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EXTENDED ABSTRACT

Diabetes is a metabolic disorder where the body is no
longer able to properly regulate the use and storage of
glucose in the blood. The current medical treatment
of diabetes primarily involves insulin medication
coupled with strict dietary control. Insulin regulation
is achieved by means of discrete insulin injections
or premeditated insulin infusions via mechanical
pumps. Discrete insulin injections are therapeutically
suboptimal as insulin control is essentially open-
looped. Insulin infusion through a programmable
pump, on the other hand, offers the potential for
closed-loop regulation of the diabetic blood glucose
level due to the controllable insulin infusion rate.

The fundamental objective of a therapeutically
optimal closed-loop glucose regulatory system is to
artificially recreate and replicate the healthy insulin
profiles in a diabetic patient in response to metabolic
disturbances such as food intakes and exercises. How-
ever, current closed-loop glucose regulatory systems
generally employ static mathematical models of the
human glucose metabolic process to autonomously
derive the amount of insulin required by a diabetic
patient. These metabolic models often require re-
tuning to address the metabolic biodiversity in a
diabetic population as well as the intra and inter-day
metabolic variability of each individual patient.

In this paper, the functional principles of the human
cerebellum are harnessed to dynamically model
the biological autonomic regulation of insulin in a
healthy subject. This approach is motivated by
the cerebellums pivotal role in facilitating many of
the sub-conscious but precise cognitive and human
behavioral manifestations. Specifically, a cerebellar-
inspired computational model named PSECMAC
is employed to functionally model the circulating
plasma insulin concentration in response to serum
glucose fluctuations after food ingestions in a healthy
subject. The modeling capability of PSECMAC has
been evaluated with the glucose metabolic data of a
healthy person and a Pearson correlation exceeding
90% is achieved. The results are encouraging.

1 INTRODUCTION

Diabetes Mellitus, or commonly known as diabetes,
is a chronic disease where the body is unable to
properly and efficiently regulate the use and storage of
glucose in the blood, leading to prolonged periods of
high (hyperglycemia) or low (hypoglycemia) plasma
glucose concentration. Chronic hyperglycemia causes
severe damage to the eyes, kidneys, nerves, heart
and blood vessels of the diabetic patients [Rubin et
al. (1992)] while severe hypoglycemia can deprive the
human body of its primary energy source and cause
a patient to lose consciousness, which may be life
threatening [Cryer (1992)]. Many of the diabetes
related medical complications, fortunately, can be
prevented through the tight control of the diabetic
blood glucose levels [DCCT (1995)].

The current standard treatment of diabetes primarily
involves insulin medication coupled with strict dietary
control. The insulin hormone can be administered
through discrete insulin injections or continuous
insulin delivery via an insulin pump. The key
component to the successful management of diabetes,
however, is essentially to develop the ability to
maintain a long-term near-normoglycaemia state of
the patient [Rosenstock (2001)]. Hence, discrete
insulin injections are not therapeutically ideal for the
treatment of diabetes as the regulation of the insulin
hormone is an open-loop process. Continuous insulin
infusion through a programmable insulin pump, on the
other hand, offers an effective approach to normalize
the diabetic blood glucose level due to the controllable
insulin infusion rate [Fletcher et al. (2001)].

Generally, the programmable insulin pumps are
algorithmically driven and an avalanche of regulatory
techniques of these insulin pumps have been proposed
for diabetes treatment [Hovorka (2005); Fisher
(1991)]. The fundamental objective of these insulin
pumps and their closed-loop systems is to artificially
re-create (via variable insulin delivery) the healthy
insulin profiles in a diabetic patient so as to
regulate the diabetic blood glucose level within the
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homeostatic range of 60-110 mg/dl. Therefore, the
performances of such pumps to manage diabetes
correlate to their capability in replicating the insulin
response of a healthy person. However, the majority
of these insulin pumps currently employ static
mathematical models of the human glucose metabolic
process (obtained from data fitting of patient records,
compartmentalized differential/difference equations,
statistical or machine learning approaches) to compute
the amount of insulin required by a diabetic patient.
These models, however, often require manual tuning
to cater for the metabolic biodiversity of the diabetic
patients, as well as the intra and inter-day variability
in the glucose metabolic rates of each specific
patient [Makroglou (2006); Bellazzi et al. (2001);
Parker et al. (2001)]. Consequently, these closed-
loop blood glucose regulatory systems are developed
with fixed insulin regimes and require strict patient
compliance to function properly.

