
The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

IMPLEMENTATION OF LOW POWER AND HIGH-SPEED HIGHER ORDER
CHANNEL FILTERS FOR SOFTWARE RADIO RECEIVERS

A. P. Vinod+, E. M-K. Lai* and S. Emmanuel@

School of Computer Engineering, Nanyang Technological University
Singapore 639798

Email: {asvinod+, asmklai*, asemmanuel@}@ntu.edu.sg

 ABSTRACT
The most computationally intensive part of the wideband
receiver of a software defined radio (SDR) is the channel-
izer since it operates at the highest sampling rate. Higher
order FIR channel filters are needed in the channelizer to
meet the stringent adjacent channel attenuation specifica-
tions of wireless communications standards. In this paper,
we present a coefficient-partitioning algorithm for realiz-
ing low power and high-speed channel filters. Design ex-
amples of the channel filters employed in the Digital Ad-
vanced Mobile Phone System (D-AMPS) and Personal
Digital Cellular (PDC) receivers show that the average
reductions of memory and power consumption achieved
using our method over existing method are 25% and 50%
respectively.

I. INTRODUCTION

The use of SDR technology is predicted to replace many
of the traditional methods of implementing transmitters
and receivers while offering a wide range of advantages
including adaptability, reconfigurability, and multifunc-
tionality encompassing modes of operation, radio fre-
quency bands, air interfaces, and waveforms [1]. The most
computationally intensive part of the digital front-end of
an SDR receiver is the channelizer since it operates at the
highest sampling rate [2]. Channelization in SDR receiv-
ers involves the extraction of multiple narrowband chan-
nels from a wideband signal using several bandpass filters
called channel filters [3]. The channel filter must have
very narrow transition band and considerable stopband
attenuation to meet the stringent adjacent channel attenua-
tion requirements of wireless communications standards.
Therefore, FIR filters with large number of taps (typically
200 to 1200 taps) are employed in the channelizer. Fur-
thermore, the channel filters must have low power con-
sumption and high-speed [4]. The key functional units in a
digital filter are delay, adder, and multiplier – out of
which multiplier dominates the hardware complexity. The
complexity of the FIR multiplier is dominated by the
number of adders (subtractors) employed in the coefficient
multipliers. Among the approaches for reducing the num-
ber of adders in the multipliers of FIR filters, the common
subexpression elimination (CSE) techniques in [5, 6] pro-
duced the best hardware reduction since it deals with mul-
tiplication of one variable (input signal) with several con-
stants (coefficients). However, the CSE methods in [5, 6]
have not addressed the issue of minimizing the complexity
of each adder of the multiplier, which is significant in low

power and high-speed implementations. Moreover, most
of the FIR filter optimization methods proposed in litera-
ture addressed lower order filters (less than 300 taps) and
no attempt was given to realize filters with very large
number of taps (up to 1200 taps). In our recent work [7],
we have analyzed the complexity of implementation of
FIR filters in terms of the number of full adders (FAs)
required for each multiplier. A method for optimizing the
CSE method in [5] to implement higher order channel
filters for wideband receivers with less complexity was
also proposed in [7]. This technique is based on the exten-
sion of conventional two-nonzero bit (2-bit) common
subexpressions (CS) in [5] to form three-nonzero bit and
four-nonzero bit super-subexpressions (called 3-bit and 4-
bit SS, respectively) by exploiting identical shifts between
a 2-bit bit CS and a third nonzero bit, or between two 2-bit
CS. Since employing SS reduces the number of adders,
the number of FAs is also reduced correspondingly – this
is the basic approach adopted in [7]. The main limitation
of the method in [7] is its dependence on the statistical
distribution of shifts between the 2-bit CS in the canonic
signed digit (CSD) representations of FIR filter coeffi-
cients. Moreover, the routing complexity of the filters
designed using the method in [7] is higher than that of the
2-bit CSE techniques in [5] as the former method has
more number of subexpressions.
 In this paper, we show the implementation of higher
order channel filters for SDR receivers with minimum
multiplier complexity, memory and power consumption.
We combine three techniques: the coefficient-partitioning
algorithm, the pseudo floating-point representation and the
CSE, to reduce the complexity of channel filters. Our
method does not employ the super-subexpressions used in
[7] and hence it does not have the dependence on statisti-
cal distribution of shifts between the 2-bit CS.
 The paper is organized as follows. Section II provides a
brief review of FIR filter coefficient multiplier complex-
ity. In Section III, we present our coefficient-partitioning
method for realizing low power and high-speed channel
filters. In section IV, we illustrate the implementation of
channel filters for the D-AMPS and the PDC standards
using our CP technique and provide comparisons with the
CSE method. Section V provides our conclusions.

