A Branch and Bound Algorithm for Fast
Power-Aware Scheduling of VLIW Instructions

Shu Xiao and Edmund M-K. Lai
School of Computer Engineering, Nanyang Technological University, Singapore 639798
Email: shux@pmail.ntu.edu.sg, asmklai@ntu.edu.sg

Abstract— An instruction word in VLIW (very long instruction Some instruction scheduling algorithms for ILP processor
word) processors consists of a variable number of individual have been proposed. However, most of them produce schedules
instructions. Therefore the power consumption variation OVer a1 meet deadline constraints. Published works on instruction
time significantly depends on the parallel instruction sched- . o s
ule generated by the compiler. Sharp power variations across sched_uhng qf ILP processors for power variation minimization
time cause power supply noises, degrade chip reliability and are still relatively few. Among them, Yun [5] extended iterative
accelerate battery exhaustion. Hence power variation reduction modulo scheduling by adding a heuristic for power-aware
without compromising execution speed is an important instruc- scheduling of VLIW processor cores. Yang [4] proposed a
tion scheduling constraint in embedded VLIW systems. The yivaq integer programming formulation to derive the optimal

instruction scheduling problem is generally known to be NP- . L .
complete and in need of an effective and efficient algorithm to schedules. In contrast with the heuristic in [5], the integer

solve it. This paper proposes a branch and bound algorithm Programming formulation has the potential to derive optimal
for instruction scheduling of VLIW architectures that effectively ~ results and it can be used to evaluate any heuristic algorithm.
minimizing power variation without degrading the speed. The Yang [4] used a commercial library (ILOG CPLEX) to obtain
problem is solved by a branch and bound algorithm by adaptively - 1o sojutions. The experimental results and examples in [4]
adding problem-specific constraints (cuts) and applying & tight did motivate power variation reduction over time in VLIW
lower bound. Our experimental results demonstrate the ability of . oo .
our algorithm for efficiently minimizing time variation of power architecture. However, no specific information about the com-
consumption. putation time was provided. In our experiments for replicating
their approach, we found that due to the lack of problem-
specific information, the average time used by CPLEX90 to
Multimedia processing software typically exhibit highsolve the mixed integer problem is quite unacceptable for ILP
instruction-level parallelism (ILP). A single instruction wordcompilers.
of VLIW (very long instruction word) processors contains In this paper, the mixed integer program is also used to
a variable number of individual instructions which are exormulate the problem. However, we propose a branch and
ecuted on different functional units in parallel. Therefordgound algorithm to efficiently solve this problem of scheduling
VLIW processors provide a means to efficiently exploit ILRf VLIW instructions without compromising the speed. The
because of their parallel processing power. The instructiatgorithm adaptively adds problem-specific constraints (cuts)
scheduling techniques used by VLIW compilers are thumd applies a tight and fast lower bound algorithm to guide
essential to improve the execution speed. However, dependihg search for the optimal solution. The algorithm is evaluated
on the parallel schedule generated by the compiler, powar instruction blocks of various sizes. The results show our
consumption variation over time can also be significantiglgorithm gets the same optimized power variation values
different. TMS320C6711 from Texas Instrument is an 8-isswehile an average improvement in required computation time
VLIW processor. Data in Appendix | quoted from [1] showf 68.62% compared with CPLEX90 as [4].
the impact of instruction scheduling on power variation of The rest of this paper is organized as follows. In Section ||
TMS320C6711 processor core. Since sharp power variatiome present our mixed integer programming formulation of the
across time steps cause power supply noises, degrade g¢higblem. A customized branch and bound algorithm is devel-
reliability and accelerate battery exhaustion [2], [3], powesped in Section Ill to solve the problem. The effectiveness
variation reduction without compromising execution speeshd efficiency of the algorithm is evaluated and the results are
becomes an important instruction scheduling constraint fmesented in Section IV.
embedded VLIW systems. This approach is motivated by
the observation that a large number of instructions in the
parallel schedules have schedule slacks [4], i.e., each of thésg”ower Model
instructions can be scheduled in one of the many time steps/LIW processors use very long instruction words to execute
without degrading the performance of the schedule. Thus itraultiple instructions simultaneously on seperate functional
possible to change the issue of certain non-critical instructionsits (see Fig. 1). Each instruction takes different amount of
and obtain a schedule with balanced power consumptiime to execute. We divide the time line into equal length
without performance degradation. time slots. A power cost! is associated with each instruction

