
A Branch and Bound Algorithm for Fast
Power-Aware Scheduling of VLIW Instructions

Shu Xiao and Edmund M-K. Lai
School of Computer Engineering, Nanyang Technological University, Singapore 639798

Email: shux@pmail.ntu.edu.sg, asmklai@ntu.edu.sg

Abstract— An instruction word in VLIW (very long instruction
word) processors consists of a variable number of individual
instructions. Therefore the power consumption variation over
time significantly depends on the parallel instruction sched-
ule generated by the compiler. Sharp power variations across
time cause power supply noises, degrade chip reliability and
accelerate battery exhaustion. Hence power variation reduction
without compromising execution speed is an important instruc-
tion scheduling constraint in embedded VLIW systems. The
instruction scheduling problem is generally known to be NP-
complete and in need of an effective and efficient algorithm to
solve it. This paper proposes a branch and bound algorithm
for instruction scheduling of VLIW architectures that effectively
minimizing power variation without degrading the speed. The
problem is solved by a branch and bound algorithm by adaptively
adding problem-specific constraints (cuts) and applying a tight
lower bound. Our experimental results demonstrate the ability of
our algorithm for efficiently minimizing time variation of power
consumption.

I. I NTRODUCTION

Multimedia processing software typically exhibit high
instruction-level parallelism (ILP). A single instruction word
of VLIW (very long instruction word) processors contains
a variable number of individual instructions which are ex-
ecuted on different functional units in parallel. Therefore,
VLIW processors provide a means to efficiently exploit ILP
because of their parallel processing power. The instruction
scheduling techniques used by VLIW compilers are thus
essential to improve the execution speed. However, depending
on the parallel schedule generated by the compiler, power
consumption variation over time can also be significantly
different. TMS320C6711 from Texas Instrument is an 8-issue
VLIW processor. Data in Appendix I quoted from [1] shows
the impact of instruction scheduling on power variation of
TMS320C6711 processor core. Since sharp power variations
across time steps cause power supply noises, degrade chip
reliability and accelerate battery exhaustion [2], [3], power
variation reduction without compromising execution speed
becomes an important instruction scheduling constraint in
embedded VLIW systems. This approach is motivated by
the observation that a large number of instructions in the
parallel schedules have schedule slacks [4], i.e., each of these
instructions can be scheduled in one of the many time steps
without degrading the performance of the schedule. Thus it is
possible to change the issue of certain non-critical instructions
and obtain a schedule with balanced power consumption
without performance degradation.

Some instruction scheduling algorithms for ILP processor
have been proposed. However, most of them produce schedules
that meet deadline constraints. Published works on instruction
scheduling of ILP processors for power variation minimization
are still relatively few. Among them, Yun [5] extended iterative
modulo scheduling by adding a heuristic for power-aware
scheduling of VLIW processor cores. Yang [4] proposed a
mixed integer programming formulation to derive the optimal
schedules. In contrast with the heuristic in [5], the integer
programming formulation has the potential to derive optimal
results and it can be used to evaluate any heuristic algorithm.
Yang [4] used a commercial library (ILOG CPLEX) to obtain
the solutions. The experimental results and examples in [4]
did motivate power variation reduction over time in VLIW
architecture. However, no specific information about the com-
putation time was provided. In our experiments for replicating
their approach, we found that due to the lack of problem-
specific information, the average time used by CPLEX90 to
solve the mixed integer problem is quite unacceptable for ILP
compilers.

In this paper, the mixed integer program is also used to
formulate the problem. However, we propose a branch and
bound algorithm to efficiently solve this problem of scheduling
of VLIW instructions without compromising the speed. The
algorithm adaptively adds problem-specific constraints (cuts)
and applies a tight and fast lower bound algorithm to guide
the search for the optimal solution. The algorithm is evaluated
on instruction blocks of various sizes. The results show our
algorithm gets the same optimized power variation values
while an average improvement in required computation time
of 68.62% compared with CPLEX90 as [4].