II. REVIEW OF FIR FILTER COMPLEXITY

The number of FAs needed to realize the adders used in
the multipliers determines the cost of the coefficient mul-
tiplier. For completeness, we provide a review of the com-

1-4244-0330-8/06/$20.00 c∨2006 IEEE

The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

plexity of multiplier block implementation in terms of the
number of FAs that we formulated in [7]. An adder that
adds two n-bit numbers requires at the most)1(+n FAs to
compute the sum. We assume that ripple carry adders
(RCAs) are used on account of its low power consump-
tion. The area, power, and speed of an adder depend on
the adder width,).1(+n Therefore, the number of FAs
required to implement the multipliers must be minimized.
Filter coefficients in CSD form with wordlengths up to
24-bits are considered for analyzing the adder complexity.
Since no adjacent bits in CSD are one’s, a 24-bit CSD
number can have a maximum of 12 nonzero bits and
hence at the most twelve nonzero operands could occur in
multiplication.

 Case I: Odd number of operands: The number of FAs,

,0N required to compute the output corresponding to a
coefficient with n operands can be determined using the
expression [7]:

++++++++++=)1()1()32()1()1(6534312 rrarrarNo
)1()63()32(97875 +++++ rarra)32()1(11910 ++++ rar

 (1)
where nr is the range (number of bits) of the nth operand
and sia are equal to zero except ,2−na which is 1.
Case II: Even number of operands: The number of FAs,

),(eN required to compute the output corresponding to a
coefficient with n operands is given by [7]:
 ++++++++=)63()()32()1(8

'
06042 rcrcrrNe

)63()(12
'

1101 +++ rcrc (2)

where




≠
=

≡
61

6for ,2
0 , n

n
c ,





≠
=

≡
61

6for ,5.1'
0 , n

n
c ,

101

10for ,2
1





≠
=

≡
, n

n
c and .

101
10for ,5.1'

1




≠
=

≡
, n

n
c

Note that (1) and (2) are same as in [7], except that we use
the notation nr here instead of ns and range is same as
span in [7]. Also, here we assume that addition of two n-
bit numbers requires at the most)1(+n FAs whereas the
assumption in [7] was n FAs (overflow case was ignored
in [7]).
 The computation of FAs using (1) and (2) can be illus-
trated through an example. Consider the implementation
of the filter tap, .0101010000101001.0=kh In direct im-
plementation, (i.e., the implementation using shifts and
adds and without CSE or any other multiplier optimization
techniques) the output of the filter tap is

1

16
1

14
1

12
1

10
1

7
1

5

22

2222

xx

xxxxyk
−−

−−−−

+

++++=
 (3)

In this case, n is 6 (even), ,2r ,4r and 6r are 15, 20 and
24 respectively. Using (2) the total number of FA’s re-
quired to compute (3) in direct method is

)5.1(2)32()1(642 +++++ rrr i.e110 FAs.