I. INTRODUCTION

Il. PROBLEM FORMULATION

A Very Long Instruction Word

Instruction (1)‘ ‘Instruction 2) Instruction (k-1) ‘ ‘ Instruction (k)

VLIW Processor Core

Instruction Decode

Functional Functional Functional Functional

Unit (1) Unit (2) Unit (k-1) Unit (k)

External Memory Hierarchy Interface

Fig. 1. A simplified model of a VLIW processor core.

1 which represents the power consumed by this instruction ine M is the average power consumption over all théme
the j-th time slot. slots.

Given a program execution schedulg let N; represents For the sake of simplicity we introduce the function
the very long instruction word executed at ikl time slot of)

. L . 1 ife>1

N. Letn; be an instruction inV;. Then power consumption e(z) = 0 otherwi 2
at thei-th time slotP? is the sum of power consumed by all otherwise
the executing instructions, either started in this time slot aherex is an integer.

before is given by C. Mixed Integer Program

> pk (1) According to the power estimation formula (1), power con-
0<k<in;EN;_y sumption at each time slot and the average power consumption

. . can be computed by
wherek is an integer.

Note that the proposed branch and bound algorithm can be i &
easily extended to work with more accurate power estimation M = Z P/t ®)
models, because the proposed algorithm does not depend on
a particular power estimation technique. where

min(D™*—1k—1) n

B. Notations Pr = > Y wiTeDi—- il @
The following notations will be used: /=0 =1

« N is the set ofn target instructions to be scheduled. and D™** = max(D;). Then, the power deviation at any
o T is the set oft time slots, wherg is the performance given time slotk |s computed as

deadlipe. .
& 1, if instructioniis allocatedtotime slot k PVk(Pk) = ‘Pk — M| (5)

. $i = .

0, otherwise.
« X is the set ofn variablesz¥, which equal tol.
« U is the set ofu functional unit types.

with the total deviation given by

e ¢; is the number of functional units of type PV(X) = ZPVk(Pk) 6
4 1, if instructioni corresponds to
. al = functional unit type j The optimization problem of instruction scheduling of
0, otherwise VLIW architectures for balanced power consumption can be
o FE is the set ofv dependency pairsc I,m >, where formulated as a mixed integer prograRl with objective
instruction m depends on instruction |. function (7) and constraints (8)-(13).

« D; is the number of the execution stages of instruction
« P is the total power consumption in time slbt min PV (X) @)

S1q/
—-r—=- > A dependence pair with 2 delay slots
— Adependence pair with 1 delay slot

Fig. 2. A data dependence graph for instructions in Example 3.1

subject to
X= u {ai} ®)
zka: =
¥ €{0,1} foreachi=1,..,njk=1,..1t 9)
t
fo =1 foreachi=1,...n (10)
k=1
t
kaf +D;,—1<t foreachi=1,...n;k=1,..t
k=1
(11)
Za{xf <c¢j, foreachj=1,..,usk=1,..,t (12)
i=1
t t
> kat, > kaf =D V<lm>eE (13)
k=1 k=1

1) the lower bound estimate for a schediXe,

2) the rules for branching to a set of new sched\ilefrom
a certain schedul«,., and

3) the rules for selecting a certain schede from the
produced schedule pool.

A. Lower Bounds

Given the current schedul¥,., its lower bound is estimated
to check if a better schedule may be found in successors that
can be generated from the schedwde. If the lower bound
for X, is larger than the current objective value, th&n is
removed from the schedule pool.