This paper proposes the use of the Pseudo Self-
Evolving Cerebellar Model Arithmetic Computer
(PSECMAC) network as a novel brain-inspired
approach to model the healthy insulin response to
external disturbances such as food intake. The
human cerebellum is responsible for many sub-
conscious but precise cognitive and behavioral
manifestations [Kandel et al. (2000)]. Therefore,
the functional principles of the human cerebellum
can be harnessed in a computational framework
(i.e. PSECMAC) to model the biological autonomic
decision processes of the pancreatic secretion of
insulin to replicate the healthy insulin profile for the
treatment of diabetes. In this paper, the PSECMAC
network is employed as a computational beta-cell to
functionally model the biological decision process
of insulin secretion in response to serum glucose
fluctuations due to food ingestion. The proposed
approach has a distinct advantage. The PSECMAC
insulin model can be easily adapted and customized
to capture the intra- and inter-day variability of
the glucose metabolic process among the different
individuals in the diverse population.

The rest of this paper is organized as follows.
Section 2 briefly describe the architecture of the
PSECMAC network and highlights the cerebellar-
inspired memory formation and knowledge acqui-
sition process of the network. In Section 3, the
patient profile and the dietary models employed in
the study are first described. Subsequently, Section 4
presents the proposed PSECMAC modeling of the
healthy insulin response of the specified patient
profile. The experimental results and analysis of
the performances of the proposed PSECMAC insulin
model are presented in Section 5. Finally, Section 6
concludes this paper.

2 THE PSECMAC NETWORK

The cerebellum constitutes a part of the human
brain that is important for motor control and
cognitive functions [Middleton and Strick (1998)],
including motor learning and memory. The human
cerebellum is postulated to function as a movement
calibrator [Albus (1989)], which is involved in the
detection of movement error and the subsequent
coordination of the appropriate skeletal responses
to reduce the error. It functions by performing
associative mappingsbetween the input sensory
information and the cerebellar output required for
the production of temporal-dependent precise behav-
iors [Kandel et al. (2000)]. The human cerebellum
has been classically modelled by the Cerebellar Model
Articulation Controller (CMAC) [Albus (1975)]. As
a computational model of the human cerebellum,
CMAC manifests as an associative memory network,
where the memory cells are uniformly quantized to
cover the entire input space. The CMAC network
operation is characterized by the table lookup access
of its memory cells. This allows for advantages
such as localized generalization and rapid algorithmic
computation.

This paper proposes the use of a brain-inspired
cerebellar-based learning memory model named
PSECMAC as a generic functional model of
the human cerebellum for solving approximation,
modeling, control and classification problems. This
architecture differs from the CMAC network intwo
aspects. Firstly, the PSECMAC network employs
one layer of network cells, but maintained the
computational principles of the layered-based CMAC
network by adopting a neighborhood activation of its
computing cells to facilitate: (1) smoothing of the
computed output; (2) distributed learning paradigm;
and (3) activation of highly correlated computing cells
in the input space. Secondly, instead of uniform
partitioning of the memory cells, the PSECMAC
network employs the PSEC clustering technique [Ang
and Quek (2005)] to form an experience-driven
adaptive memory quantization mechanism of its
network cells. Figure 1 illustrates this fundamental
architectural distinction.