The rest of this paper is organized as follows. In Section II
we present our mixed integer programming formulation of the
problem. A customized branch and bound algorithm is devel-
oped in Section III to solve the problem. The effectiveness
and efficiency of the algorithm is evaluated and the results are
presented in Section IV.

II. PROBLEM FORMULATION

A. Power Model

VLIW processors use very long instruction words to execute
multiple instructions simultaneously on seperate functional
units (see Fig. 1). Each instruction takes different amount of
time to execute. We divide the time line into equal length
time slots. A power costpj

i is associated with each instruction

Fig. 1. A simplified model of a VLIW processor core.

i which represents the power consumed by this instruction in
the j-th time slot.

Given a program execution scheduleN , let Ni represents
the very long instruction word executed at thei-th time slot of
N . Let nj be an instruction inNi. Then power consumption
at the i-th time slotP i is the sum of power consumed by all
the executing instructions, either started in this time slot or
before is given by

P i =
∑

0≤k<i

∑

nj∈Ni−k

pk
nj

(1)

wherek is an integer.
Note that the proposed branch and bound algorithm can be

easily extended to work with more accurate power estimation
models, because the proposed algorithm does not depend on
a particular power estimation technique.

B. Notations

The following notations will be used:

• N is the set ofn target instructions to be scheduled.
• T is the set oft time slots, wheret is the performance

deadline.

• xk
i =

{
1, if instruction i is allocated to time slot k
0, otherwise.

• X is the set ofn variablesxk
i , which equal to1.

• U is the set ofu functional unit types.
• cj is the number of functional units of typej.

• aj
i =





1, if instruction i corresponds to
functional unit type j

0, otherwise
• E is the set ofv dependency pairs< l,m >, where

instruction m depends on instruction l.
• Di is the number of the execution stages of instructioni.
• P k is the total power consumption in time slotk.

• M is the average power consumption over all thet time
slots.

For the sake of simplicity we introduce the function

ε(x) =
{

1 if x ≥ 1
0 otherwise

(2)

wherex is an integer.

C. Mixed Integer Program

According to the power estimation formula (1), power con-
sumption at each time slot and the average power consumption
can be computed by

M =

(
t∑

k=1

P k

)
/t (3)

where

P k =
min(Dmax−1,k−1)∑

f=0

n∑

i=1

xk−f
i ε(Di − f)pf

i (4)

and Dmax = max
∀i∈N

(Di). Then, the power deviation at any

given time slotk is computed as

PV k(P k) = |P k −M | (5)

with the total deviation given by

PV (X) =
t∑

k=1

PV k(P k) (6)

The optimization problem of instruction scheduling of
VLIW architectures for balanced power consumption can be
formulated as a mixed integer programP1 with objective
function (7) and constraints (8)-(13).

min PV (X) (7)

Fig. 2. A data dependence graph for instructions in Example 3.1

subject to
X = ∪

i,k:xk
i
=1
{xk

i } (8)

xk
i ∈ {0, 1} for each i = 1, ..., n; k = 1, ..., t (9)

t∑

k=1

xk
i = 1 for each i = 1, ..., n (10)

t∑

k=1

kxk
i + Di − 1 ≤ t for each i = 1, ..., n; k = 1, ..., t

(11)
n∑

i=1

aj
ix

k
i ≤ cj , for each j = 1, ..., u; k = 1, ..., t (12)

t∑

k=1

kxk
m −

t∑

k=1

kxk
l ≥ Dl ∀ < l, m >∈ E (13)

The objective function (6) is given as a sum of the power
deviations defined by (5) over all time slots. The setX is called
a schedule. Condition (10) states that each instruction can
only be issued once. Finally, (13) are dependency constraints,
(11) are the deadline constraints and (12) are the resource
constraints.

For the programP1, we need to find a feasible scheduleX
that minimize the value of the functionPV (X) with all the
constraints satisfied. This problem is NP-complete. In the next
section, we describe a branch and bound method that allows
us to find a optimal schedule within a reasonable amount of
time.