Let Py, denote the sum of power consumption over all
the time slots. It can be expressed as

Ptotal =tM (14)
Let
min(D™**—1,k—1)
pi= 3 S df e -l @5)
f=0 i:xfffGUr

denote the power consumption in time slotdue to all the
rescheduled instructions of the schedules frdmto X,..
Now we introduce two constraints
t

> PF = Pt = 0 (16)
k=1
P*—Pt>0 fork=1,..,t (17)

Constraint (16) requires that the total power consumption over
all time slots in X,. or any of its successors equal,;.;.
Condition (17) guarantees that ead? must at least be
the power consumptio®* associated with the rescheduled
instructions in each time sldt.

The lower bound for the current schedufe can therefore
be the minimum of (6) using the values of (14)-(17). Because
integer constraints (9) are relaxed, execution of an instruction

The objective function (6) is given as a sum of the powenay be divided and scheduled to multiple time slots. Execution
deviations defined by (5) over all time slots. The Seis called time in each time slot is less than a whole time slot. As a
a schedule. Condition (10) states that each instruction casult, power consumption at each time st can be any
only be issued once. Finally, (13) are dependency constraintalues satisfying constraints (16) and (17). Then the obtained
(11) are the deadline constraints and (12) are the resounsimimum of total power deviation (6) will not be a tight lower

constraints.

For the progranP1, we need to find a feasible scheduie

that minimize the value of the functioRV (X) with all the

bound.
We reduce the impact caused by this relaxation by restrict-
ing how execution of an instruction may be divided. Among

constraints satisfied. This problem is NP-complete. In the ndke instructions which are not rescheduledXip, suppose the
section, we describe a branch and bound method that allosvsallest power consumption of a single mstrucuonFi{é
us to find a optimal schedule within a reasonable amount Bkecution of an instruction, which has not been rescheduled,

time.

IIl. BRANCH AND BOUND ALGORITHM

is divided into equal smaller slices with a residue if any. Each
slice has a power consumption equalﬂﬁ‘r. In this way, the
values of P* are limited to sums of some smaller execution

Starting with an initial schedul&;, a sequence of schedulesslices. The algorithm to obtain the lower bound for the current
X, are generated until the optimal schedule is found. The irdieheduleX, is outlined as follows.
tial scheduleX; can be one produced through a conventional Algorithm 3.1: Lower bound of the current schedulé.

list scheduling algorithm.

Let bound, f*(k = 1 to t), p and f'V be variables used

The branch and bound algorithm requires three importantthis algorithm. The lower bound equals the valueé@ind

elements:

when this algorithm stops.

The second condition is that instructiein time slot; should
satisfy constraints (20).

A N Given constraints (11) and (20), those time slots in which
Xy X3 X, Xg Xg X7 instructioni definitely can not be allocated to can be expressed
as

Fig. 3. An example for illustrating branching rules: only a successgris b front front
generated fromxX. z; =0 k=1,...,D; , D] >1

af =0 k=t—DbF 41, ¢, Dk >1 (21)
. where
Step 1.bound = 0. For k = 1 to t, calculateP* according Vi e N, DI™™" — max (Dn.,)
to (15). Fork =1tot, f* = T Vh v
Step 2. CaIcuIateP)%P, which is the smallest power con- Dik = @?gj’f/(D i)
sumption of a single instruction among the instructions which Dback — ?gﬁ(Diﬁj) + Dk
J

are not rescheduled iX,.

Step 3. Given an instruction which has not been rescheduledrhe third condition is that instructionin time slot; should
in X, letp; be its power consumptiom. = p;. satisfy constraints (21).

Step 4.p = p — PA Let f'V be the smallest among* The fourth condition is that instruction in time slot j
(k=1tot). fW = f +PA If p>= Pg , then go to Step should satisfy constraints (12). If any of these constraints
4. Otherwise go to Step 5. is violated,instructioni cannot be scheduled to time slgt

Step 5. If all the instructions which have not been resche@iherefore the branch to reschedii® j will not be included
uled in X,. have been processed by Step 4, then go to Stepithe schedule pool.

