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Abstract— We propose a novel approach to demodulate time-
hopping pulse position modulated (PPM) impulse radio signals
using a fully digital receiver. The pulses are viewed as non-
uniform samples of an underlying continuous signal. They are
then interpolated and consistently uniformly resampled using an
appropriate kernel. A non-uniformly sampled signal is consis-
tently resampled if the original samples can be deduced from the
resampled uniform sequence using a suitable methodology. Such
resampled sequence can be used to determine the position of the
original pulses. In this paper, we showed how the B-splines can
be used as an interpolating kernel and an algorithm to detect
the position of the PPM pulses is developed.

I. INTRODUCTION

Time-hopping impulse radio has been proposed as a simple
ultra-wideband (UWB) wireless communication technique. It
transmits a stream of pulse-position modulated (PPM) pulses
that are of very short (sub-nanosecond) duration [1], [2]. The
time-hopped PPM signal using a basic pulse p(t) can be
mathematically expressed as [3]

s(t) =
∑

j

p(t − jTs − cjTc − ajε) (1)

where Ts is the symbol rate and Tc is the chip rate. Demod-
ulating such signals involves estimating the time location of
each pulse. We can simplify (1) by using a single variable tj
to represent the time shift, giving us

s(t) =
∑

j

p(t − tjε) (2)

Since the duration of the pulses are very short and strictly non-
overlapping, the signal s(t) can be assumed to be a sequence
of Diracs x(t) where

x(t) =
∑
k∈Z

ckδ (t − tk) (3)

Many methods have been proposed to design the pulse
shapes and to demodulate the signal. The most common
demodulation scheme is matched detection based on the max-
imum likelihood criterion [3]. It is implemented in the analog
domain. However, a fully digital receiver is more desirable as
it will provide more flexibility. Designing a digital receiver
for such a wide bandwidth signal is not simple. The main
problem is the high sampling rate required since according to
Shannon’s sampling theorem, the sampling frequency should

be at least twice the bandwidth of the signal to avoid aliasing.
For signal with bandwidth in the range of several gigahertz
used in UWB systems, the minimum sampling rate will
be extremely daunting. Some methods use N -branch filter
banks such that each branch only need to sample at 1/N
of the Nyquist rate. However, this approach will increase the
hardware implementation cost.

In [4], a new point of view on sampling is presented which
is applicable to signals that are not necessarily bandlimited.
It will be referred to as innovation sampling. The rate of
innovation is defined to be the number of unknowns per
unit time. The innovation sampling theory states that signals
with finite rate of innovation can be perfectly reconstructed if
sampled uniformly at a rate that at least equals their rate of
innovation using an appropriate sampling kernel. For a stream
of Diracs, the rate of innovation is related to the number of
pulses per unit time. This implies that the required sampling
rate is much lower than the Nyquist rate. However, as we will
discuss in Section II, the reconstruction algorithm for inno-
vation sampling theory is more complicated than Shannon’s
uniform sampling theorem and often involves root finding. If
this theory is to be practically applied to the demodulation
of impulse radio signals, then a more efficient algorithm is
needed.

In this paper, we develop a more efficient algorithm to
reconstruct and hence demodulate the PPM signals by reinter-
preting the innovation sampling theory in terms of resampling.
The reconstruction can be decomposed into a resampling
process, followed by an algorithm to reconstruct the pulses.
The interpolating kernel used in the resampling stage needs
to be chosen properly so that the information contained in the
pulses can be preserved. The term consistent resampling is
therefore introduced to define a resampling process which has
this property. This theory is presented in Section II. Algorithms
based on B-splines to reconstruct the pulses in the continuous
as well as the discrete domain are developed in Sections
III and IV respectively. We also showed that our algorithm
outperforms the one proposed in [4] in terms of computational
complexity. In Section V we show by examples how the
algorithm works and we conclude the paper in Section VI.