 The goal of the CSE technique [5] is to identify multiple
occurrences of identical bit patterns that are present in the
coefficient set. The pattern [1 0 1] is present thrice, which
can be expressed as a common subexpression (CS):
 2112 >>+= xxx (4)
where ‘>>’ represents shift right operation. (The notation

ax >> represents)..2 xa− Using the CS given by (4), the
output of the filter can be expressed as
 14105 222 >>+>>+>>= xxxyk (5)
The numbers of operands (n) in (4) and (5) are 2 and 3
respectively. Therefore, it requires 11)1(2 =+r FAs for
computing (4) and 482622)1()1(32 =+=+++ rr FAs
for (5) as shown alongside the adders ,1A 2A and 3A in
Fig. 1. The numerals adjacent to the data path represent
the number of bitwise right shifts and the numerals in
brackets alongside the adders indicate the number of FAs
used in the adder.

 The number of FAs required for computing ky in CSE
implementation is the sum of FAs required for the adders

,1A 2A and ,3A which is 59. Thus, the CSE implementa-
tion offers 46% reduction of FAs over the direct method
in this case. The critical path length (number of adder-
steps) of the multiplier realized using CSE method is 3,
which is same as that of direct method. Therefore both
methods have identical delay.

III. PROPOSED METHOD

The key idea in our approach is to reduce the ranges of
the operands so that the adder width can be reduced which
in turn minimizes the number of FAs. In this section, we
show that by encoding the filter coefficients using the
pseudo floating-point (PFP) arithmetic scheme, the ranges
of the operands can be reduced considerably. Further, we
employ a coefficient-partitioning algorithm, which offers
substantial reduction of FAs in implementing the PFP-
coded coefficient multiplier when combined with the CSE
method.

⊕

2

ky

⊕ D

CS: 2112 >>+= xxx

⊕

5 10 14

⊕

A1 (11)

A2 (22)

A3 (26)

1x

Multiplier
Block

 Critical
path = 3
adder-steps

D

Figure 1. FIR filter tap implementation using CSE.

The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

A. Coefficient-Partitioning
The coefficient, ,0101010000101001.0=kh in the exam-
ple in Section II can be represented in PFP as

).222222(2 11975205 −−−−−− +++++ In this expres-

sion, the term 52− is the shift part (implying ‘right shift
by 5’), and the bracketed term is the span part. Note that
only 3 bits are needed for storing the shift value (CSD
representation of 5 is 101) and 11 bits for the span value
(bracketed term). Hence kh can be represented in PFP
using 14 bits, whereas its CSD representation requires 16
bits. The basic idea in this approach is to reduce the range
of the span part of PFP by partitioning it into two sub-
components, called sub-coefficients. We shall now show
that the FA requirement can be drastically reduced by
coding the sub-coefficients using PFP. We first express
each CSD coefficient using CS and the resulting expres-
sion is then coded using PFP representation. Let M repre-
sents the span of the PFP representation. The span part is
partitioned into two sub-components (sub-coefficients) of
length M/2 (or two sub-components of lengths  2/M
and  2/M if M is odd). The latter sub-component is
then scaled by its order (most significant bit) to reduce its
span. The ‘partitioned and scaled’ versions of the PFP
coefficients thus obtained can be added using fewer num-
bers of FAs since their ranges are reduced. Consider the
same example of the filter tap shown in Fig. 1. Using PFP,
the filter output obtained in CSE method (5) can be ex-
pressed as)22(2 2

9
2

5
2

5 xxx −−− ++ . In this case, the
span (M) is 9 and the shift is 5. Partitioning the span part
into two sub-coefficients,)(1 nh and),(2 nh we have

 21)(xnh = and 2
9

2
5

2 22)(xxnh −− += (6)
where)(nh is the sum of)(1 nh (MSB half) and)(2 nh
(LSB half). The LSB sub-coefficient is further scaled by
its order, ,2 5− and expressed as

)2(2)(2
4

2
5

2 xxnh −− += . Fig. 2 shows the implementa-
tion of the filter tap using our coefficient-partitioning
method (CPM).