III. B RANCH AND BOUND ALGORITHM

Starting with an initial scheduleX1, a sequence of schedules
Xr are generated until the optimal schedule is found. The ini-
tial scheduleX1 can be one produced through a conventional
list scheduling algorithm.

The branch and bound algorithm requires three important
elements:

1) the lower bound estimate for a scheduleXr,
2) the rules for branching to a set of new scheduleXs from

a certain scheduleXr, and
3) the rules for selecting a certain scheduleXr from the

produced schedule pool.

A. Lower Bounds

Given the current scheduleXr, its lower bound is estimated
to check if a better schedule may be found in successors that
can be generated from the scheduleXr. If the lower bound
for Xr is larger than the current objective value, thenXr is
removed from the schedule pool.

Let Ptotal denote the sum of power consumption over all
the time slots. It can be expressed as

Ptotal = tM (14)

Let

P k
u =

min(Dmax−1,k−1)∑

f=0

∑

i:xk−f
i

∈Ur

xk−f
i ε(Di − f)pf

i (15)

denote the power consumption in time slotk due to all the
rescheduled instructions of the schedules fromX1 to Xr.

Now we introduce two constraints
t∑

k=1

P k − Ptotal = 0 (16)

P k − P k
u ≥ 0 for k = 1, ..., t (17)

Constraint (16) requires that the total power consumption over
all time slots inXr or any of its successors equalsPtotal.
Condition (17) guarantees that eachP k must at least be
the power consumptionP k

u associated with the rescheduled
instructions in each time slotk.

The lower bound for the current scheduleXr can therefore
be the minimum of (6) using the values of (14)-(17). Because
integer constraints (9) are relaxed, execution of an instruction
may be divided and scheduled to multiple time slots. Execution
time in each time slot is less than a whole time slot. As a
result, power consumption at each time slotP k can be any
values satisfying constraints (16) and (17). Then the obtained
minimum of total power deviation (6) will not be a tight lower
bound.

We reduce the impact caused by this relaxation by restrict-
ing how execution of an instruction may be divided. Among
the instructions which are not rescheduled inXr, suppose the
smallest power consumption of a single instruction isP∆

Xr
.

Execution of an instruction, which has not been rescheduled,
is divided into equal smaller slices with a residue if any. Each
slice has a power consumption equal toP∆

Xr
. In this way, the

values ofP k are limited to sums of some smaller execution
slices. The algorithm to obtain the lower bound for the current
scheduleXr is outlined as follows.

Algorithm 3.1: Lower bound of the current scheduleXr

Let bound, fk(k = 1 to t), p and fW be variables used
in this algorithm. The lower bound equals the value ofbound
when this algorithm stops.

Fig. 3. An example for illustrating branching rules: only a successorX5 is
generated fromX1.

Step 1.bound = 0. For k = 1 to t, calculateP k
u according

to (15). Fork = 1 to t, fk = P k
u .

Step 2. CalculateP∆
Xr

, which is the smallest power con-
sumption of a single instruction among the instructions which
are not rescheduled inXr.

Step 3. Given an instruction which has not been rescheduled
in Xr, let pi be its power consumption.p = pi.

Step 4.p = p − P∆
Xr

. Let fW be the smallest amongfk

(k = 1 to t). fW = fW +P∆
Xr

. If p >= P∆
Xr

, then go to Step
4. Otherwise go to Step 5.

Step 5. If all the instructions which have not been resched-
uled in Xr have been processed by Step 4, then go to Step 6.
Otherwise go to Step 3.

Step 6. If, fork = 1 to t, fk > M , then bound = fk −
M + bound. bound = 2 ∗ bound. Stop the algorithm.

B. Branching Rules

First, note that the lower bound formulation in Section III-A
relaxes the integer constraints (9) and (12). As a result, some
instructions may not be scheduled to start at the beginning of a
time slot. The impact caused by this relaxation can be reduced
by imposing the rule that the larger the power consumed by
an instruction, the earlier it is rescheduled. In this way, the
lower bound obtained remains tight.

