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Abstract— This paper is focus on to design a sampling system
with minimum sampling rate for signals in the shift invariant
Hilbert space. To achieve this goal, we propose a method to
calculate the Rate of Innovation (RI) of signals in the Hilbert
space. The RI is then used to identify a suitable sampling kernel
as well as the sampling rate for a specific signal. We show that
the RI of the kernel should be greater or equal to the RI of the
signal for the signal to be perfectly reconstructible. The minimum
sampling rate depends on the RI of the signal. Examples are
included to demonstrate how our method is applied to calculate
the RI. Some known sampling theories can also be fitted into the
framework of sampling system with minimum sampling rate.

I. INTRODUCTION

Sampling and reconstruction are the most fundamental tech-
niques in signal processing applications. A continuous signal
is represented by its discrete samples and further processing
of the signal can be carried out in the digital domain. To
sample a signal efficiently implies to represent the signal using
minimum number of samples, yet the signal can be perfectly
reconstructed afterwards. For bandlimited signals f(x), where
F (ω) = 0 for ω > ω0, the minimum number of samples
are obtained by using the kernel h(x) = sincBt where
B = 2ω0/2π and sampling at T = 1/B. For non-bandlimited
signal, unfortunately, the answer is not straight available.

A benchmark result from [1] states that the signal can be
sampled at their Rate of Innovation (RI) using an appropriate
kernel and then be perfectly reconstructed, despite their non-
bandlimited response. The RI is defined as number of un-
knowns per unit time. Consider the periodic stream of Diracs
for example: f(x) =

∑
n cnδ(x − xn) where cn = cn+K

and xn = xn+K − τ , τ is the periodicity and K is number
of pulses per cycle; the RI of x(t) is ρ = 2K/τ . The key
of sampling resides in to identify the innovative part of the
signal, like the time locations and the weights of the pulses,
and to reconstruct accordingly. The essentialness of RI is that it
indicates the minimum sampling rate associated with a certain
sampling kernel. The value of ρ may be intuitive for some
signals, however, it is not so straightforward for other non
trivial signals.

In this paper we propose a method to calculate the RI of
a general signal in shift invariant Hilbert space. Based on
that, we design a sampling system with suitable sampling
kernel and minimum sampling rate for that specific signal.
In this manner, the signal is described with minimum number
of samples, yet perfectly reconstructible. As we illustrate in
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Fig. 1. Block diagram representation sampling system. The meaning of
symbols can be found in Section II.

Section IV, the choice of the sampling kernel depends on the
relationship of the RI of the signal’s and the sampling kernel’s.
We show through experimental results that our proposed
method to calculate the RI is accurate; and the way to identify
a suitable sampling kernel to have minimum sampling rate
for a signal is valid. Through the paper the signals and all
sampling kernels are restricted to be in the shift invariant
Hilbert Space. We use ρf to denote the RI of the signal f(x).

II. SAMPLING SYSTEM REVIEWED

Sampling theory is the most fundamental topic in signal
processing. Ever since Shannon’s sampling theory on ban-
dlimited signals, the sampling theory nowadays has been
extended to deal with multiband, non-bandlimited and non-
uniform sampled signals as well [2]–[4]. Recently, thanks to
the connection to frame theory, the splines and wavelet are
also intensively applied in sampling systems [5], [6]. The
sampling process is reformed to express the signal in a shift
invariant space spanned by the frame. The schematic diagram
of a general sampling system is shown in Figure 1.