The adaptive quantization process of the PSECMAC
network is performed in per dimension basis. The
non-uniform quantization of the PSECMAC memory
structure is inspired by the neurophysiological
properties of the brain development, where the precise
wiring in the adult brain is a result of experience-
dependent refinement of initial architecture through
repeated exposures to external stimuli. This
experience-dependent plasticity is also observed in
the human cerebellum [Federmeier et al. (2002)], and
is incorporated to the PSECMAC network through
the PSEC clustering algorithm. Each training data
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Figure 1. Comparison of CMAC and PSECMAC
memory quantization for 2D input problem

point is a learning episode to the network. In each
input dimension, the PSEC clustering algorithm is
used to compute clusters of data density, and the
memory axes in each dimension are allocated based
on the observed density profile of the training data.
Thus, more memory cells are allocated to the densely
populated regions of the input space. The details
on the adaptive quantization algorithm is reported
in [Teddy et al. (2007)].

The PSECMAC network employs aWeighted Gaus-
sian Neighborhood Output(WGNO) computational
process, where a set of neighborhood-bounded
computing cells is activated to derive an output
response to the input stimulus. For each input stimulus
X, the computed output is derived as follows:

1. Step 1: Determine the region of activation
Each input stimulusX activates a neighborhood
of PSECMAC computing cells. The neigh-
borhood size is governed by the neighborhood
constant parameterN , and the activated

neighborhood is centered at the input stimulus
(see Fig 1(b)).

2. Step 2: Compute the Gaussian weighting
factors
Each activated cell has a varied degree of
activation that is inversely proportional to its
distance from the input stimulus. These degrees
of activation functioned as weighting factors to
the memory contents of the active cells.

3. Step 3: Retrieve the PSECMAC output
The output is the weighted sum of the memory
contents of the active cells.

Following this, the PSECMAC network adopts a
modified Widrow-Hoff learning rule [Widrow and
Stearns (1985)] to implement aWeighted Gaussian
Neighborhood Update(WGNU) learning process.
The network update process is briefly described as
follows:

1. Step 1: Computation of the network output
The output of the network corresponding to the
input stimulusX is computed based on the
WGNO process.

2. Step 2: Computation of learning error
The learning error is defined as the difference
between the expected output and the current
output of the network.

3. Step 3: Update of active cells
The learning error is subsequently distributed
to all of the activated cells based on their
respective weighting factors.

3 THE SUBJECT PROFILE

The first step into the modeling of the healthy
insulin response is to determine the subject profile
to be employed in the study. Due to the lack of
real-life patient data and the logistical difficulties
and ethical issues involving the collection of such
data, a well-known web-based simulator known as
GlucoSim[GlucoSim] from the Illinois Institute of
Technology is employed to simulate a person subject
to generate the blood glucose and insulin data that
is needed for the construction of the healthy and
diabetic patient models. For this purpose, a human
profile for the simulated subject (Subject A) is created
and described in Table 1. The simulated person,
Subject A, is a typical middle-aged Asian male.
His body mass index (BMI) is23.0 and within the
recommended range for Asian.

Based on the profile of Subject A, his recommended
daily allowance (RDA) of carbohydrate intake from
meals is computed using an applet from the website of



Table 1.The profile of Subject A

Attribute Value
Sex Male
Age 40 years old
Race Asian
Weight 67 kg (147.71 lbs)
Height 1.70 m (5 ft 7 in)
BMI 23 (Recommended for Asian)
Lifestyle Typical office worker with moderate phys-

ical activities such as walking briskly,
leisure cycling and swimming.

the Health Promotion Board of Singapore [HPBSg].
According to his sex, age, weight and lifestyle, the
recommended daily carbohydrate intake for Subject A
is approximately346.9g per day.