Otherwise go to Step 3. These rules help to greatly cut infeasible branches, and thus
Step 6. If, fork = 1 to t, f* > M, thenbound = f* — the size of the produced schedule pool is greatly reduced.
M + bound. bound = 2 * bound. Stop the algorithm. The following simple example illustrates the use of the
) branching rules.
B. Branching Rules Example 3.1:Suppose we are given a set of fourteen in-
First, note that the lower bound formulation in Section lll-Astructions{si, s, ..., s14} and the data dependence graph for

relaxes the integer constraints (9) and (12). As a result, soth€se instructions is as shown in Fig. 2. Suppose the target
instructions may not be scheduled to start at the beginning o¥&IW processor has four functional unit types: integer, float,
time slot. The impact caused by this relaxation can be redudg@nch, memory. The available functional units of every types
by imposing the rule that the larger the power consumed Bye given as: integer (4), float (2), branch (1), memory (2).
an instruction, the earlier it is rescheduled. In this way, thEhe mapping between functional unit types and instructions
lower bound obtained remains tight. is given as:

Second, once an instructiaris selected to be rescheduled, « integer: s, so, 53, 54, 56, 57, 510, 511
we propose four conditions to decide whether rescheduling to. float:
time slotj is feasible. LetX, be the new schedule aftérns o branch: sg, s14
rescheduled tg. The first condition is that foiX;, the power « memory:ss, ss, 512, 513

consumption for time slof should not be larger than the peak | o the initial schedule be the performance optimized VLIW
power of the current best schedule, expressed as scheduleX; = {z!,z}

P < PeakX: (18) x%w}l,mg,m%,x?zxg,xg,a:‘?o,x?l,x%,a:?g,xﬁ}. Th.us the to- .
v tal number of time slots needed to execute this schedule is
where Peak™- is the peak power of the recorded current beét= 6.
scheduleX .. First, suppose the sequence of instructions to be rescheduled
Since constraints (13) only describe direct dependenci€s
in the whole dependence graph, we need to extend them to

include all indirect dependence information. Let {59, 514,51, 52, 53, 54, 56, 57, 510, 511, 55, 513, 55, 512}

according to the rule that the larger the power consumed by

an instruction, the earlier it is rescheduled. Then the first

Dy = { L;;if j (in)directly depends on i (19)
instruction to be rescheduled is instructien

0 otherwise

where L; ; is the length of the maximum path fromto j Now there is only a root nodé&; in the branch and bound
in the dependence graph,jifin)directly depends on Then, tree to date. Thus the list of active leaf schedules now-s
constraints (13) can then be extended as {X;} and X, is selected to branch.

Therefore we reschedule instructieg from the schedule

t t
} :k:p’? _2 :kx’? >D;; Vi,jeN,ifD;;>0 (20) Xi. There would be six successors generated fr&im if
7 = ,] ’ ’]
P P instructionsg was rescheduled to each of the six time slots as

shown in the branch and bound tree in Fig. 3. The six possible

Successors are:

X2: {:L‘},xaxéx}l,xg,x%,x%,x%,xé,x?mx?l,xi’%x?&x
Xy {at, ol ol o) 22 22 22, 03 23 x ¢
X4: {x%v‘r%7x£1’>7x}l?xg’x%?x%?x§7$g7wiovx?17x?27x?37xl4
X! {x%,.ﬁc%,w%,$i,$§,x%,x%,x§,1’3,1‘?0,%‘?1,%?2,1?3,%?4

RIS RN R G|
X! {z%,x%,x%,x%,
X7: {$1,$2,$3,l‘4,

TABLE |
EXPERIMENTAL RESULTS ONTRIMARAN’S BENCHMARK PROGRAM

Dim. \ Source \ Root(mA) \ Opt.(mA) \ Nodes\ TT(sec.)\ CPLEX(sec.)\ TOpt.