Second, once an instructioni is selected to be rescheduled,
we propose four conditions to decide whether rescheduling to
time slot j is feasible. LetXs be the new schedule afteri is
rescheduled toj. The first condition is that forXs, the power
consumption for time slotj should not be larger than the peak
power of the current best schedule, expressed as

P j
u ≤ PeakXz (18)

wherePeakXz is the peak power of the recorded current best
scheduleXz.

Since constraints (13) only describe direct dependencies
in the whole dependence graph, we need to extend them to
include all indirect dependence information. Let

Di,j =
{

Li,j if j (in)directly depends on i
0 otherwise

(19)

where Li,j is the length of the maximum path fromi to j
in the dependence graph, ifj (in)directly depends oni. Then,
constraints (13) can then be extended as

t∑

k=1

kxk
j −

t∑

k=1

kxk
i ≥ Di,j ∀i, j ∈ N, if Di,j > 0 (20)

The second condition is that instructioni in time slotj should
satisfy constraints (20).

Given constraints (11) and (20), those time slots in which
instructioni definitely can not be allocated to can be expressed
as

xk
i = 0 k = 1, . . . , Dfront

i , Dfront
i ≥ 1

xk
i = 0 k = t−Dback

i + 1, . . . , t, Dback
i ≥ 1

(21)

where
∀i ∈ N, Dfront

i = max
∀h∈N

(Dh,i)

Di,K = max
∀j∈N

(Di,j)

Dback
i = max

∀j∈N
(Di,j) + Di,K

The third condition is that instructioni in time slotj should
satisfy constraints (21).

The fourth condition is that instructioni in time slot j
should satisfy constraints (12). If any of these constraints
is violated,instructioni cannot be scheduled to time slotj.
Therefore the branch to reschedulei to j will not be included
in the schedule pool.

These rules help to greatly cut infeasible branches, and thus
the size of the produced schedule pool is greatly reduced.

The following simple example illustrates the use of the
branching rules.

Example 3.1:Suppose we are given a set of fourteen in-
structions{s1, s2, . . . , s14} and the data dependence graph for
these instructions is as shown in Fig. 2. Suppose the target
VLIW processor has four functional unit types: integer, float,
branch, memory. The available functional units of every types
are given as: integer (4), float (2), branch (1), memory (2).
The mapping between functional unit types and instructions
is given as:

• integer: s1, s2, s3, s4, s6, s7, s10, s11

• float:
• branch: s9, s14

• memory:s5, s8, s12, s13

Let the initial schedule be the performance optimized VLIW
scheduleX1 = {x1

1, x
1
2,

x1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}. Thus the to-

tal number of time slots needed to execute this schedule is
t = 6.

First, suppose the sequence of instructions to be rescheduled
is

{s9, s14, s1, s2, s3, s4, s6, s7, s10, s11, s5, s13, s8, s12}
according to the rule that the larger the power consumed by
an instruction, the earlier it is rescheduled. Then the first
instruction to be rescheduled is instructions9.

Now there is only a root nodeX1 in the branch and bound
tree to date. Thus the list of active leaf schedules now is` =
{X1} andX1 is selected to branch.

Therefore we reschedule instructions9 from the schedule
X1. There would be six successors generated fromX1 if
instructions9 was rescheduled to each of the six time slots as

TABLE I

EXPERIMENTAL RESULTS ONTRIMARAN ’ S BENCHMARK PROGRAM

Dim. Source Root(mA) Opt.(mA) Nodes TT(sec.) CPLEX(sec.) TOpt.

