4 (F4) π15.0  π18.0  120 

 
Fig. 4 depicts the percent reductions of adders achieved using the 
HCSE and the VCSE methods over the direct method for 
different wordlengths. Note that the VCSE method offers better 
reduction than the HCSE method only when the coefficient 
wordlength is 8 bits. In most practical filter applications, the 
frequency response of the filter will deteriorate considerably if 
the coefficients are coded using 8 bits. Therefore, the VCSE 
technique offers no advantage over the HCSE in practical LPFIR 
filter implementations. 
 
We have investigated the hardware reduction achieved using 
CSE methods in implementing IIR filters. Elliptic filters of 
orders 5, 11 and 15 and normalized cutoff frequencies, ,nω  of 
0.15 were considered. Since the IIR filter coefficients are not 
symmetric, the HCSE technique does not have the advantage of 
exploiting the coefficient symmetry as in LPFIR filter designs. 
Our simulation results are shown in Fig. 5, where filters of order 
5, 11 and 15 are labeled as F1, F2 and F3 respectively.  Note that 
the VCSE method offers higher reduction than the HCSE 
technique for wordlengths of 12 and 16 bits.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, for larger wordlengths ( 20≥ bits), the HCSE method 
results in better reduction than the VCSE.   
 

5. CONCLUSIONS 
We have shown that the reductions of adders and the critical 
paths in the CSE method using vertical common subexpressions 
are inferior to that in the HCSE method in FIR filter realizations. 
Design examples of IIR filters showed an improvement in adder 
reduction using the VCSE method in 12-bit and 16-bit 
implementations. For wordlengths larger than 20 bits, the HCSE 
technique produced better hardware reductions for IIR filters.      
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Fig. 1. CSE in 6-tap LPFIR filter coefficients. HCSE (solid horizontal rectangles) and VCSE (dotted vertical rectangles). 
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Fig. 2. FIR Filter implementation using the HCSE method. 

 
Fig. 3. FIR Filter implementation using the VCSE method. 

Fig. 4. Reduction of adders achieved using CSE methods over 
the direct method in realizing the LPFIR filters specified in 

Table I for different wordlengths. 

10 
15 
20 
25 
30 
35 
40 
45 
50 

8 12 16 20     
     Wordlength 

A
dd

er
   

R
ed

uc
tio

n 
(%

) 

  5 

  0 
24

F2 (VCSE)
F3 (VCSE)
F4 (VCSE)

F1 (VCSE)

◙ ◙ ◙ 
◙ ◙

♦ 
♦ ♦ 

♦
+ +

+ + +

□
□

□□□ F2 (HCSE)
F3 (HCSE)
F4 (HCSE)

F1 (HCSE)

□

Fig. 5. Reduction of adders achieved using CSE methods over 
the direct method in realizing the IIR filters for different 

wordlengths. 
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