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                                    ABSTRACT 
The most computationally intensive part of the wideband 
receiver of a software defined radio (SDR) is the channel-
izer since it operates at the highest sampling rate. Higher 
order FIR channel filters are needed in the channelizer to 
meet the stringent adjacent channel attenuation specifica-
tions of wireless communications standards. In this paper, 
we present a coefficient-partitioning algorithm for realiz-
ing low power and high-speed channel filters. Design ex-
amples of the channel filters employed in the Digital Ad-
vanced Mobile Phone System (D-AMPS) and Personal 
Digital Cellular (PDC) receivers show that the average 
reductions of memory and power consumption achieved 
using our method over existing method are 25% and 50% 
respectively. 

I.   INTRODUCTION 

The use of SDR technology is predicted to replace many 
of the traditional methods of implementing transmitters 
and receivers while offering a wide range of advantages 
including adaptability, reconfigurability, and multifunc-
tionality encompassing modes of operation, radio fre-
quency bands, air interfaces, and waveforms [1]. The most 
computationally intensive part of the digital front-end of 
an SDR receiver is the channelizer since it operates at the 
highest sampling rate [2]. Channelization in SDR receiv-
ers involves the extraction of multiple narrowband chan-
nels from a wideband signal using several bandpass filters 
called channel filters [3]. The channel filter must have 
very narrow transition band and considerable stopband 
attenuation to meet the stringent adjacent channel attenua-
tion requirements of wireless communications standards. 
Therefore, FIR filters with large number of taps (typically 
200 to 1200 taps) are employed in the channelizer. Fur-
thermore, the channel filters must have low power con-
sumption and high-speed [4]. The key functional units in a 
digital filter are delay, adder, and multiplier – out of 
which multiplier dominates the hardware complexity. The 
complexity of the FIR multiplier is dominated by the 
number of adders (subtractors) employed in the coefficient 
multipliers. Among the approaches for reducing the num-
ber of adders in the multipliers of FIR filters, the common 
subexpression elimination (CSE) techniques in [5, 6] pro-
duced the best hardware reduction since it deals with mul-
tiplication of one variable (input signal) with several con-
stants (coefficients). However, the CSE methods in [5, 6] 
have not addressed the issue of minimizing the complexity 
of each adder of the multiplier, which is significant in low 

power and high-speed implementations. Moreover, most 
of the FIR filter optimization methods proposed in litera-
ture addressed lower order filters (less than 300 taps) and 
no attempt was given to realize filters with very large 
number of taps (up to 1200 taps). In our recent work [7], 
we have analyzed the complexity of implementation of 
FIR filters in terms of the number of full adders (FAs) 
required for each multiplier. A method for optimizing the 
CSE method in [5] to implement higher order channel 
filters for wideband receivers with less complexity was 
also proposed in [7]. This technique is based on the exten-
sion of conventional two-nonzero bit (2-bit) common 
subexpressions (CS) in [5] to form three-nonzero bit and 
four-nonzero bit super-subexpressions (called 3-bit and 4-
bit SS, respectively) by exploiting identical shifts between 
a 2-bit bit CS and a third nonzero bit, or between two 2-bit 
CS. Since employing SS reduces the number of adders, 
the number of FAs is also reduced correspondingly – this 
is the basic approach adopted in [7]. The main limitation 
of the method in [7] is its dependence on the statistical 
distribution of shifts between the 2-bit CS in the canonic 
signed digit (CSD) representations of FIR filter coeffi-
cients. Moreover, the routing complexity of the filters 
designed using the method in [7] is higher than that of the 
2-bit CSE techniques in [5] as the former method has 
more number of subexpressions.  
   In this paper, we show the implementation of higher 
order channel filters for SDR receivers with minimum 
multiplier complexity, memory and power consumption. 
We combine three techniques: the coefficient-partitioning 
algorithm, the pseudo floating-point representation and the 
CSE, to reduce the complexity of channel filters. Our 
method does not employ the super-subexpressions used in 
[7] and hence it does not have the dependence on statisti-
cal distribution of shifts between the 2-bit CS. 
   The paper is organized as follows. Section II provides a 
brief review of FIR filter coefficient multiplier complex-
ity. In Section III, we present our coefficient-partitioning 
method for realizing low power and high-speed channel 
filters. In section IV, we illustrate the implementation of 
channel filters for the D-AMPS and the PDC standards 
using our CP technique and provide comparisons with the 
CSE method. Section V provides our conclusions. 