(6,14) Wave 146.00 127.33 1070 0.03 0.05 40.00%
(11,11) Fib 229.09 229.09 182 0.01 0.07 85.71%
(9,14) Wave 224.89 130.67 5965 0.11 0.13 15.38%
(13,13) Wave 271.38 271.38 156 0.01 0.07 85.71%
(10,22) Bmm 360.00 119.6 907 0.10 0.19 47.37%
(15,15) | Fib-mem 313.6 313.6 482 0.01 0.10 90.00%
(12,19) Fir 313.67 201.67 537 0.06 0.10 40.00%
(12,22) Bmm 386.00 64.00 4108 0.54 2.16 75.00%
(17,16) | Fib-mem 234.35 206.35 386 0.03 0.57 94.74%
(20,21) Wc 408.60 408.60 3179 0.18 0.22 18.18%
(13,35) Bmm 710.77 250.62 4269 0.47 0.58 18.97%
(23,22) Bmm 248.35 220.35 753 0.09 5.43 98.34%
(23,24) Bmm 474.43 474.43 782 0.06 0.27 77.78%
(25,24) Bmm 251.52 223.52 3095 0.34 19.29 98.24%
(29,29) Bmm 608.28 608.28 396 0.04 1.44 97.22%
(31,30) Bmm 258.58 230.58 1499 0.26 10.04 97.41%
(33,33) | mm-dyn 692.36 692.36 4377 0.85 1.96 56.63%
(35,34) | mm-dyn 261.94 233.94 6914 1.59 108.47 98.53%

|

‘ ‘ Average: ‘68.62%

2

2 5 5 6
335a$6a$77$873397331075511a371_27331375314}
However, X5, X3, X4, Xg and X, are not feasible succes-

E

sors. Leti = 9 in constraints (21), we have

k=0 k=1,...,G{~™
=0 k=6-G5*4+2,...,6

Given the data dependence graph (see Fig. 2),

GLmo™ — max (G =Gi9=3
9 VheN(h9) =G19

max(GgJ) = G9’13 thus GgaCk = G9’13+D13 =24+1=3

vieN

ReplaceG] " and G4*<* in (22) with the obtained values:

Th=0 k=1,23,56

because they violate constraints (23).

Therefore only a successdfs is generated fronkX; in the
branch and bound tree (see Fig. 3). Thus repld¢evith X5

in the list of active leaf schedules= {X;}.

C. Selection Rules

6

IV. PERFORMANCEEVALUATION
The VLIW processor we used for evaluating our algorithm

6
(154} is the TMS320C6711 [6] which is a VLIW digital signal

)
;07951175”12»%13795(154

processor. The input to our algorithm is a schedule of an
instruction block produced by Trimaran’s ILP compiler [7].
Our branch and bound algorithm reschedules the one produced
through Trimaran to minimize its power variation across
time steps. It was implemented in C and runs on an Intel
Pentium 4 2.80GHz personal computer with 512MB RAM
under Microsoft Windows 2000 for all our experiments. All
program instances we used were taken from the benchmarks

(22) with Trimaran. Instruction blocks with a wide range of prob-

(23)
Thus, X,, X3, X4, Xg and X; are not feasible successor

lem dimensions, which are characterized by the number of
instructions and the number of total time slots allowed, are
selected for our experiments.

Our algorithm is compared with the solutions produced by
the ILOG CPLEX90 mixed integer solver directly in terms of
the time required to find the optimal schedule. This approach
is used by [4]. Table | shows the results ®8 problem
instances. For each problem instance, the problem dimension

éDim) indicates the number of time slots and the number of

Instructions involved in the instruction block. Power variation
of the original schedule produced by Trimaran’s ILP compiler
is shown in the column “Root”. The performance of our branch
and bound algorithm is indicated by the optimal value of
the objective function obtained (“Opt”), the number of nodes
visited before the optimal schedule (“Nodes”) and the total

Given a pool of possible schedules, a random selecti@PU time in seconds before the algorithm terminates (“TT").
strategy is adopted. This means that we assume that thecontrast, the computation times required by CPLEX90 to
schedules in the pool has equal probability of leading to t®lve the same problems are shown in the column “CPLEX".

optimal solution.