Assume that the signal f(x) is in Hilbert square summable
space and ϕ(−x) and φ(x) are the acquisition and reconstruc-
tion filter respectively. In the acquisition and sampling stage,
the signal is passed through ϕ(−x) and sampled at a

f [k] = 〈f(x), Tkaϕ(x)〉 (1)

T defines the shift operation where Tnϕ(x) = ϕ(x−n). Then
the signal is reconstructed via the samples

f̃(x) =
∑

k

f [k]Tkaφ(x) (2)

f̃(x) is the approximation of f(x) in the space Vφ, which is
defined by

Vφ = {h(x) : h(x) =
∑

c[n]Tnaφ(x),
∑

|c[n]|2 < ∞}
(3)



When f̃(x) is the projection of f(x), φ(x) and ϕ(x) are to
satisfy the duality condition

〈Tmaϕ(x), Tnaφ(x)〉 = δm,n (4)

Several criterias have been used to develop the sam-
pling system; to name a few: Minimum Mean Square Error
(MMSE), consistent as to the acquisition filters and minimax
MSE [7], [8]. The common concern is for a given sampling
kernel, how to design a sampling system such that the recon-
structed signal satisfy certain optimality concern. However,
there is no obvious solution on how to design a sampling
system such that the signal can be perfectly reconstructed with
minimum number of samples.

To achieve this goal, a proper sampling kernel as well as
sampling rate should be tailored for the given signal. From
(2), the reconstructed signal belongs to the space spanned by
the shifts of φ(x). Therefore φ(x) should be chosen such that
f(x) ∈ V (φ), only then f(x) can be perfectly reconstructed.
Furthermore, among all φ(x) that satisfy f(x) ∈ V (φ), differ-
ent choice of φ results in different number of samples needed
for perfect reconstruction [9]. Take the Multi-Resolution Anal-
ysis (MRA) using discrete wavelet for example. Assuming the
mother wavelet is ϕ(x), the wavelet frame is defined by

ϕa,b
j = (Daj Tkbϕ)(x) =

1
aj/2

ϕ(
x

aj
− kb), j, k ∈ Z (5)

The MRA is carried out by the wavelet transform as

Wϕ(f)(a, b) =
〈
f, ϕa,b

j

〉

To model the MRA system in a signal processing way: it is
equivalent to pass the signal through a filter ϕ(−x/aj), then
sample the output at rate R = ajb inasmuch as

f(x) ∗ ϕ(−x/aj) ·
∑

k

δ(x− kajb)

=
∫ ∞

−∞
f(m)ϕ(m/aj − kb)dm = aj/2

〈
f, ϕa,b

j

〉
(6)

The a, b are chosen to satisfy a loose admissibility condition
[10]. Let Vj = span{ϕa,b

j }, from the properties of wavelet we
haveVj ⊂ Vj+1. If f(x) can be completely characterized at
level j, it can be done as well at level k, ∀k ≥ j. For fixed
a, b, there exists a minimum j such that f(x) can be fully
characterized, which gives minimum R. For different choices
of a, b and ϕ, it is daunting to identify which combination
would result in the ultimate minimum R.

The RI of the signal can be used as a indicator to choose an
appropriate sampling kernel for the given signal. For a signal
f(x), on one hand, ρf indicates its rate of degree of freedom,
which implies the number of unknowns per unit time we need
to specify for f(x). On the other hand, if f(x) is available,
we would be empowered to settle unknowns at the rate of ρf .
Refer to (1), when a sample f [k] is taken, the correspondent
sampling kernel is uniquely identified at Tkaϕ(x), therefore
each sample should enable us to solve a number of unknowns
at rate ρϕ. Consequently, the relationship of ρf and ρϕ would
suggest us on how to choose a suitable sampling kernel for

the given signal. Before we proceed to choose the sampling
kernel such that the sampling system is of minimum sampling
rate, we first look at the problem of calculating the RI of a
general signal.

III. CALCULATION OF RATE OF INNOVATION

There are some intuitive requirements that ρ should satisfy.
• 1) ρ ≥ 0
• 2) ρf = ρAf(x−k), A is a constant.
• 3) ρf = Bρf(x/B), B is a constant.