II. INNOVATION SAMPLING THEORY REVISITED

The innovation sampling theory shows that the signals
with finite rate of innovation can be sampled uniformly and
perfectly reconstructed using appropriate sampling kernels.
Consider the periodic stream of pulses,

x′(t) =
K−1∑
k=0

ck

∑
n

δ (t − tk − nτ) (4)

The rate of innovation is ρ = 2K/τ . Let the sequence x′[k] be
x′[k] = f ′(t)δ(t − tk), f ′(t) is an arbitrary continuous signal
where ck = f ′(t)|t=tk

, therefore x′(t) = x′[k] mathematically.
According to the innovation sampling theory, x′[k] is first
interpolated using hB(t) = Bsinc(Bt) where B ≥ ρ

y(t) = x′[k] ∗ hB(t) =
∑
k,n

x′[k]hB(t − tk − nτ) (5)

Then the interpolated signal in (5) is resampled uniformly

yT [m] = y(t) · δ(t−mT ) =
∑
k,n

x′[k]hB(mT − tk −nτ) (6)

The subscript T is used to indicate the uniform sampling rate
of the sequence. The innovation sampling theory provides us
an algorithm to reconstruct x′[k] from the resampled sequence
yT [m]. In this Section, we interpret the innovation sampling
theory in the resampling system and draw some guidelines to
develop our own algorithm.

A. Consistent Resampling

In order to reconstruct a sequence from its resampled
sequence, the resampling process should be reversible. We
define two sequence are consistent if and only if they are be
resampled to one another. In other words, for two sequences
f [m] and g[n] of length M and N respectively, where f [m] =
cmδ(t − tm) and g[n] = dnδ(t − tn). Giving an interpolating
kernel φ(t), if

y(t) = g[n] ∗ φ(t) = f [m] ∗ φ(t) and (7)

∀m, cm = y(t)|t=tm
∀n, dn = y(t)|t=tn

(8)

The two sequences are said to be consistent subject to φ(t). It
may be counter-intuitive that a sequence can be represented by
a shorter sequence completely. As it can be observed from the
definition of consistency, it is subject to a certain interpolator
and the information can be stored in the interpolator as well.
The two sequences are two different representations of the
same underlying signal y(t). Assume that f [m] is the input
to the resampling system and g[n] is the output, the signal
information of f [m] is stored in y(t), and transferred to g[n].
Assume g[n] is uniformly resampled at T , the output is given
by ∑

n

gT [n] =
∑
n,m

f [m] ∗ φ(t) · δ(t − nT )

=
∑
n,m

cmφ(nT − tm) =
∑
m

f [m] ∗ φT [n] (9)

Obviously, the resampling system has discrete operator φT [n].
It is therefore essential to choose a suitable interpolating kernel
for the input f [m].

A possible interpretation of the consistent resampling can be
found in the information theory [5]. Consider f [m] and g[n] as
the discrete input and output of the transceiver represented by
φT [n]. The total information needed to reconstruct the pulse,
is an analog to the entropy (the uncertainty) of the signal.
As a result of Markov process, the information contained
in gT [n] can only be as much as in f [m] if and only if
φT [n] is non singular. Therefore, for the resampling process
to be reversible, we require φT [n] defined a non singular
process, or φT [n] �= 0 for all n. Under this circumstances,
there exists certain algorithm to reverse the resampling process
and f [m] can be reconstructed such that cm, tm are made
available. It is noteworthy that the entropy depends on both the
entropy rate (rate of innovation) and time (number of samples);
consequently, we can always find a consistent resampled
sequence for any resampling rate provided the output sequence
is long enough.

B. Innovation sampling theory in resampling system

We restate the innovation sampling theory in frames of
consistent resampling. From (6), interpolate yT [n] using hB(t)
we have∑

m

yT [m] ∗ hB(t)

=
∑

m,k,n

x′[k]hB(mT − tk − nτ)hB(t − nT )

=
∑

k

x′[k]
∑

n

hB(t − tk − nτ)

=
∑

k

x′[k] ∗ hB(t) (10)

since hB [(m− n)T ] = δm,n where δm,n defines a Kronecker
Delta. The condition in (7) is satisfied. By substituting t =
tk into (5), the condition stated in (8) is satisfied as well.
Therefore, x′(t) and yT [m] are consistent.

One not so obvious point in the innovation sampling theory
is that it requires a minimum number of samples to recover the
pulses, instead of the lowest sampling rate that normally used
in sampling theory. To understand this problem, we check how
the information of the input sequence is reserved. For a pulse
δ(t−tk), the frequency response is δ(t−tk) FT→ e−i2πtkf . Due
to the linearity of fourier transform, the frequency response of
the signal in (4)is given by

X ′(f) =
K−1∑
k=0

∑
n∈Z

cke−i2πtk(f−nf0) (11)

X ′(f) is a periodic signal of periodicity f0 = 1/τ . It can be
reconstructed by any part of bandwidth f0 of X ′(f). For the
reason of simplicity, we pass the signal X ′(f) to a low pass
filter of bandwidth f0/2 and denote it by X0(f).