II.  REVIEW OF FIR FILTER COMPLEXITY 

The number of FAs needed to realize the adders used in 
the multipliers determines the cost of the coefficient mul-
tiplier. For completeness, we provide a review of the com-

1-4244-0330-8/06/$20.00 c∨2006 IEEE 



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06) 

plexity of multiplier block implementation in terms of the 
number of FAs that we formulated in [7]. An adder that 
adds two n-bit numbers requires at the most )1( +n  FAs to 
compute the sum. We assume that ripple carry adders 
(RCAs) are used on account of its low power consump-
tion. The area, power, and speed of an adder depend on 
the adder width, ).1( +n  Therefore, the number of FAs 
required to implement the multipliers must be minimized. 
Filter coefficients in CSD form with wordlengths up to 
24-bits are considered for analyzing the adder complexity. 
Since no adjacent bits in CSD are one’s, a 24-bit CSD 
number can have a maximum of 12 nonzero bits and 
hence at the most twelve nonzero operands could occur in 
multiplication.  
 
  Case I: Odd number of operands: The number of FAs, 

,0N  required to compute the output corresponding to a 
coefficient with n operands can be determined using the 
expression [7]: 

++++++++++= )1()1()32()1()1( 6534312 rrarrarNo  
)1()63()32( 97875 +++++ rarra )32()1( 11910 ++++ rar  

                                                                                         (1) 
where nr  is the range (number of bits) of the nth operand 
and sia  are equal to zero except ,2−na  which is 1. 
Case II: Even number of operands: The number of FAs, 

),( eN  required to compute the output corresponding to a 
coefficient with n operands is given by [7]: 
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Note that (1) and (2) are same as in [7], except that we use 
the notation nr  here instead of ns  and range is same as 
span in [7]. Also, here we assume that addition of two n-
bit numbers requires at the most )1( +n  FAs whereas the 
assumption in [7] was n FAs (overflow case was ignored 
in [7]). 
  The computation of FAs using (1) and (2) can be illus-
trated through an example. Consider the implementation 
of the filter tap, .0101010000101001.0=kh  In direct im-
plementation, (i.e., the implementation using shifts and 
adds and without CSE or any other multiplier optimization 
techniques) the output of the filter tap is 
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In this case, n is 6 (even), ,2r  ,4r  and 6r  are 15, 20 and 
24 respectively. Using (2) the total number of FA’s re-
quired to compute (3) in direct method is 

)5.1(2)32()1( 642 +++++ rrr  i.e110 FAs.  

  The goal of the CSE technique [5] is to identify multiple 
occurrences of identical bit patterns that are present in the 
coefficient set. The pattern [1 0 1] is present thrice, which 
can be expressed as a common subexpression (CS): 
                               2112 >>+= xxx                               (4)                       
where ‘>>’ represents shift right operation. (The notation 

ax >>  represents )..2 xa−  Using the CS given by (4), the 
output of the filter can be expressed as                                                
                    14105 222 >>+>>+>>= xxxyk             (5) 
The numbers of operands (n) in (4) and (5) are 2 and 3 
respectively. Therefore, it requires 11)1( 2 =+r  FAs for 
computing (4) and 482622)1()1( 32 =+=+++ rr  FAs 
for (5) as shown alongside the adders ,1A  2A  and 3A  in 
Fig. 1. The numerals adjacent to the data path represent 
the number of bitwise right shifts and the numerals in 
brackets alongside the adders indicate the number of FAs 
used in the adder.  
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
   The number of FAs required for computing ky  in CSE 
implementation is the sum of FAs required for the adders 

,1A  2A  and ,3A  which is 59. Thus, the CSE implementa-
tion offers 46% reduction of FAs over the direct method 
in this case. The critical path length (number of adder-
steps) of the multiplier realized using CSE method is 3, 
which is same as that of direct method. Therefore both 
methods have identical delay. 