It is because as an intrinsic property of the signal, any scaling
in magnitude or simple shift in the variable should not affect
ρ. However, the scaling of variable will render linear effect on
ρ. We propose a simple method to calculate the RI of a signal
in the shift invariant space:

Proposition 1: For a continuous signal f(x) in Hilbert
space, the RI of f(x) can be calculated by

ρf = 1/|T | (7)

where T satisfies Rf (kT ) = 0,∀k ∈ Z, k 6= 0, Rf is
the autocorrelation function of f(x) defined by Rf (τ) =∫∞
−∞ f(x)f(x− τ)dx.

Obviously Proposition 1 calculates RI that satisfies the
requirements listed in the beginning of this section. There are
some other properties that are noteworthy:
• 4) Orthogonality

If in a sampling system, φ is used as the sampling kernel
and a = 1/ρφ is used as the sampling rate, then the kernel
and its shifts {Tnaφ}n∈Z form a basis for its span Vφ.
It is straightforward from Proposition 1. Since

〈Tnaφ, Tmaφ〉 = Rφ[(m− n)a] = δm,n

and {Tnaφ}n∈Z consist of a frame for the span Vφ,
{Tnaφ}n∈Z is the basis for Vφ. As a result, among
all the families have the same span, the number of
samples needed to specify a signal in Vφ is minimum
with {Tnaφ}n∈Z as refer to (2).

• 5) Independency
The samples obtained from (1) using {Tnaφ}n∈Z as
above are independent from each other. By ’independent’
we mean that if one sample f [k1] is changed to ∆f [k1],
the rest should not be affected.
From (2), assume the reconstructed signal is ∆f̃(x) after
f [k1] being replaced by ∆f [k1]

∆f̃(x) =
∑

k 6=k1

f [k]Tkaφ(x) + ∆f [k1]Tk1aφ(x) (8)

To reinsert ∆f̃(x) to the sampling system, substitute (8)
into (1) and exchange order of sum and inner product

f [m] =
∑

k 6=k1

f [k] 〈Tkaφ(x), Tmaϕ(x)〉

+∆f [k1] 〈Tk1aφ(x), Tmaϕ(x)〉 (9)

It is observed that the duality constraint in (4) is a
necessary and sufficient condition for the samples to be



independent. Since {Tnaφ}n∈Z form a basis for Vφ, the
dual operator of φ(x) is itself and (4) is satisfied.

We show through experimental result in Section V that
Proposition 1 produces consistent results for some specific
functions. We also illustrate how it can be applied to a general
signal in shift invariant space.

IV. IMPLEMENT SAMPLING SYSTEM WITH MINIMUM
SAMPLING RATE

As we discussed in Section II, the RI of a signal should
suggest us on the choice of the sampling kernel. From (1) and
(2), the sampling process should define a reversible process if
f̃(x) = f(x), or the signal is perfectly reconstructed. It implies
that the amount of information contained in f(x) is preserved
in f [k] and then recovered to f̃(x). The entity of ’information’
is considered in the framework of sampling process as the
degree of freedom of a signal to be specified. To break up the
sampling and reconstruction process, and model the sampling
process (1) as a Markoff process. As a joint production of
f(x) and ϕ(x), the amount of information contained in f [k]
is restricted by Imin(f(x), ϕ(x)). Imin denotes the amount of
information of f(x) or ϕ(x), which is lower. In other words,
the degree of freedom of f [k], or the RI of f [k], is restricted
by the lower of ρf and ρϕ. Therefore, the sampling kernel
chosen for a given signal to have minimum sampling rate
should follow

Proposition 2: To sample a signal f(x) of Rate of In-
novation ρf , the sampling kernel ϕ(x) of RI ρϕ such that
ρϕ ≥ ρf should be used for perfect reconstruction. The
minimum sampling rate is achieved when ρϕ = ρf and the
sampling rate is a = 1/ρϕ.
proof : Firstly, from Property (2), ρϕ = ρTnaϕ. The RI of
the signal remains constant ρf throughout the entire sampling
process. To reconstruct the signal is to reconstruct every piece
of signal in the interval [ka, (k +1)a]. For every sample f [k],
the position of the sample determines the correspondent Tkaϕ
and therefore is able to settle N1 = ρϕ ·a unknowns. Similarly,
during a time interval of a the number of unknowns of f(x) is
N2 = ρf · a. To eliminate all unknowns for f(x) in [ka, (k +
1)a], we need N1 ≥ N2, or ρϕ ≥ ρf .