Take an inverse Fourier transform of X0(f), we have the
aliased signal x0(t), which has highest frequency component



f0/2. According to Shannon’s theory, x0(t) can be fully
characterized by its samples of Nyquist rate f ≥ 2 · f0

2 =
1/τ . Despite the actual choice of sampling rate, the rate of
innovation of x0 is nevertheless a constant ρx0 = 1/T = τ .
To recover x′(t), the information we need is Ix′ = 2K;
therefore, the time needed to transmit the total amount is at
least t = Ix′/ρx0 = 2K/τ which corresponding to N =
t/T = 2K number of pulses. The number of samples required
is consistent with the result in [4].

The next task is to reconstruct the input sequence from its
resampled output. To reconstruct a sequence of K pulses,
it needs to solve a Kth order Yule-Walker system for an
annihilating filter A(z), followed by factoring A(z) to find the
position of the pulses. Another Vandermonde system is solved
for the weights of the pulses. The procedure is very complex
and the computational complexity depends on the efficiency
of several other algorithms.

Based on the understanding of consistent resampling, we
develop an algorithm using B-spline as the interpolating kernel
in Section III and Section IV. As it will become clear later,
our algorithm has a reduced complexity comparing to the
innovation sampling theory.

III. SAMPLING WITH CONTINUOUS B-SPLINES

A B-spline of order n, t ∈ R is given by

βn(t) =
n+1∑
j=0

(−1)j

n!

(
n + 1

j

)

·
(

t +
n + 1

2
− j

)n

µ

(
t +

n + 1
2

− j

)
(12)

where µ(x) = 1 only if x ≥ 0. Assume n > 1, the first
derivative of B-spline is given by [6]

βn(t)′ =
dβn(t)

dt
= βn−1

(
t +

1
2

)
− βn−1

(
t − 1

2

)
(13)

If we interpolate a stream of pulses as in (3) using h(t) =
βn(t), we have

f̂(t) =
∑

k

ckβn(t − tk) (14)

Substituting (12) and (13) and differentiating (14) gives

df̂(t)
dt

=
∑

k

ck

[
βn−1

(
t +

1
2
− tk

)
−βn−1

(
llt − 1

2
− tk

)]
(15)

The continuous signal f̂(t) contains all the information we
need to reconstruct ck and tk.

Proposition 1: Consider a stream of pulses x(t) ∈ L2(R)
as given in (3). Assume that the coefficient of the pulses ck

are independent of the locations tk. Let the sampling kernel be
ϕ(t) = βn(t), n > 1, the resultant signal f̂(t) = x(t) ∗ βn(t)
is sufficient to localize the pulses using differentiation.

proof: Let the set t = tc contain all the roots that df̂(t)
dt |tc

=
0. The proposition can be proved in two steps. First, we show
that all tk can be found in tc. Second, all tc are related to tk

input: roots found m[]

output: tk , k[], flag[];

initialize flag[]=0;

for i=1; i++

for j=i+1, j++

if m[j]-m[i]=2

flag[i] = (1+flag[i])mod 2;

flag[j] = (1+flag[j])mod 2;

else if m[j]-m[i] < 2 break;

else m[j]-m[i]> 2 move to next i;

p=1;

for z=1, z++

if f [z] == 0 & f(m[z]) �= 0

k[p] = m[z]; p++

TABLE I

ALGORITHM TO SEPARATE tk FROM ITS VARIANTS tk ± (n + 1)/2

in such a way that it is possible to eliminate the tc other than
tk.

Step 1: for t = tk, since ck are independent of tk, to
differentiate f̂(t) is equivalent to differentiate the underlying
βn. Therefore, (15) becomes

df̂(t)
dt

=
∑

k

ck[βn−1(
1
2
) − βn−1(−1

2
)] (16)

The B-spline is symmetric and βn(t) = βn(−t). Hence,
df̂(t)/dt = 0 and thus tk ∈ tc.

