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Abstract

Recently, consistently resampling has been proposed
to resampling discrete signals without bandlimit con-
straint. In this paper, we study the constraints of the
resampling rate such that the input discrete signal can
be consistently resampled. We approach it through
identifying the rate of innovation (RI) of the signal as
introduced by innovation sampling. First, an upper
bound on the RI for signals in shift invariant spaces is
established. The RI of the signal indicates the globally
minimum sampling rate for the signal regardless of the
choice of sampling function. Then the properties of the
sampling filters such that the signal can be sampled at
this rate are specified. Further, we extend the choice
of sampling functions to a wider set of general func-
tions from the Hilbert space and the locally minimum
sampling rate for the function used accordingly. The
results obtained herein are used to obtain the minimum
resampling rate for consistent resampling.

1. INTRODUCTION

The sampling rate of the discrete signals used in
digital system often needs to be increased or decreased
according to the requirements of a particular process-
ing stage. To change the sampling rate of a digital sig-
nal, a two-step process is involved [1]. First, the origi-
nal digital signal is converted, conceptually, to analog
form. Then this analog signal is resampled at a dif-
ferent sampling rate or at different sampling locations.
Sometimes the resampling functions can also be dif-
ferent from the sampling function used to obtain the
input sequence. We address such system as resampling
system. Assuming that both the input and output are
of uniform sampling rate, a typical resampling system
is shown in Fig. 1.

Referring to Fig. 1, the input fT [n] is resampled to
fT ′ [m] using the interpolation and resampling function
φ and ψ. The subscripts T and T ′ are used to indicate
the sampling interval of the sequence. Notice that φ
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Figure 1: A resampling system with generalized inter-
polating and resampling functions.

and ψ are dilated by their sampling intervals respec-
tively. When fT [n] is bandlimited, φ and ψ are the
classic sinc-Diracs pair. The allowable resampling rate
T ′ are governed by Shannon’s sampling theorem.

In practice, most signals are not strictly ban-
dlimited. To resample fT [n] of non bandlimited re-
sponse, the consistent resampling theory has been de-
veloped [2, 3]. The functions φ and ψ are normally
chosen from the square integrable Hilbert Space H that
satisfying the Riesz condition [9]. For every finite scalar
sequence {c[k]}k∈Z, the Riesz condition states that [4]

A‖c[k]‖2`2 ≤ ‖
∑
k

c[k]φ(x− k)‖2L2 ≤ B‖c[k]‖2`2 (1)

where A and B are two constants and 0 < A ≤ B.
If {φ(x− k)}k∈Z satisfies (1), the set {φ(x− k)}k∈Z is
admissible and is the Riesz Basis of the space V φ. φ is
referred as the generating function of V φ.

Referring to Fig. 1, fT [n] is said to be consistently
resampled if the same continuous function f̃(x) can be
reconstructed from fT [n] and fT ′ [m]. Mathematically,
let

f̃1(x) =
∑
n

fT [n]φ
( x
T
− n

)
(2)

f̃2(x) =
∑
m

fT ′ [m]φ
( x
T ′
−m

)
(3)



Consistent resampling requires f̃1 = f̃2. It is optimal
in the sense that the input signals can always be recon-
structed from the output, i.e., the resampling process
is informationally lossless.

The resampling rate for consistent resampling is in-
tuitively subject to constraints related to interpolation
as well as the resampling function. Recently, the rate of
innovation(RI) is introduced to indicate the the min-
imum sampling rate for a continuous signal [7]. For
a signal f(x), its RI is defined by the degree of free-
dom per unit time and denoted by ρ. The innovation
sampling theory states that f(x) can be perfectly re-
constructed from its samples of rate ρ by proper acqui-
sition / synthesis functions. For example, the RI of the
periodic impulse train

f(x) =
K−1∑
k=0

ck
∑
n∈Z

δ(x− xk − nτ) (4)

is given by ρf = 2K/τ . It has been shown that the sig-
nal can be perfectly sampled by sinc at rate ρ though
f(x) is obviously of non bandilmited response [7, 8]. It
provides a novel point of view to interpret sampling of
signals as a process to extract information out of the
signal and to reconstruct it accordingly. It suggests a
possible solution to the minimum resampling rate re-
quired for consistent resampling theory.