Secondly, from Property (4), if the kernel ϕ of RI ρϕ is
used, when a = 1/ρϕ, the family {Tkaϕ(x)}k∈Z consists
of the basis for its span Vϕ. For all signals f(x) ∈ Vϕ,
sampling using {Tkaϕ(x)}k∈Z results in the minimum number
of samples.

We show in Section V how the classic Shannon’s sampling
theory and other existing sampling theories can be fitted into
our design of sampling system of minimum sampling rate.

V. EXAMPLES

A. Calculation of RI

1) sin(Bx): Let f(x) = sinc(Bx) and g(x) = f(−x).
Therefore G(ω) = F (−ω). Let z(x) = f(x) ∗ g(x) we have

z(τ) =
∫

x

sinc(Bx)sincB(x− τ)dt = R(τ)

Let Z(ω) be the fourier response of z(τ),

Z(ω) = F (ω)G(ω) =
{

1
B2 |ω| ≤ B

2
0 otherwise

By IFT,

R(τ) = z(τ) =
1
B

sinc(Bτ)

Therefore, R(τ) = 0 for τ = k/B, k ∈ Z, k 6= 0. The rate
of innovation is given by 1/(1/B) = B. It is consistent with
the result that sincBx function has B degree of freedom per
unit time [1].

2) Gaussian: A Gaussian function g(x) can be completely
specified by two parameters, the variance σ2 and the mean
m. Therefore the totally degree of freedom is 2. Ideally, two
samples should be able to describe g(x). However, from Figure
2(a), it is observed that for any two samples at t = a and
t = b, two possible Gaussian functions can be reconstructed
with means at m1 and m2 respectively. Therefore, in order
to pinpoint a gaussian function, the extra information on the
position of the two samples against the mean should be made
available.

a m1 b m2 a

(a)

-z m k-z z

(b)

Fig. 2. (a) The reconstruction of Gaussian with two samples. Two Gaussian
functions are possible if the position of the samples are not specified. (b)
Relationship of k and z for a fixed threshold, meanings of symbols can be
found in Section V-A.2.

To calculate RI for the gaussian function g(x) =
1√
2πσ

e−
(x−m)2

σ using Proposition 1. After integration we ob-
tain

Rg(k) =
∫

g(x)g(x− k)dx =
1

2σ
√

π
exp(−k2) (10)

Since Rg is always positive, we choose a threshold P , P ≤
1/
√

2π such that Rg(k) ≤ P . The RI of gaussian is therefore
ρg = 1/k for a given threshold P .

Here we show that the ρg calculated using Proposition 1
is a truthful measure of degree of freedom for the gaussian
functions. Using the same P to find the confidence range
[−z, z] such that

∫ z

−z
g(x)dx ≥ 1 − P . Take the normal

gaussian with σ2 = 1 and m = 0 for example, some values
of P and their corresponding k and z are listed in Table I.
The entries of Table I is interpreted in this way: First, by
comparing k and z for every same value of P , we find that
k ≥ z and k − z ≥ 0. Considering take the first sample at
−z and the next sample at −z + k, the area of the shaded



TABLE I
VALUES OF k AND z FOR DIFFERENT VALUES OF P IN CASE OF GAUSSIAN

FUNCTION, σ = 1, Q(x) =
R x
0 e−x2/2dx

P k z |z − k| 0.5−Q(z − k)