If 1x is an 8-bit quantized signal, the ranges of the oper-
ands corresponding to the span part of)(2 nh are 11 and
15 and hence the adder 2A requires at the most 16 FAs.
Similarly, the ranges of the operands of 3A are 11 and 21.
Hence 3A require 22 FAs. Thus, when compared with the
direct implementation, the adders 2A and ,3A have
shorter widths since the ranges of their operands are
shorter. The shift 52− of)(2 nh and that of the final ex-

pression,),22(2 2
9

2
5

2
5 xxx −−− ++ are performed after

the addition stages as shown alongside the data paths at
the outputs of adders 2A and 3A respectively. Our coef-
ficient-partitioning method requires only 49 FAs to im-
plement the filter tap, which is a reduction of 17% com-
pared with conventional CSE implementation [5]. Even
though the critical path lengths of the multiplier obtained
using the CSE and our coefficient-partitioning methods
are identical (3 adder-steps), the latter method offers better
speed since the widths of the adders are less when com-
pared to CSE. The speedup achieved using our coeffi-
cient-partitioning method over the CSE is ,. FATm where
m is the difference in the number of FAs between the CSE
and coefficient-partitioning methods and FAT is the delay
of one FA in a RCA. Thus our method produces high-
speed FIR multipliers when compared to previous meth-
ods.

In our method, we combine coefficient-partitioning with
the CSE method to further minimize the multiplier com-
plexity. The steps involved in our method are as follows.

Step 1) Design the filter of length N according to the
desired specification.
Step 2) Obtain the CSD representation of the infinite-
precision coefficients for a desired wordlength. Set .0=k
Step 3) Identify the CS [1 0 1] and [1 0 –1] and their ne-
gated versions in)(kh . Express the filter output corre-
sponding to the coefficient)(kh using CS.
Step 4) Express the filter output corresponding to)(kh in
PFP. Set .spanM =
Step 5) Partition the span part into two sub-coefficients of
length 2/M (or lengths  2/M and  2/M if M is
odd). Scale the latter sub-coefficients by its order.
Step 6) Increment k. If ,Nk ≠ go to Step 3. Otherwise,
terminate the program.

B. Net Memory
Assume Smem represents the size in bits of memory needed
to read the stored input data and to write the current input
data. Then Smem for Ni input is [8]:
 ()dxcimem WWWNS −+= (7)
where Wc and Wx are the wordlengths of the coefficients
and the input data respectively, and Wd is the difference
between the coefficient word length represented in CSD
and the wordlength of the span part of the PFP-coded co-

Figure 2. Filter implementation using our CPM.

⊕

2

ky

⊕ D D

⊕
 4

5

⊕

A1 (11)

A2 (16)

A3 (22)

1x

Multiplier
Block

5

Critical path
= 3 adder-steps

The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

efficients after coefficient-partitioning. Our CPM reduces
the net memory since the number of bits required for the
span part is less than that of the CSD representation. Note
that the shift part can be stored using fewer number of bits
(For 24-bit coefficients, only 5 bits are required to store
the maximum shift value 2-24, since 24(10) is 11000(2).
Therefore, the total memory requirement of the span and
the shift parts in our CPM is less than that in the CSD
representation. We use (7) to compute the net memory
needed by the coefficient multipliers.