Unfortunately, there are two main obstacles to ap-
ply the innovation sampling theory to consistent re-
sampling theory. First, the RI of a non trivial signal
that belongs to H may not be straightly available. Sec-
ond, the property of a “proper” acquisition filter is left
undiscussed. In this paper, we tackle these two prob-
lems. We establish an upper bound of the RI for the
signals in the general Hilbert space. We explore the
minimum sampling rate above which the signal can
be sampled in relation to an arbitrarily chosen acqui-
sition filter. The results obtained herein are used to
obtain the minimum resampling rate for consistent re-
sampling, as present in Section 3.2. We use the result
to examine the image processing and address the issue
on how a lossless process can be designed.

2. RI of Signals in Shift Invariant Spaces

The rate of innovation ρ of a signal measures the
degree of freedom of a signal per unit time. The degree
of freedom, on the other hand measures the number of
parameters required to uniquely specify the signal. For
example, an N -th order polynomial defined by

f(x) =
N∑
i=0

c[i]xi (5)

is uniquely determined by the N+1 coefficients c[i] and
therefore the degree of freedom is N + 1.

The RI is a function of the degree of freedom as well
as its time span. It may be intuitive for some signals,
e.g. the periodic pulse train (4). However, it is not so
easy for other non-trivial signals. We observed that the
RI of a signal depends on how much information of the
signal is known a priori. For example, if we know that
the signal in (5) crosses the axis at x = a, then (x− a)
is a factor of f(x) and it can be expressed as

f(x) = (x− a)
N−1∑
i=0

c′[i]xi (6)

In this case, the degree of freedom of f(x) is N and
the time span of f(x) is unchanged. In the frame of
resampling where the signals are in the form of (2) and
(3), an upper bound can be derived for the RI of such
signals:

Proposition 2.1. For a signal f(x) of the form

f(x) =
∑
k

c[k]φ
( x
T
− k
)

(7)

where φ ∈ H and T is a constant. Its rate of innovation
ρf satisfies

ρf ≤
1
T

(8)

Equality holds only when {φ
(
x
T − k

)
}k∈Z forms a Riesz

basis.

Proof. For a signals given by (7), in every time interval
[kT, (k + 1)T ), there is one coefficient c[k] to specify.
This means that there is at most one degree of freedom
every T seconds. If the coefficients are independent of
each other, then ρf = 1/T . If the coefficients are not
independent, then ρf <

1
T .

To prove the condition for equality, we shall
show that the coefficients c[k] are independent if
{φ
(
x
T − k

)
}k∈Z is a Riesz basis. Assume that the value

of the coefficient c[k1] for a certain constant k1 has
been changed to ∆c[k1]. Using the set of sample values
{· · · , c[k1−1],∆c[k1], c[k1 +1], · · · } we can reconstruct
a signal f̃(x) by

f̃(x) =
∑
k 6=k1

c[k]φ
( x
T
− k
)

+ ∆c[k1]φ
( x
T
− k1

)
(9)

To sample f̃(x) using the dual function φd of φ with a
sampling period of T , the samples are given by:

f̃ [m]T =
〈
f̃(x), φd

( x
T
−m

)〉
=

∑
k 6=k1

c[k]
〈
φ
(x
a
− k
)
, φd

(x
a
−m

)〉
+ ∆c[k1]

〈
φ
(x
a
− k1

)
, φ
(x
a
−m

)〉
(10)



Since φ and φd are dual functions, they satisfy [4]〈
φ
( x
T
− k
)
, φd

( x
T
−m

)〉
= δ[m− k] (11)

Therefore, (10) is reduced to

f̃T [m] =
{
c[k], m = k 6= k1

∆c[k1], m = k1
(12)

Thus a change in the value of c[k1] has no effect on
the other samples. Hence we can conclude that the
coefficients c[k] are independent of each other. Fur-
ther, since the dual function in (10) only exists when
{φ
(
x
T − k

)
}k∈Z is a Riesz basis, the equality part of

the Proposition 2.1 is proved.