1/
p

(2π) 0 0 0 0.5
0.25 0.6951 0.6745 0.0206 0.4918
0.20 1.1729 0.8416 0.3313 0.3702
0.15 1.589 1.0364 0.5526 0.2903
0.10 2.0367 1.2816 0.7551 0.2251
0.05 2.6307 1.6449 0.9858 0.1621
0.01 3.6549 2.3263 1.3286 0.092
0.005 4.016 2.5758 1.4402 0.0749
0.001 4.7507 3.0902 1.6605 0.0484

area as in Figure 2(b) is denoted by 0.5 − Q(k − z) where
Q is the error function defined by Q(x) =

∫ x

0
e−x2/2dx. For

all P , P ≤ 0.5 − Q(k − z) which implies k − z ≤ z. To
summarize, for the same threshold P , it is always true that
z < k < 2z. If we sample g(x) at t and t+k in the confidence
range [−z, z], the two samples obtained are always on different
sides of the mean. As a result of that g(x) can be reconstructed
without ambiguity. Therefore the degree of gaussian function
is ρg = 1/k, which is consistent with the result calculated
using Proposition 1.

3) Periodic Signal in Hilbert Square-integrable Space:
Now we consider a more general case where f(t) is a
complex-valued function of real argument t. Assume that f(t)
is piecewise continuous, periodic with period P and square
integrable over an interval of P . The signal can be represented
by its fourier series expansion where f(t) =

∑∞
n=−∞ cneiωnt,

where ωn = 2πn/P . We would apply Proposition 1 to find
out the RI of f(t).

According to Prop 1, note that the autocorrelation defined
for complex signal is R(τ) =

∫
f(t)f∗(t − τ)dt where .∗

means the complex conjugate:

Rf (τ) =
∫ P/2

−P/2

[ ∞∑
n=−∞

cneiωnt

] [ ∞∑
m=−∞

cme−iωm(t−τ)

]
dt

=
∞∑

m,n=−∞
cncmeiωmτ

∫ P/2

−P/2

ei2π(n−m)t/P dt(11)

Since
∫ P/2

−P/2
ei2π(n−m)t/P dt = δn,m, (11) is reduced to

Rf (τ) =
∑∞

n=−∞ c2
neiωnτ . The RI is obtained by setting

Rf (τ) = 0. One possible solution is

for all n eiωnτ = cos(ωnτ) + i sin(ωnτ) = 0

τ − ω0 = k · P

2n
ω0 =

1
ωn

tan−1(−j) k ∈ Z

Using Proposition 1, T = P
2n and ρ = 1/T . As we notice from

the result the RI depends on the frequency of the components
of which f(t) is made. The factor of 2 comes from 2 unknowns
for each component, weight and frequency. It is consistent with
the intuitive knowledge.

B. Design of sampling system with minimum sampling rate

1) Shannon’s sampling theory for bandlimited signals: It
is obvious that Shannon’s sampling theory for bandlimited
signals fits into our design of sampling system. From Section
V-A.1, the function ϕ(x) = sinc(Bx) has RI ρϕ = B. It
is also known that any signal f(x), F (ω) = 0 for ω > πB
has a RI of ρf = B. Therefore, the optimal sampling kernel
for f(x) is ϕ(x) such that ρf = ρϕ and the sampling rate is
a = 1/B.

2) non-bandlimited signals of finite RI: One example is the
sampling theory developed in [1]. Though the pulses are non-
bandlimited, it still can be perfectly reconstructed by a sinc
function of same RI. Another example is shown in [11]. It
is shown that the pulse train can be perfect recovered using
B-splines at the sampling rate equals to its RI.

VI. CONCLUSION

In this paper we consider the problem of calculating the
Rate of Innovation for signals in the shift invariant Hilbert
space. The RI of a signal can be used to identify a suitable
sampling kernel as well as the sampling rate such that the
signal can be perfectly reconstructed using minimum number
of samples. We implement such sampling system using the
RI calculated for the signal, and show through experimental
results that some existing sampling theories can be viewed as
examples of our implementation.
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