III. PROPOSED METHOD 

The key idea in our approach is to reduce the ranges of 
the operands so that the adder width can be reduced which 
in turn minimizes the number of FAs. In this section, we 
show that by encoding the filter coefficients using the 
pseudo floating-point (PFP) arithmetic scheme, the ranges 
of the operands can be reduced considerably. Further, we 
employ a coefficient-partitioning algorithm, which offers 
substantial reduction of FAs in implementing the PFP-
coded coefficient multiplier when combined with the CSE 
method.  
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Figure 1. FIR filter tap implementation using CSE. 
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A. Coefficient-Partitioning   
The coefficient, ,0101010000101001.0=kh in the exam-
ple in Section II can be represented in PFP as 

).222222(2 11975205 −−−−−− +++++  In this expres-

sion, the term 52−  is the shift part (implying ‘right shift 
by 5’), and the bracketed term is the span part. Note that 
only 3 bits are needed for storing the shift value (CSD 
representation of 5 is 101) and 11 bits for the span value 
(bracketed term). Hence kh  can be represented in PFP 
using 14 bits, whereas its CSD representation requires 16 
bits. The basic idea in this approach is to reduce the range 
of the span part of PFP by partitioning it into two sub-
components, called sub-coefficients. We shall now show 
that the FA requirement can be drastically reduced by 
coding the sub-coefficients using PFP. We first express 
each CSD coefficient using CS and the resulting expres-
sion is then coded using PFP representation. Let M repre-
sents the span of the PFP representation. The span part is 
partitioned into two sub-components (sub-coefficients) of 
length M/2 (or two sub-components of lengths  2/M  
and  2/M  if M  is odd). The latter sub-component is 
then scaled by its order (most significant bit) to reduce its 
span. The ‘partitioned and scaled’ versions of the PFP 
coefficients thus obtained can be added using fewer num-
bers of FAs since their ranges are reduced. Consider the 
same example of the filter tap shown in Fig. 1. Using PFP, 
the filter output obtained in CSE method (5) can be ex-
pressed as )22(2 2

9
2

5
2

5 xxx −−− ++ . In this case, the 
span (M) is 9 and the shift is 5. Partitioning the span part 
into two sub-coefficients, )(1 nh  and ),(2 nh  we have  

           21 )( xnh =  and 2
9

2
5

2 22)( xxnh −− +=                (6) 
where )(nh  is the sum of )(1 nh  (MSB half) and )(2 nh  
(LSB half). The LSB sub-coefficient is further scaled by 
its order, ,2 5−  and expressed as 

)2(2)( 2
4

2
5

2 xxnh −− += . Fig. 2 shows the implementa-
tion of the filter tap using our coefficient-partitioning 
method (CPM).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If 1x  is an 8-bit quantized signal, the ranges of the oper-
ands corresponding to the span part of )(2 nh  are 11 and 
15 and hence the adder 2A  requires at the most 16 FAs. 
Similarly, the ranges of the operands of 3A  are 11 and 21. 
Hence 3A  require 22 FAs. Thus, when compared with the 
direct implementation, the adders 2A  and ,3A  have 
shorter widths since the ranges of their operands are 
shorter. The shift 52−  of )(2 nh  and that of the final ex-