Step 2: since B-spline is locally defined and differentiable
at the end points, other possible solution occurs when

βn−1(tc − tk + 1/2) − βn−1(tc − tk − 1/2) = 0 (17)

The nth order spline has support |t| ≤ (n + 1)/2. Also,
βn(t) = 0 when |t| = (n + 1)/2. Solving (17), we get

tk − n + 1
2

≥ tc ≥ tk +
n + 1

2
(18)

In addition, for f(tc) to be valid,

tk − n + 1
2

≤ tc ≤ tk +
n + 1

2
(19)

Therefore, we can conclude that in general

tc = tk ± (n + 1)/2 (20)

The third possible set of tk occurs when∑
k

ckβn−1

(
t +

1
2
− tk

)
=

∑
k

ckβn−1

(
t − 1

2
− tk

)
(21)

which has the same solution set as in (20). Therefore, we
conclude that for all tc that df̂(t)

dt |tc
= 0, they are related to

tk by (1) the tk itself, (2) tc = tk ± (n + 1)/2. Therefore, it
is possible to work out tk from the tc. An algorithm shown in
Table I is designed as one possible way to do so. Once tk are
available, the coefficients can be obtained by ck = f̂(t)|t=tk

and the pulses are reconstructed.



Since B-splines are of local support, for any point on f̂(t),
only pulses have distances less than (n + 1)/2 are required
to determine the point. The B-splines can be adjusted by
a factor m such that βn

m(t) = βn(mt), the width of time
spread is Ln

m = (n + 1)/m. The memory requirement for

the algorithm given in Table. I is O
(

n+1
m·(tk−tk−1)min

)
for all

k. The complexity is linear with respect to the number of
tc, which is at most three times the number of the pulses.
Comparing to the Innovation sampling theory, we find that our
algorithm involves roots finding of the 1st order differentiation
equation and a simple algorithm as in Table I, which is of
complexity O(t2c).

IV. SAMPLING WITH DISCRETE B-SPLINES

Differentiation is normally restricted to continuous signal.
B-spline has a distinctive merit to bridge discrete and continu-
ous domain such that this operation can be applied in discrete
domain [6]. This property of B-spline enables us to carry out
the differentiation process on digital processing machines.

Define the discrete B-spline bn
m(k)

bn
m(k) := βn(k/m) |k| ≤ m(n + 1) (22)

the B-spline coefficient g[k] of a signal f(t) can be obtained
from direct transform

g[k] = (bn
1 )−1 ∗ f [k] f [k] = f(t)|t=k, k ∈ Z (23)

Since the B-splines are not Nyquist function except for n = 1,
the g[k] �= f [k]; the second condition of consistent sampling
should be adjusted. Define the dual operator of βn(t) to be
β̃n(t), the second condition is restated as

∀m, cm = y(t) ∗ β̃n(t − tm) ∀n, dn = y(t) ∗ β̃n(t − tn)

Proposition 2: Consider a sequence of pulses given by (3).
Resample it at t = nT, n = 0, 1, · · · 2K using βn as interpo-
lating kernel. Then the regular samples yT [n] = f̂(t)δ(t−nT )
is sufficient to localize the pulses in x(t) where f̂ is defined
in (14).

We have proved that the continuous representation f̂(t)
contains sufficient information to extract tk. Here, we only
need to show that the regular samples yT [n] is differentiable
and contains sufficient information to reconstruct tk.

proof: From (14),

yT [m] = f̂(t)δ(t − nT ) =
K−1∑
k=0

ckβn(mT − tk) (24)

Similar to the procedure used in continuous domain, we differ-
entiate the discrete yT [n] using the differentiability of discrete
B-splines. The sequence yT [n] is transformed to obtain its B-
spline coefficient, followed by two discrete filters to obtain its
differentiation [6]. The system is shown in Figure 1.

The shifted B-spline Cn
1 is defined by cn

m(k) = βn(k/m +
1/2). This ensures the z transform of cn

1 (k) would have a
common term (1+z)

2 [6]. We denote

Cn
1 (z) =

1 + z

2
Cn(z) (25)

)(tx
)(tn )(ˆ tf

n

nTt )(

][nyT
1

1 )(zBn 11 z )(1
1 zC n ][mg

Fig. 1. Differentiate a discrete sequence using B-spline, the exact meaning
of each symbol can be found in Section IV.