Let φ
(
x
T − k

)
be denoted by φT k(x) for any k ∈ Z.

It can be expressed in the form of (7) as

φT k(x) = φ
( x
T
− k
)

=
∑
m

δ[m− k]φ
( x
T
−m

)
(13)

The unit impulse sequences {δ[m − k]}m∈Z are
independent of each other regardless of whether
{φ
(
x
T − k

)
}k∈Z forms a Riesz basis. The RI of φTk

depends only on the sampling interval and equals to
1
T .

If a signal f(x) can be expressed as (7), then it
can be viewed as weighted combinations of φT k. Based
on Proposition 2.1, we can say that the RI of such a
signal cannot be greater than the RI of its component
functions. Thus,

ρf ≤ ρφT =
1
T

(14)

3. Acquisition Functions for Innovation Sam-
pling

The principle behind having ρf as the minimum
sampling rate is that N independent equations is re-
quired to solve for N unknowns uniquely. Hence, if
f(x) has an RI of ρf , then we need to solve for ρf un-
knowns per unit time to reconstruct f(x). Each sample
obtained in the interval 1/ρf is able to provide us with
one equation, and a total number of ρf equations are
needed per unit time.

To sample a signal at at its RI is possible only
if a proper acquisition function is used. For exam-
ple, consider a bandlimited signal f(x) with a band-
width of Ω0. It can be expressed in the form of (7)
with φ(x) = sinc(x) for all 1/T ≥ ρf = Ω0/2π. Al-
though the bandwidth, or equivalently ρf and hence
the minimum sampling rate, is a constant, the actual
sampling rate fs = 1/T used to obtain the samples

fT [k] = f(x)|x=kT can be any value higher than the
minimum. Thus the same f(x) can be expressed as
(7) using φ with different dilations. A possible inter-
pretation is that when φ is dilated by 1/T and f(x) is
sampled at rate fs = 1/T , each sample c[k] obtained
within an interval of T gives us a unique φTk . From the
various φTk obtained, φ can be derived and f(x) can
be reconstructed.

In general, if a signal f(x) can be expressed as (7),
then a suitable acquisition function is the dual function
of φ. If the dual φd exists, then the samples can be
obtained by

c[k] =
〈
f(x), φd

( x
T
− k
)〉

(15)

at sampling rate of fs = 1/T . Proposition 2.1 tells
us that ρf ≤ 1/T and the equality holds only when
{φT k}k∈Z is a Riesz basis. Therefore, the minimum
sampling rate is attainable only when φ(x) is a gener-
ating function.

3.1. Sampling with General Acquisition Func-
tions

However, it is very restrictive to require the acqui-
sition or the resampling filter to be dual of the interpo-
lation function. It is therefore desirable to derive the
conditions on the set of acquisition functions such that
a signal with finite rate of innovation of the form (7)
can be sampled at its rate of innovation.

Here we restrict ψ ∈ H to generating functions and
its dual function ψd exists. When f(x) is sampled using
ψ at ρf , the samples are given by

f [k] =
〈
f(x), ψ

[
ρf

(
x− k

ρf

)]〉
(16)

When ψ is known and ψd exists, f(x) can be recon-
structed from the samples f [k] by

f̃(x) =
∑
k

f [k]ψd

[
ρf

(
x− k

ρf

)]
(17)

Therefore, to derive the conditions on ψ is equivalent to
examine the conditions on ψd such that a signal given
by (7) can be equivalently represented by (17).

Our approach is to express both φ and ψd as polyno-
mials. The Weierstrass’s Approximation Theorem [4]
states that every finite signal φ ∈ [a, b] where a, b ∈ R
can be approximated arbitrarily well by a polynomial

P (x) =
n∑
k=0

c1[k]xk (18)

such that
‖φ− P‖∞ ≤ ε (19)



The order of P depends on ε, φ and the interval [a, b].
A reasonably approximation of P is given by the ap-
proximation order of that function. More specifically,
if φ is a Maximum approximation Order with Mini-
mum Support (MOMS) function of order Lφ, it can be
expressed by weighted sum of derivatives of B-splines
[5, 6]. Thus,

φ(x) =
Lφ−1∑
k=0

pk
dk

dxk
βLφ−1(x) (20)

Since βk is indeed a k-th order polynomial, (20) can be
rewritten as

φ(x) =
Lφ−1∑
k=0

c1[k]xk (21)

Similarly, if ψd is an MOMS of approximation order
Lψd , it can be expressed in polynomial form as

ψd(x) =
Lψd−1∑
k=0

c2[k]xk (22)

The number of coefficients associated with ψd is given
by Lψd .