pression, ),22(2 2
9

2
5

2
5 xxx −−− ++  are performed after 

the addition stages as shown alongside the data paths at 
the outputs of adders 2A  and 3A  respectively. Our coef-
ficient-partitioning method requires only 49 FAs to im-
plement the filter tap, which is a reduction of 17% com-
pared with conventional CSE implementation [5]. Even 
though the critical path lengths of the multiplier obtained 
using the CSE and our coefficient-partitioning methods 
are identical (3 adder-steps), the latter method offers better 
speed since the widths of the adders are less when com-
pared to CSE. The speedup achieved using our coeffi-
cient-partitioning method over the CSE is ,. FATm  where 
m is the difference in the number of FAs between the CSE 
and coefficient-partitioning methods and FAT  is the delay 
of one FA in a RCA. Thus our method produces high-
speed FIR multipliers when compared to previous meth-
ods.                           

In our method, we combine coefficient-partitioning with 
the CSE method to further minimize the multiplier com-
plexity. The steps involved in our method are as follows. 

 
Step 1) Design the filter of length N according to the 
desired specification. 
Step 2) Obtain the CSD representation of the infinite-
precision coefficients for a desired wordlength. Set .0=k  
Step 3) Identify the CS [1 0 1] and [1 0 –1] and their ne-
gated versions in )(kh . Express the filter output corre-
sponding to the coefficient )(kh  using CS. 
Step 4) Express the filter output corresponding to )(kh  in 
PFP. Set .spanM =  
Step 5) Partition the span part into two sub-coefficients of 
length 2/M  (or lengths  2/M  and  2/M  if M  is 
odd). Scale the latter sub-coefficients by its order. 
Step 6) Increment k. If ,Nk ≠  go to Step 3. Otherwise, 
terminate the program. 

B. Net Memory 
Assume Smem represents the size in bits of memory needed 
to read the stored input data and to write the current input 
data. Then Smem for Ni input is [8]:  
                          ( )dxcimem WWWNS −+=                    (7)                        
where Wc and Wx are the wordlengths of the coefficients 
and the input data respectively, and Wd is the difference 
between the coefficient word length represented in CSD 
and the wordlength of the span part of the PFP-coded co-

Figure 2. Filter implementation using our CPM. 
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efficients after coefficient-partitioning. Our CPM reduces 
the net memory since the number of bits required for the 
span part is less than that of the CSD representation. Note 
that the shift part can be stored using fewer number of bits 
(For 24-bit coefficients, only 5 bits are required to store 
the maximum shift value 2-24, since 24(10) is 11000(2). 
Therefore, the total memory requirement of the span and 
the shift parts in our CPM is less than that in the CSD 
representation. We use (7) to compute the net memory 
needed by the coefficient multipliers. 

C. Net Energy Dissipated 
The average net computational energy dissipated (power 
consumed) per output sample, denoted by ENET, is used to 
calculate the energy savings of our method. The number 
of adds (nA) and shifts (nS) needed for multiplications is 
given by (8) and (9) [8]:   

                       )1).(1(
2
1 −−+= dcxA WWWn                  (8)                                                                                                                       

                   )1).(( −−−+= dcdcxS WWWWWn             (9)                                                    
Let Eadd is the average energy dissipated in a single bit full 
addition, Eshift is the average energy dissipated per bit in a 
single bit arithmetic shift of a field and Emem is the average 
energy dissipated in a storage access per bit. Then the 
average net multiplication energy dissipated, EMULT, and 
the average net data and coefficients storage accesses en-
ergy, EMEM, are obtained using equations (10) and (11) 
respectively [8].                                                 
                       )( shiftSaddAMULT EnEnNE +=            (10)                                                                                                             

                       memdxcMEM EWWWNE )( −+=           (11)                                                                     
The average net energy for accumulation of product terms, 
EACC is [8]:                                               
               addxcACC ENWWNE )log)(1( 2++−=      (12)                                                      
 The average net overhead storage accesses energy, E’

MEM 
and the average net energy for overhead additions, E’