4 THE PSECMAC INSULIN MODEL

It has been established in Matschinsky (1996) that
plasma glucose is the most effective physiological
nutrient stimulus of the pancreatic insulin secretion.
Therefore, in this study, the PSECMAC network is
employed to capture the plasma insulin response of
Subject A to prior food ingestion based on the current
and past plasma glucose information. LetIH(A)

denotes the insulin profile of the healthy Subject
A. The insulin relationship to be modelled by the
PSECMAC network is formalized as eq. (1),

ÎH(A)(t + 1) = F
({

ZH(A)(t)
})

(1)

where ÎH(A)(t + 1) is the predicted blood insulin
concentration at timet + 1;

{
ZH(A)(t)

}
denotes

the information set that characterizes the glucose
metabolic process of the healthy Subject A due to a
normal diet at timet; andF(·) is a nonlinear function
that implements the insulin model mapping from the
input metabolic variables

{
ZH(A)(t)

}
to the desired

output, that is, the blood insulin concentration at the
next sampling instanceIH(A)(t + 1).

The GlucoSim simulator is employed to generate a
total of eight days of glucose and insulin data based
on the profile of Subject A and his normal dietary
habit. The carbohydrate contents and the timings of
the daily meals are varied from day-to-day during
the data collection phase. The GlucoSim simulator
requires10 different inputs, which consists of the
body weight, the simulation period, and both the time
and carbohydrate content of each of the assumed daily
four meals, namely: breakfast, lunch, afternoon snack,
and dinner respectively. This is to account for the
inter- and intra-day variability of the eating habits of
Subject A and to ensure that the PSECMAC insulin
model is not being trained on a cyclical dataset but

elicits the inherent relationships between food intakes
and the insulin response of a healthy person. The
collected metabolic data is subsequently partitioned
into two groups: the first 4-days data is used for
training the PSECMAC network, while the remaining
4-days data is used for the evaluation of the trained
network. A sampling interval of 5 minutes is adopted
to discretize the measurements of the blood glucose
and insulin concentrations.

Based on the collected glucose metabolic data, a total
of 18 glucose variables (consisting of the current and
past blood glucose measurements and its derivatives)
are extracted as inputs to model the healthy insulin
profile of Subject A. These variables are outlined as
Table 2. Due to the large number of input features
available (18 variables), a novel feature selection
algorithm named Monte Carlo Evaluative Selection
(MCES) [Quah and Quek (2007)] is employed to
identify the prominent features that best characterize
the insulin response of a healthy person. That is, given
by eq. (2),

ÎH(A)(t + 1) = F
(
R

({
ZH(A)(t)

}))
(2)

where R = MCES denotes the MCES feature
selection process. The reduced set of inputs/features
for the normal diet is subsequently denoted by eq (3).{

z
H(A)
MCES, normal(t)

}
= R

({
ZH(A)(t)

})
(3)

The MCES method has the advantages of (1) low
computational cost; (2) the ability to identify both
correlated and irrelevant features based on weight
ranking; (3) being applicable to both classification
and regression tasks; and (4) is independent of the
underlying induction algorithm used to perform the
feature selection process.

The MCES algorithm is executed independently for
50 times, where in each run, 50 iterations on
the training set (first 4-days of metabolic data) is
performed. The feature ranking results for 50
independent executions of the MCES algorithm are
aggregated to determine the relevant features for the
insulin modeling task. The salient/prominent features
are identified based on their rankings and associated
weights (evaluative feedback values). The top four
features, namely: the current glucose level (G(t)),
the 4-point exponential moving average (EMA) of
the glucose level (GMAM

(t)), the delta change in
the glucose level over the last 5 minutes (dG(t)),
and the 2-point EMA of the glucose level (GMAS

(t))
are selected as the glucose indicators/inputs to the
PSECMAC insulin model.