C. Net Energy Dissipated
The average net computational energy dissipated (power
consumed) per output sample, denoted by ENET, is used to
calculate the energy savings of our method. The number
of adds (nA) and shifts (nS) needed for multiplications is
given by (8) and (9) [8]:

)1).(1(
2
1 −−+= dcxA WWWn (8)

)1).((−−−+= dcdcxS WWWWWn (9)
Let Eadd is the average energy dissipated in a single bit full
addition, Eshift is the average energy dissipated per bit in a
single bit arithmetic shift of a field and Emem is the average
energy dissipated in a storage access per bit. Then the
average net multiplication energy dissipated, EMULT, and
the average net data and coefficients storage accesses en-
ergy, EMEM, are obtained using equations (10) and (11)
respectively [8].
)(shiftSaddAMULT EnEnNE += (10)

 memdxcMEM EWWWNE)(−+= (11)
The average net energy for accumulation of product terms,
EACC is [8]:
   addxcACC ENWWNE)log)(1(2++−= (12)
 The average net overhead storage accesses energy, E’

MEM
and the average net energy for overhead additions, E’

ADD
are given by [8]:
 memxcMEM EWWNE)(2' += (13)

 addxcADD EWWNE)(' += (14)
The average net computational energy per output, ENET is
given by [9]:

},{},,,{

 ,'

ADDMEMjACCMEMMULTi

EEE
j

j
i

iNET

∈∈

∑+∑=
 (15)

The numerical values for the various cost parameters (en-
ergy dissipated as switched capacitance for Eadd and Eshift
and delay value shτ) used in the calculation of ENET were
obtained from a characterized low power CMOS library
[9]. We use the two different addressable-type memory
models (square root and logarithmic) for storage for our
analysis as in [9]. The parameter Emem will be a function of
the size of the memory. A bigger address space results in
greater energy dissipated and delays in decoders and in
charging and discharging capacitances during each access.
In square root model, the cost will be proportional to the
square root of the size of the net memory re-

quired, MEMe SK 1 , whereas in logarithmic model, it will
be proportional to the logarithm of the size,

 )(log22 MEMe SK with 1eK and ,2eK the constants of
proportionality.

IV. DESIGN EXAMPLES

Example 1: The FIR filters employed in the channelizer of
the D-AMPS in [7] are considered here. The sampling rate
of the wideband signal chosen is 34.02 MHz as in [7]. The
pass-band and stop-band edges are 30 kHz and 30.5 kHz
respectively. The peak pass-band ripple specification is
0.1 dB. Channel filters with 260, 610, 940 and 1180 taps
are chosen to meet the peak stop-band ripple (PSR) speci-
fications of –48 dB, -65 dB, -85 dB and –96 dB at differ-
ent frequencies as in PDC standard. The percentage reduc-
tion of net memory (Smem) achieved using our CPM over
the CSE method [5] for 16-bit and 24-bit coefficient
wordlengths in designing FIR filters for DAPMS channel-
izer is shown in Fig. 3. The average reduction of Smem
offered by our CPM over the CSE method for the 24-bit
and 16-bit coefficients are 24% and 32% respectively. Fig.
4 shows the percentage energy savings achieved in de-
signing 260-tap and 1180-tap FIR filters (DAMPS) with
16-bit coefficient wordlength for the square root model. In
this case, the average net energy reductions achieved us-
ing CPM for the 260-tap and 1180-tap FIR filters are 40%
and 70% respectively. The energy reduction achieved us-
ing our CPM in designing these filters for the logarithmic
model is shown in Fig. 5. The average energy reductions
achieved using CPM over the CSE method for the 260-tap
and 1180-tap filters are 35% and 70% respectively.

Example 2: In this example, the channel filters em-
ployed in receivers for the PDC standard are implemented.
The sampling rate of the wideband signal is 25.6 MHz,
which covers 1024 channels of 25 kHz spacing. The peak
pass-band ripple specification is 0.1 dB. Channel filters
with 240, 590, 880 and 1000 taps are chosen to meet the
PSR specifications of –45 dB, -62 dB, -80 dB and –90 dB
at different frequencies as in PDC standard. Fig. 6 shows
the reduction of net memory over CSE method. The aver-
age reductions of memory offered by CPM for the 24-bit
and 16-bit coefficients are 26% and 33% respectively. The
energy savings achieved using CPM in designing 220-tap
and 1000-tap filters with 16-bit coefficient wordlength for
the square root model are shown in Fig. 7. In this case, the
average net energy reductions achieved using CPM for the
220-tap and 1000-tap FIR filters are 40% and 72% respec-
tively. These reductions are 35% and 69% respectively for
the logarithmic model.