(6,14) Wave 146.00 127.33 1070 0.03 0.05 40.00%

(11,11) Fib 229.09 229.09 182 0.01 0.07 85.71%

(9,14) Wave 224.89 130.67 5965 0.11 0.13 15.38%

(13,13) Wave 271.38 271.38 156 0.01 0.07 85.71%

(10,22) Bmm 360.00 119.6 907 0.10 0.19 47.37%

(15,15) Fib-mem 313.6 313.6 482 0.01 0.10 90.00%

(12,19) Fir 313.67 201.67 537 0.06 0.10 40.00%

(12,22) Bmm 386.00 64.00 4108 0.54 2.16 75.00%

(17,16) Fib-mem 234.35 206.35 386 0.03 0.57 94.74%

(20,21) Wc 408.60 408.60 3179 0.18 0.22 18.18%

(13,35) Bmm 710.77 250.62 4269 0.47 0.58 18.97%

(23,22) Bmm 248.35 220.35 753 0.09 5.43 98.34%

(23,24) Bmm 474.43 474.43 782 0.06 0.27 77.78%

(25,24) Bmm 251.52 223.52 3095 0.34 19.29 98.24%

(29,29) Bmm 608.28 608.28 396 0.04 1.44 97.22%

(31,30) Bmm 258.58 230.58 1499 0.26 10.04 97.41%

(33,33) mm-dyn 692.36 692.36 4377 0.85 1.96 56.63%

(35,34) mm-dyn 261.94 233.94 6914 1.59 108.47 98.53%

Average: 68.62%

shown in the branch and bound tree in Fig. 3. The six possible
successors are:

X2: {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

1
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

X3: {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

2
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

X4: {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

3
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

X5: {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

X6: {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

5
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

X7: {x1
1, x

1
2, x

1
3, x

1
4, x

2
5, x

2
6, x

2
7, x

3
8, x

6
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

However,X2, X3, X4, X6 andX7 are not feasible succes-
sors. Leti = 9 in constraints (21), we have

xk
9 = 0 k = 1, . . . , Gfront

9

xk
9 = 0 k = 6−Gback

9 + 2, . . . , 6
(22)

Given the data dependence graph (see Fig. 2),

Gfront
9 = max

∀h∈N
(Gh,9) = G1,9 = 3

max
∀l∈N

(G9,l) = G9,13 thus Gback
9 = G9,13+D13 = 2+1 = 3

ReplaceGfront
9 andGback

9 in (22) with the obtained values:

xk
9 = 0 k = 1, 2, 3, 5, 6 (23)

Thus, X2, X3, X4, X6 and X7 are not feasible successors
because they violate constraints (23).

Therefore only a successorX5 is generated fromX1 in the
branch and bound tree (see Fig. 3). Thus replaceX1 with X5

in the list of active leaf schedules̀= {X5}.
C. Selection Rules

Given a pool of possible schedules, a random selection
strategy is adopted. This means that we assume that the
schedules in the pool has equal probability of leading to the
optimal solution.

IV. PERFORMANCEEVALUATION

The VLIW processor we used for evaluating our algorithm
is the TMS320C6711 [6] which is a VLIW digital signal
processor. The input to our algorithm is a schedule of an
instruction block produced by Trimaran’s ILP compiler [7].
Our branch and bound algorithm reschedules the one produced
through Trimaran to minimize its power variation across
time steps. It was implemented in C and runs on an Intel
Pentium 4 2.80GHz personal computer with 512MB RAM
under Microsoft Windows 2000 for all our experiments. All
program instances we used were taken from the benchmarks
with Trimaran. Instruction blocks with a wide range of prob-
lem dimensions, which are characterized by the number of
instructions and the number of total time slots allowed, are
selected for our experiments.

Our algorithm is compared with the solutions produced by
the ILOG CPLEX90 mixed integer solver directly in terms of
the time required to find the optimal schedule. This approach
is used by [4]. Table I shows the results of18 problem
instances. For each problem instance, the problem dimension
(Dim) indicates the number of time slots and the number of
instructions involved in the instruction block. Power variation
of the original schedule produced by Trimaran’s ILP compiler
is shown in the column “Root”. The performance of our branch
and bound algorithm is indicated by the optimal value of
the objective function obtained (“Opt”), the number of nodes
visited before the optimal schedule (“Nodes”) and the total
CPU time in seconds before the algorithm terminates (“TT”).
In contrast, the computation times required by CPLEX90 to
solve the same problems are shown in the column “CPLEX”.
“TOpt” is the percentage of computation time required by our

algorithm relative to that of using CPLEX90. These results
show that our algorithm achieves the same optimized power
variation values while it is on average 68.62% more efficient
compared with using CPLEX90.