The function φT k as defined in (13) can also be
represented in the polynomial form by

φT k =
Lφ−1∑
m=0

c1[m]
(
x− kT
T

)m
(23)

When φ is known, for every k, in an interval of T ,
there is one φT k and its degree of freedom is Lφ. By
substituting (23) into (7), we have

f(x) =
∑
k

c[k]φ
( x
T
− k
)

=
∑
k

Lφ−1∑
m=0

(c[k]c1[m])
(
x− kT
T

)m
(24)

Therefore, if f(x) is represented in the polynomial
form, the number of coefficients per unit time is at
most Lφ/T . Similarly, substituting (22) into (17), we
have

f̃(x) =
∑
k

Lψd−1∑
m=0

(f [k]c2[m]) (ρfx− k)m (25)

For every sample f [k] in an interval of 1/ρf , there are
at most Lψd coefficients. Comparing (24) and (25), the
conditions on ψd such that f(x) can be represented by
f̃(x) can be obtained.

Proposition 3.1. Let f(x) be a signal given by (7)
with an RI of ρf . Assume that φ is a MOMS func-
tion with an approximation order of Lφ. f(x) can be
represented by another MOMS function ψd 6= φ with
approximation order Lψd at dilation level ρf as given
by (17) if

1. Lψd ≥ Lφ; and

2. the set {ψd(x− k
ρf

)}k∈Z is Riesz basis of its span.

Proof. From (24), f(x) is a polynomial of order Lφ−1.
On the other hand, from (25), the order of polynomials
that can be represented by ψd is Lψd − 1. Therefore, if
f(x) can be represented by ψd as in (17), then

Lψd ≥ Lφ (26)

When f(x) is represented by ψd at dilation level ρf
as in (17), the RI of f(x) is equal to the inverse of the
dilation level. Following Proposition 2.1, equality holds
only when {ψd(x − k

ρf
)}k∈Z is Riesz basis of its span.

Hence this proposition is proved.

It can be shown that the approximation order of ψ
is identical to the approximation order of its dual ψd.

Proposition 3.2. The approximation orders of a func-
tion ψ and its dual ψd are the same.

Proof. If the approximation order of ψ is Lψ, its fre-
quency response Ψ(Ω) satisfies the Strang-Fix condi-
tion given by{

Ψ[2πk] = δ[k]
Ψ(m)[2kπ] = 0, k ∈ Z, m = 0, · · · , Lϕ − 1

(27)

We shall use mathematical induction to prove that the
frequency response of ψd satisfies the Strang-Fix con-
dition as well.

The frequency response of ϕd can be specified as [9]:

Ψd(Ω) =
Ψ(Ω)
Aψ(Ω)

(28)

where
Aψ(Ω) =

∑
k

|Ψ(Ω + 2kπ)|2 (29)

The first order derivative of Ψd(Ω) with respect to Ω is
given by

Ψ(1)
d (Ω) =

d

dΩ
Ψd(Ω) =

d

dΩ
Ψ(Ω)
Aψ(Ω)

=
Ψ(1)(Ω)Aψ(Ω)−Ψ(Ω)A(1)

ψ (Ω)
A2
ψ(Ω)

(30)



where

A
(1)
ψ (Ω) =

d

dΩ
Aψ(Ω)

= 2
∑
k

|Ψ(Ω + 2kπ)| |Ψ(1)(Ω + 2kπ)|(31)