5 EXPERIMENTS AND RESULTS

A PSECMAC network with a memory size of8 cells
per dimension is constructed to model the insulin



Table 2.The glucose variables extracted to model the healthy insulin response

Feature Definition
G(t) the current blood glucose level (att)
G(t− 1) the blood glucose level att− 1

G(t− 2) the blood glucose level att− 2

G(t− 3) the blood glucose level att− 3

dG(t) dG(t) = G(t)−G(t− 1)

dG(t− 1) dG(t− 1) = G(t− 1)−G(t− 2)

dG(t− 2) dG(t− 2) = G(t− 2)−G(t− 3)

ddG(t) ddG(t) = dG(t)− dG(t− 1)

ddG(t− 1) ddG(t− 1) = dG(t− 1)− dG(t− 2)

GMAS
(t) the 2-point exponential moving average (EMA) of the blood glucose levelG(t)

GMAM
(t) the 4-point EMA of the blood glucose levelG(t)

GMAL
(t) the 7-point EMA of the blood glucose levelG(t)

dGMA1(t) dGMA1(t) = GMAS
(t)−GMAL

(t)

dGMA2(t) dGMA2(t) = GMAS
(t)−GMAM

(t)

dGMA3(t) dGMA3(t) = GMAM
(t)−GMAL

(t)

ddGMA1(t) ddGMA1(t) = dGMA1(t)−MAN=3(dGMA1(t))

ddGMA2(t) ddGMA2(t) = dGMA2(t)−MAN=3(dGMA2(t))

ddGMA3(t) ddGMA3(t) = dGMA3(t)−MAN=3(dGMA3(t))

profile of the healthy Subject A. A neighborhood size
(N) of 0.1 and a Gaussian width constant (γ) of 0.3
have been empirically determined to give the optimal
modeling performance. As benchmarks, the insulin
modeling task is also performed using various well-
established empirical models. The benchmarking
models studied in this work are the basic CMAC
network [Albus (1975)] and a fuzzy CMAC variant
named the Fuzzy CMAC with Yager Inference
Scheme (FCMAC-Yager) [Sim et al. (2006)]; a well-
established neuro-fuzzy system termed the Generic
Self-Organizing Fuzzy Neural Network with the
Compositional Rule of Inference reasoning schema
(GenSoFNN-CRI) [Tung and Quek (2004)]; as well
as the classical machine learning models of the
Radial Basis Function (RBF) network [WEKA] and
the Multi-Layered Perceptron (MLP). The parameters
for the FCMAC-Yager and the GenSoFNN-CRI
systems have all been empirically optimized for best
performances. There are two network structures of
the MLP, each having one and two hidden layers
respectively. These have also been empirically
determined. The RBF network is initialized to contain
50 hidden layer nodes. In addition, the size of
the CMAC network has been defined as 8 cells per
dimension for a fair comparison with the PSECMAC
insulin model.

Table 3 lists therecall (in-sample testing) and the
generalization(out-of-sample testing) performances
of the various benchmarked insulin models.RMSE
denotes the root-mean-squared-error between the set
of computed and expected insulin levels; andPC is the
Pearson correlation coefficient, a statistical measure
reflecting the goodness-of-fit between the computed
and expected insulin dynamics. Aperformance index

(PI1) measure is used to combine the RMSE and the
PC values of the benchmarked networks as described
in eq. (5).

PI1 =
PC

1 + RMSE
× 100 (4)

PI1 ∈ [−100, 100]

such that a higher PI1 value corresponds to a better
overall prediction performance of the insulin model.
In addition, the generalization results are also reported
in terms of themean-absolute-error(MAE) and the
mean-squared-error(MSE) values of the computed
insulin response. The MSE measure magnifies the
larger errors between the computed and the actual
insulin concentrations; hence the impact of these
errors is pronounced for this measure. Together with
the MAE value, this would allow one to discern
amongst the insulin models that give consistent but
minute errors from the insulin models that provide
highly accurate predictions at most of the sampled
points but with occasional large errors. The MSE and
MAE measures are subsequently combined as shown
in eq. (6).

PI2 =
MSE

1 + MAE
(5)

PI2 ∈ [0,∞]

such that a lower PI2 value implies a more consistent
prediction performance of the insulin model.