ADD 
are given by [8]:                                                       
                   memxcMEM EWWNE )(2' +=                     (13)                                           

                    addxcADD EWWNE )(' +=                        (14)                                           
The average net computational energy per output, ENET is 
given by [9]: 
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The numerical values for the various cost parameters (en-
ergy dissipated as switched capacitance for Eadd and Eshift 
and delay value shτ ) used in the calculation of ENET were 
obtained from a characterized low power CMOS library 
[9]. We use the two different addressable-type memory 
models (square root and logarithmic) for storage for our 
analysis as in [9]. The parameter Emem will be a function of 
the size of the memory. A bigger address space results in 
greater energy dissipated and delays in decoders and in 
charging and discharging capacitances during each access. 
In square root model, the cost will be proportional to the 
square root of the size of the net memory re-

quired, MEMe SK 1 , whereas in logarithmic model, it will 
be proportional to the logarithm of the size, 

 )(log22 MEMe SK  with 1eK  and ,2eK  the constants of 
proportionality. 

IV. DESIGN EXAMPLES 

Example 1: The FIR filters employed in the channelizer of 
the D-AMPS in [7] are considered here. The sampling rate 
of the wideband signal chosen is 34.02 MHz as in [7]. The 
pass-band and stop-band edges are 30 kHz and 30.5 kHz 
respectively. The peak pass-band ripple specification is 
0.1 dB. Channel filters with 260, 610, 940 and 1180 taps 
are chosen to meet the peak stop-band ripple (PSR) speci-
fications of –48 dB, -65 dB, -85 dB and –96 dB at differ-
ent frequencies as in PDC standard. The percentage reduc-
tion of net memory (Smem) achieved using our CPM over 
the CSE method [5] for 16-bit and 24-bit coefficient 
wordlengths in designing FIR filters for DAPMS channel-
izer is shown in Fig. 3. The average reduction of  Smem 
offered by our CPM over the CSE method for the 24-bit 
and 16-bit coefficients are 24% and 32% respectively. Fig. 
4 shows the percentage energy savings achieved in de-
signing 260-tap and 1180-tap FIR filters (DAMPS) with 
16-bit coefficient wordlength for the square root model. In 
this case, the average net energy reductions achieved us-
ing CPM for the 260-tap and 1180-tap FIR filters are 40% 
and 70% respectively. The energy reduction achieved us-
ing our CPM in designing these filters for the logarithmic 
model is shown in Fig. 5. The average energy reductions 
achieved using CPM over the CSE method for the 260-tap 
and 1180-tap filters are 35% and 70% respectively.  

Example 2: In this example, the channel filters em-
ployed in receivers for the PDC standard are implemented. 
The sampling rate of the wideband signal is 25.6 MHz, 
which covers 1024 channels of 25 kHz spacing. The peak 
pass-band ripple specification is 0.1 dB. Channel filters 
with 240, 590, 880 and 1000 taps are chosen to meet the 
PSR specifications of –45 dB, -62 dB, -80 dB and –90 dB 
at different frequencies as in PDC standard. Fig. 6 shows 
the reduction of net memory over CSE method. The aver-
age reductions of memory offered by CPM for the 24-bit 
and 16-bit coefficients are 26% and 33% respectively. The 
energy savings achieved using CPM in designing 220-tap 
and 1000-tap filters with 16-bit coefficient wordlength for 
the square root model are shown in Fig. 7. In this case, the 
average net energy reductions achieved using CPM for the 
220-tap and 1000-tap FIR filters are 40% and 72% respec-
tively. These reductions are 35% and 69% respectively for 
the logarithmic model. 

V. CONCLUSIONS 

We have proposed a coefficient-partitioning technique for 
implementing low power channel filters. Even though we 
use common subexpression technique for comparison, it 
must be noted that our coefficient-partitioning algorithm 
can also be applied to minimum-adder multipliers de-
signed using other hardware optimization methods. Our 
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approach in this paper offers a more general solution for 
multiplier complexity reduction.  
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