For Ω = 2nπ, n ∈ Z,

A
(1)
ψ (Ω)|Ω=2nπ = 2

∑
k

|Ψ [2(k + n)π] | |Ψ(1) [2(k + n)π] | = 0 (32)

since Ψ(1) [2(k + n)]π = 0 for all k, n ∈ Z. Substituting
(32) into (30), we have

Ψ(1)
d (Ω)|Ω=2nπ =

Ψ(1)(Ω)Aψ(Ω)−Ψ(Ω)A(1)
ϕ (Ω)

A2
ψ(Ω)

=
0− 0
A2
ψ(Ω)

= 0 (33)

Assume that Ψ(m−1)
d (Ω) satisfies the Strang-Fix con-

dition. Then for n ∈ Z and m = 0, · · · , Lψ − 1, we
have

Ψ(m−1)
d (2nπ) = 0 (34)

From the chain rule of differentiation,

Ψ(m)
d (Ω) =

dm

dΩm
Ψd(Ω) =

d

dΩ
Ψ(m−1)
d (Ω)

= Ψ(m)
d (Ω)Ψ(1)

d (Ω) (35)

Hence,

Ψ(m)
d (Ω)|Ω=2nπ = Ψ(m)

d (2nπ)Ψ(1)
d (2nπ) (36)

Since Ψ(1)
d (2nπ) = 0, we have Ψ(m)

d (2nπ) = 0 for n ∈ Z
and the Strang-Fix condition is satisfied for Ψ(m)

d (Ω).
By mathematical induction, we have Ψ(m)

d (2nπ) = 0 for
n ∈ Z, m = 0, · · · , Lϕ − 1. Therefore, Ψd(Ω) satisfies
the Strang-Fix condition up to order Lψ − 1 and the
approximation order of ψd is Lψ as well.

Therefore, to choose a function ψ such that a sig-
nal in the form of (7) can be sampled at its RI, from
Proposition 3.2 and Proposition 3.1, it requires the ap-
proximation order of ψ satisfying Lψ ≥ Lφ and ψ is a
generating function.

Another possible interpretation of Proposition 3.1
is as follows. When f(x) is expressed in the form of
(24), within each interval [kT, (k + 1)T ), the coeffi-
cients {c1[m]}m∈[0,Lφ−1] are known. For each sample
c[k] obtained, the total number of coefficients is given
by N1 = Lφ. Therefore, it has N1 degrees of freedom

per unit time. Similarly, for a signal given by (25),
within each interval [k/ρf , (k + 1)/ρf ), for each ψdTk
the number of parameters is N2 = Lψd . In order to
represent f(x) using ψd, we require

N2

1/ρf
≥ N1

T
⇒ Lψd ≥

Lφ
Tρf

(37)

From Proposition 2.1, ρf ≤ 1
T and therefore Lψd ≥ Lφ.

This interpretation can lead to a more general con-
dition on the dilation level D for an arbitrary acquisi-
tion function ϕ such that f(x) can be represented by

f(x) =
∑
k

fD[k]ϕ
[

1
D

(x− kD)
]

(38)

Proposition 3.3. Let φ be a known function and f(x)
be a signal given by (7) with a finite RI of ρf . If f(x)
is to be expressed using a function ϕ as in (38), then
the dilation level D should satisfy

D ≤

{
T
Lϕ
Lφ
, Lφ ≥ Lϕ

T, Lφ ≤ Lϕ
(39)

where both φ and ϕ are assumed to be MOMS functions
with approximation orders Lφ and Lϕ respectively.

Proof. Given f(x) as in (38), it can be sampled by us-
ing the acquisition function ϕ which is the dual function
of ϕ at the rate 1/D. The sample values are

f [k] =
〈
f(x), ϕ

[
1
D

(x− kD)
]〉

(40)

=
〈
f(x− kD), ϕ

( x
D

)〉
(41)

For every k, we have a ϕDk = ϕ( xD −k) similar to (??).
If the approximation order of ϕ is Lϕ, then the degree
of freedom is Lϕ.