V. CONCLUSIONS

We have proposed a coefficient-partitioning technique for
implementing low power channel filters. Even though we
use common subexpression technique for comparison, it
must be noted that our coefficient-partitioning algorithm
can also be applied to minimum-adder multipliers de-
signed using other hardware optimization methods. Our

The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

approach in this paper offers a more general solution for
multiplier complexity reduction.

200 300 400 500 600 700 800 900 1000 1100 1200
10

15

20

25

30

35

40

Filter length (N)

M
em

or
y

re
du

ct
io

n
(%

)

16 bits coefficient wordlength)
24 bits coefficient wordlength

Figure 3. Reduction of net memory over CSE [5]
in designing DAPMS channel filters using CPM.

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

Value of constant Ke2 (As Switched Capacitance)

N
et

 E
ne

rg
y

S
av

in
gs

 (
%

)

1180-tap
260-tap

Figure 5. Energy savings using CPM over CSE [5] in
designing DAMPS channel filters for logarithmic model.

0 1 2 3 4 5 6
30

40

50

60

70

80

90

Value of constant Ke1 (As Switched Capacitance)

N
et

 E
ne

rg
y

S
av

in
gs

 (
%

)

260-tap

1180-tap

Figure 4. Energy savings using CPM over CSE [5] in
designing DAMPS channel filters for square root model.

200 300 400 500 600 700 800 900 1000
20

22

24

26

28

30

32

34

36

38

Filter length (N)

M
e

m
o

ry
 re

du
ct

io
n

 (%
)

16 bits coefficient wordlength
24 bits coefficient wordlength

Figure 6. Reduction of net memory over CSE [5]
in designing PDC channel filters using CPM.

0 1 2 3 4 5 6
35

40

45

50

55

60

65

70

75

80

85

Value of constant Ke1 (As Switched Capacitance)

N
et

 E
ne

rg
y

S
av

in
gs

 (
%

)

220-tap
1000-tap

Figure 7. Energy savings using CPM over CSE [5] in
designing PDC channel filters for square root model.

REFERENCES

[1] W. Tuttlebee and H. W. Wally, Software Defined Radio: Ena-
bling Technologies. New York: Wiley, 2002.

[2] J. Mitola, Software Radio Architecture. New York: Wiley, 2000.
[3] T. Hentschel, “Channelization for software defined base-stations,”

Annales des Telecommunications, ISSN 0003-4347, vol. 57, pp.
386-420, no. 5-6, May/June 2002.

[4] D. B. Chester, “Digital IF filter technology for 3G systems: An
introduction,” IEEE Commun. Mag., vol. 37, no. 2, pp. 102-107,
February 1999.

[5] R. I. Hartley, “Subexpression sharing in filters using canonic
signed digit multipliers,” IEEE Trans. Circuits Syst. II, vol. 43,
pp. 677-688, Oct. 1996.

[6] M. M. Peiro, E. I. Boemo, and L. Wanhammar, “Design of high-
speed multiplierless filters using a nonrecursive signed common
subexpression algorithm,” IEEE Trans. Circuits Syst. II, vol. 49,
no. 3, pp. 196-203, March 2002.

[7] A. P. Vinod and E. M-K. Lai, “On the implementation of efficient
channel filters for wideband receivers by optimizing common
subexpression elimination methods,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 2, pp. 295-304, February 2005.

[8] N. Sankarayya, K. Roy and D. Bhattacharya, “Algorithms for low
power and high speed FIR filter realization using differential co-
efficients,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 487-497,
June 1997.

[9] T. Burd, “Low-power CMOS library design methodology,” M. S.
degree thesis, Univ. California, Berkeley, 1994.