As shown in Table 3, the PSECMAC network
achieved the best generalization performances among
all the benchmarked models. The generalization
evaluation of the PSECMAC network results in the
highest PI1 value and the lowest PI2 value, which



Table 3.Simulation results for the various insulin models
Recall Generalization

Network RMSE PC PI1 RMSE PC PI1 MAE MSE PI 2

PSECMAC 6.3011 0.9918 13.58 4.0737 0.9948 19.61 2.1187 16.595 5.32

CMAC 4.4990 0.9958 18.11 6.6692 0.9880 12.88 4.6351 44.478 7.89

FCMAC-Yager 6.7013 0.9929 12.89 6.8474 0.9899 12.61 6.0575 46.887 6.64

GenSoFNN-CRI 6.6710 0.9944 12.96 5.8942 0.9953 14.44 4.7014 34.742 6.09

MLP (4-120-1) 26.337 0.8861 3.24 24.291 0.8552 3.38 20.666 590.05 27.23

MLP (4-20-4-1) 23.450 0.8908 3.64 21.757 0.8607 3.78 18.637 473.37 24.11

RBF 6.4141 0.9915 13.37 5.3977 0.9906 15.48 3.4419 29.135 6.56
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Figure 2. 3-days generalization performances of the PSECMAC networks in modeling the insulin profile of a
healthy person

demonstrate the accuracy and consistency in its
predicted insulin responses. The generalization results
of the PSECMAC network outperformed those of the
benchmarked cerebellar-based architectures (i.e. the
CMAC and FCMAC-Yager networks), thereby
demonstrating the effectiveness of the PSECMAC
network as a cerebellar-based insulin model. While
the uniform quantization process of the CMAC
network results in a lower accuracy of the computed
output, the FCMAC-Yager network is a Mamdani
fuzzy rule-based system that adopts trapezoidal-
shaped fuzzy sets as membership functions. This
often leads to a low output accuracy due to the coarse
granularity of the membership functions.

In addition, the PSECMAC insulin model achieved a
26.7% higher((19.61− 15.48)/15.48) PI1 value and
a18.9% ((6.56−5.32)/5.32) lower PI2 value over the
best performing benchmarked non-cerebellar-based
model (i.e. RBF) for the generalization evaluation.
The PSECMAC network has comprehensively out-
performed the benchmarked GenSoFNN-CRI neuro-
fuzzy system and the classical machine learning
technique-based (i.e. MLP, RBF) insulin models.
The simulation results outlined in Table 3 have
also demonstrated the inability of the MLP network
in capturing the underlying relationships between

the selected glucose indicators and the desired
insulin responses. Both the 3-layers and 4-layers
MLPs reported the poorest recall and generalization
performances amongst the benchmarked systems.

Figure 2 depicts a3-days snapshot of the gen-
eralization performances of the PSECMAC insulin
models. Simulation results shown in Figure 2 and
Table 3 have sufficiently demonstrated the highly
encouraging accuracy of the PSECMAC insulin
model in predicting the correct insulin response based
on the selected glucose indicators.

6 CONCLUSIONS

This paper presents a cerebellar-based approach to
the modeling of the healthy human insulin response
to food ingestion. Motivated by the function
approximation capability of the human cerebellum,
this study proposed the use of the PSECMAC
network, which is a computational model of the
human cerebellum, to model the healthy human
insulin dynamics based on the plasma glucose
fluctuations. Such an insulin model can subsequently
be employed in a closed-loop glucose regulatory
system to control the insulin infusion rate for the



treatment of diabetes. The proposed PSECMAC-
based insulin model is applied to model the insulin
profile of a simulated healthy Subject A. The
modeling performances of the PSECMAC speaker
models are evaluated against those of the basic
CMAC, FCMAC-Yager and GenSoFNN networks as
well as the classical machine learning models of
MLP and RBF networks. The experimental results
have sufficiently demonstrated the superior modeling
accuracy of the PSECMAC insulin model to the
benchmarked systems.
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