On the other hand, if f(x) is expressed as a poly-
nomial of order Lφ − 1 as in (24), then the degree of
freedom is Lφ. Thus for each k, the degree of freedom
must be given by

N1 = min(Lφ, Lϕ) (42)

From Proposition 3.2, Lϕ = Lϕd . Therefore

N1 = min(Lφ, Lϕd) (43)

Following Proposition 3.1, the degree of freedom per
unit time is Lφ/T . To express f(x) using ϕd of dilation
level 1/D, it requires

N1

D
≥ T Lφ

T
(44)



If Lφ ≥ Lϕ, then N1 = Lϕd and hence

D ≤ T Lϕd
Lφ

(45)

If Lφ ≤ Lϕd , then N1 = Lφ and

D ≤ T (46)

Given an acquisition function ϕ of approximation or-
der Lϕ, the dilation level and hence the corresponding
sampling rate can be chosen directly by using (39).

3.2. Application to Consistent Resampling
Theory

In a resampling system, the input sequence fT [n]
is interpolated by the interpolation function φ to pro-
duce f̃1(x) as in (2). The output fT ′ [m] is obtained by
resampling f̃1(x) at the rate 1/T ′.

fT ′ [m] =
〈
f̃(x), ψ

( x
T ′
−m

)〉
(47)

Assume that φ and ψ are MOMS functions with ap-
proximation orders Lφ and Lψ respectively. In order
to produce f̃2 using fT ′ [m] such that f̃1 = f̃2, from
Proposition 3.3, the resampling interval T ′ is required
to satisfy (39).

The results obtained can be applied to image pro-
cessing. In general, the original image is assumed to
be ideally sampled by the impulse train with sampling
period T = 1. The commonly used interpolation func-
tions include the finitely defined B-splines and the re-
sampling function is ψ = δ. From [6], B-spline func-
tions are MOMS functions. The approximation order
of a B-spline of order n−1 is L = n. For example when
bilinear function is used, φ = β1 and Lφ = 2. On the
other hand, since the dual of ψ = δ is ψd = sincx, from
Proposition 3.2, the approximation order of ψ is given
by Lψ = Lψd = 1. Since Lψ < Lφ, according to (39),
the resampling period should satisfy

T ′ ≤ T Lψ
Lφ
⇒ T ′ ≤ 1

2
(48)

in order to resample the original image consistently.
Therefore, in order to process an image losslessly us-

ing consistently resampling with β1 and δ as the inter-
polation and resampling function, the resampling rate
should be at least twice of the original sampling rate.
It implies that the zoom in operation of factors less
than 2 and any zoom out operation would inevitably
cause information loss. In order to pursue lossless zoom
out, functions of higher approximation order should be
used as the resampling function, such as higher order
B-splines.

4. CONCLUSIONS

In this paper we provided an upper bound on the RI
for signals in shift invariant spaces. We also specified
the criteria for choosing a proper acquisition function
for innovation sampling. Based on these results, a lower
bound on the resampling rate used in consistent resam-
pling is developed. This bound can be used to decide
the globally minimum sampling rate to achieve lossless
resampling of a signal without bandlimited constraint.
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[5] T. Blu, P. Thevenaz, and M. Unser, “Minimum
support interpolators with optimum approximation
properties,” in Proceedings of IEEE International
Conference on Image Processing, Chicago, Illinois,
USA, Oct. 4-7, 1998, pp. 242–245.

[6] ——, “MOMS: Maximal-order interpolation of
minimal support,” IEEE Trans. Image Process.,
vol. 10, no. 7, pp. 1069–1080, July 2001.

[7] M. Vetterli, P. Marziliano, and T. Blu, “Sam-
pling Signals with Finite Rate of Innovation,” IEEE
Trans. Signal Process., vol. 50, no. 6, pp. 1417-1427,
Jun, 2002.

[8] I. Maravic and M. Vetterli, “Sampling and Recon-
struction of Signals with Finite Rate of Innovation
in the Presence of Noise”, IEEE Trans. Signal Pro-
cess., vol. 53, no. 6, pp. 2788-2805, Aug, 2005.

[9] M. Unser and A. Aldroubi, “A General Sampling
Theory for Non-ideal Acquisition Devices”, IEEE
Trans. Signal Process., vol. 42, no. 11, pp. 2915-
2925, Nov, 1994.