“TOpt” is the percentage of computation time required by our

algorithm relative to that of using CPLEX90. These results
show that our algorithm achieves the same optimized power
variation values while it is on average 68.62% more efficient

TABLE I
POWER CONSUMPTION STATISTICS OAMS320C6711 (150MH)

compared with using CPLEX90.

V. CONCLUSIONS

In this paper, we presented an efficient VLIW instruction
scheduling algorithm that is able to achieve power balance

without degrading the speed. The problem is being formulated
as a mixed integer program. Our algorithm is a branch and
bound algorithm that solves this program efficiently. Its effec-
tiveness is demonstrated through a set of benchmark signal
processing programs. The results show that our algorith

Activity CPU and Internal Memory (W) | Percentage
Level
50% High, 0.73 55%
50% Low
75% High, 0.87 57%
25% Low

TABLE IlI

SUMMARY OF ACTIVITY LEVELS OF TMS320C6711

achieves the same optimized power variation values as ref
ported in earlier work [4]. However, the required computation

time to arrive at the solution in improved by an average
of 68.62%. It should be emphasized that our algorithm is

independent of the power model for the VLIW processor.

Activity CPU Activity | Program Data Memory
Level Level Memory Access Rate
Access Rate
High 8 instructions 100% 100% CPU, 50%
DMA
Low 2 instructions 25% 12.5% CPU

REFERENCES

[1] “TMS320C62x/C67x power consumption summarygxas Instruments
Application Report, SPRA486Cul. 2002.
(2]

607, Oct. 2002.
T. Simunic, L. Benini, and G. D. Micheli, “Energy-efficient design of

(3]

217.

[4] H. Yang, G. R. Gao, and C. Leung, “On achieving balanced power con-

[l

' and internal memory at 100% high / 0% low activity level and
M. Pedram and Q. Wu, “Battery-powered digital CMOS desiggee 0% high / 100% low activity level separately. Linear interpo-
Trans. on Very Large Scale Integration Systewms. 10, no. 5, pp. 601~ lation is used to compute the result. The power consumption
of CPU and internal memory at 100% high / 0% low activity
battery-powered embedded systems,Pioceedings of the International [evel is 1.01W. The power consumption of CPU and internal
Symposium on Low Power Electronics and Designg. 1999, pp. 212- memory at 0% high / 100% low activity level is 0.45W. Here
we can see the difference between eight instructions executed

sumption in software pipelined loops,” Proceedings of the International IN Parallel and two instructions executed in parallel.

Conference on Compilers, Architecture, and Synthesis for Embedded
SystemsGrenoble, France, Oct. 2002, pp. 210-217.

H. Yun and J. Kim, “Power-aware modulo scheduling for high-
performance VLIW processors,” ifProceedings of the International
Symposium on Low Power Electronics and Designntington Beach,
California, USA., Aug. 2001, pp. 40-45.

TMS320C6000 CPU and instruction set reference guiExas Instru-
ments, Oct. 2000, reference Guide, SPRS088E.

Trimaran. Trimaran: an infrastructure for research in instruction-level
parallelism. http://www.trimaran.org. A collaborative effort between
Compiler and Architecture Research Group at Hewlett Packard
Laboratories, IMPACT Group at the University of lllinois and Center for
Research on Embedded Systems and Technology at the Georgia Institute
of Technology. [Online]. Available: http://www.trimaran.org

(5]

[6

—

[7

—

APPENDIX |
TMS320C671IPROCESSOR CORE POWER VARIATION

TMS320C6711 from Texas Instrument is an 8-issue VLIW
processor. Table Il obtained from an application report of
Texas Instrument [1] shows the impact of instruction schedul-
ing for VLIW processors on power variation. It details the
power consumption of the TMS320C6711 CPU and internal
memory at 50% high / 50% low activity level and 75%
high / 25% low activity level separately. The column “Per-
centage” is the percentage of the power consumption of
CPU and internal memory to the total power consumption
including CPU, internal memory, peripherals and I/O. Table Il
shows the characteristics associated with high activity and low
activity for TMS320C6711 separately. In order to illustrate
the impact of instruction scheduling for VLIW processors on
power variation, we compute the power consumption of CPU