Let the z transform of yT [m] be YT (z), following the steps
as shown in Figure 1, we have:

YT (z) z→
∑
m

∑
k

ckβn(mT − tk)z−m (26)

(bn
1 )−1(k) z→ z[n/2]

bn
1 ([n/2])

∏[n/2]
i=1 (z − zi)(z − z−1

i )
(27)

where {(zi, z
−1
i )} are roots of Bn

1 (z), the first differentiation
result of the sequence yT [n] in B-spline is given by g[m] where

G(z) = YT (z) · (1 − z−1) · Cn−1
1 (z)

=
∑

m

∑
k ckβn(t − mT − tk)z−[n

2 ]

2b2
1([n/2])

∏[n/2]
i=1 (z − zi)(z − z−1

i )
·(1 − z−1)(1 + z)Cn−1(z) (28)

Set G(z) = 0 and return to time domain, we have for

∀m,
∑

k

ckβn [t − (m + 1)T − tk]

=
∑

k

ckβn [t − (m − 1)T − tk] (29)

Comparing the equation with (15), we confirm it can be solved
using the same technique for (15). To conclude, the regular
samples yT [n] contains all information needed to reconstruct
x(t).

V. EXAMPLES

We demonstrate with examples in both continuous and
discrete domain. Since the major problem is to localize the
pulses, we normalize all coefficients to 1.

Example 1: Consider a sequence of six pulses with no noise
component as shown in Figure 2. This examples shows all
possible positions between neighboring shifts of the underly-
ing kernel β3(mt) with m = 1. Our algorithm in Table. I
returns the exact position of tk.

Example 2: The stream of pulses is resampled using in-
terpolating kernel β2(t), the simplest B-spline which is first
order differentiable. Let a sequence of pulses consist of eight
distinctive pulses in a period of 128. The locations of the
pulses are stated in Table II. The sequence is not restricted to
periodic sequence. The sequence is resampled to yT [n], n =
0, 1 · · · , N−1 where N = 2∗8 = 16 samples is collected. The
z transform is calculated using FFT where N = 128 and set
z = eiω . Then the sequence is differentiate in B-spline domain
following the steps (26) to (28). The results are stored in Table
III. Passing the sequence of g[m] through the algorithm in
Figure I, and return the values of m. Our estimated answers
are shown in the last row of Table II which are correct.
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Fig. 2. Stream of Diracs of six pulses at k1 to k6. The roots of f ′(t) ranges
from m1 to m15. The vertical axis denotes the amplitude of the pulses, which
is trivial in this example. The horizontal axis denotes the arriving time of the
pulses

TABLE II

THE DESIRED AND THE ESTIMATED VALUES OF tk .

t1 t2 t3 t4 t5 t6 t7 t8

original 9 15 19 32 57 62 82 105

estimated 9 15 19 32 57 62 82 105

VI. CONCLUSION

In this paper, we propose a novel method to demodulate
the PPM pulses by treating it as a non-uniformly sampled se-
quence. We prove that the pulses can always be reconstructed
from its consistent resampled sequence given the implicitly
used interpolating kernel in resampling is not singular. There-
fore the resampling process is reversible, and the information
contained in the pulses can be reserved and passed to the

TABLE III

VALUE OF G(z). 0 AND x STAND FOR ZERO AND NONZERO VALUES OF

G(z) RESPECTIVELY.

m G(z)

9 − 16 0 x x x 0 0 0 x

17 − 24 x x 0 x x x 0 0

29 − 36 0 0 0 0 x x x 0

57 − 64 0 x x x 0 0 x x

65 − 72 x 0 0 0 0 0 0 0

81 − 88 0 0 x x x 0 0 0

105 − 112 0 x x x 0 0 0 0

resampled sequence. Our next task is to design an algo-
rithm that can be used to extract the information out from
the resampled sequences. We design an algorithm suitable
for reconstructing pulses using B-spline in both continuous
and discrete domain. We show that our algorithm not only
demodulate the PPM pulses accurately, but outperform the
innovation sampling theory in terms of computational com-
plexity. Future works can be done to develop guidelines to
find an interpolating kernel such that the number of samples
needed to reconstruct the pulses is minimum, as well as an
algorithm that is robust to noise.
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