V. CONCLUSIONS

In this paper, we presented an efficient VLIW instruction
scheduling algorithm that is able to achieve power balance
without degrading the speed. The problem is being formulated
as a mixed integer program. Our algorithm is a branch and
bound algorithm that solves this program efficiently. Its effec-
tiveness is demonstrated through a set of benchmark signal
processing programs. The results show that our algorithm
achieves the same optimized power variation values as re-
ported in earlier work [4]. However, the required computation
time to arrive at the solution in improved by an average
of 68.62%. It should be emphasized that our algorithm is
independent of the power model for the VLIW processor.

REFERENCES

[1] “TMS320C62x/C67x power consumption summary,”Texas Instruments,
Application Report, SPRA486C, Jul. 2002.

[2] M. Pedram and Q. Wu, “Battery-powered digital CMOS design,”IEEE
Trans. on Very Large Scale Integration Systems, vol. 10, no. 5, pp. 601–
607, Oct. 2002.

[3] T. Simunic, L. Benini, and G. D. Micheli, “Energy-efficient design of
battery-powered embedded systems,” inProceedings of the International
Symposium on Low Power Electronics and Design, Aug. 1999, pp. 212–
217.

[4] H. Yang, G. R. Gao, and C. Leung, “On achieving balanced power con-
sumption in software pipelined loops,” inProceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, Grenoble, France, Oct. 2002, pp. 210–217.

[5] H. Yun and J. Kim, “Power-aware modulo scheduling for high-
performance VLIW processors,” inProceedings of the International
Symposium on Low Power Electronics and Design, Huntington Beach,
California, USA., Aug. 2001, pp. 40–45.

[6] TMS320C6000 CPU and instruction set reference guide, Texas Instru-
ments, Oct. 2000, reference Guide, SPRS088E.

[7] Trimaran. Trimaran: an infrastructure for research in instruction-level
parallelism. http://www.trimaran.org. A collaborative effort between
Compiler and Architecture Research Group at Hewlett Packard
Laboratories, IMPACT Group at the University of Illinois and Center for
Research on Embedded Systems and Technology at the Georgia Institute
of Technology. [Online]. Available: http://www.trimaran.org

APPENDIX I
TMS320C6711PROCESSOR CORE POWER VARIATION

TMS320C6711 from Texas Instrument is an 8-issue VLIW
processor. Table II obtained from an application report of
Texas Instrument [1] shows the impact of instruction schedul-
ing for VLIW processors on power variation. It details the
power consumption of the TMS320C6711 CPU and internal
memory at 50% high / 50% low activity level and 75%
high / 25% low activity level separately. The column “Per-
centage” is the percentage of the power consumption of
CPU and internal memory to the total power consumption
including CPU, internal memory, peripherals and I/O. Table III
shows the characteristics associated with high activity and low
activity for TMS320C6711 separately. In order to illustrate
the impact of instruction scheduling for VLIW processors on
power variation, we compute the power consumption of CPU

TABLE II

POWER CONSUMPTION STATISTICS OFTMS320C6711 (150MHZ)

Activity
Level

CPU and Internal Memory (W) Percentage

50% High,
50% Low

0.73 55%

75% High,
25% Low

0.87 57%

TABLE III

SUMMARY OF ACTIVITY LEVELS OF TMS320C6711

Activity
Level

CPU Activity
Level

Program
Memory
Access Rate

Data Memory
Access Rate

High 8 instructions 100% 100% CPU, 50%
DMA

Low 2 instructions 25% 12.5% CPU

and internal memory at 100% high / 0% low activity level and
0% high / 100% low activity level separately. Linear interpo-
lation is used to compute the result. The power consumption
of CPU and internal memory at 100% high / 0% low activity
level is 1.01W. The power consumption of CPU and internal
memory at 0% high / 100% low activity level is 0.45W. Here
we can see the difference between eight instructions executed
in parallel and two instructions executed in parallel.

