
Hierarchical Clustering for Efficient Memory

Allocation in CMAC Neural Network

Sintiani D. Teddy1 and Edmund M.-K. Lai1

School of Computer Engineering,
Nanyang Technological University, Singapore, 639798

sdt@pmail.ntu.edu.sg, asmklai@ntu.edu.sg

Abstract. CMAC Neural Network is a popular choice for control ap-
plications. One of the main problems with CMAC is that the memory
needed for the network grows exponentially with each addition of input
variable. In this paper, we present a new CMAC architecture with more
effective allocation of the available memory space. The proposed architec-
ture employs hierarchical clustering to perform adaptive quantization of
the input space by capturing the degree of variation in the output target
function to be learned. We showed through a car maneuvering control
application that using this new architecture, the memory requirement
can be reduced significantly compared with conventional CMAC while
maintaining the desired performance quality.

1 Introduction

The Cerebellar Model Articulation Controller (CMAC) neural network was pro-
posed by Albus [1] as an associative memory neural network that models the
mechanisms of the human cerebellum. Since then, CMAC has become a popular
choice for real-time control and optimization [2] such as the modeling and control
of robotic manipulators [3]. It has also been applied to various signal processing
and pattern-recognition applications [4,5].

CMAC learning is based on the principle that similar inputs should produce
similar outputs, while inputs that are located distantly in the input space should
produce nearly independent outputs. CMAC is an associative memory which
stores information locally and behaves as a dynamic look-up table, in which its
contents are indexed by the inputs to the network. The advantages of CMAC
are simple computation, fast training, local generalization and ease of hardware
implementation.

Unfortunately, the look-up table behavior of CMAC also implies that the
size of the network increases exponentially as the number of input variables.
This causes problems, especially when there are uneven degree of variations in
the target function to be learned, where uniform quantization of input space will
result in suboptimal space utilization.

It is therefore necessary to find a mechanism for efficient memory space allo-
cation by allocating more storage space in the range of input space which holds
more information. Some previously published works have tackled this problem by

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 473–478, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

474 S.D. Teddy and E.M.-K. Lai

introducing non-uniform quantization of the input space to CMAC [6,7,8]. How-
ever, the examples used to illustrate the performance are single input variable
cases. Moreover, there is a compromise between the computational complexity
and the required memory space.

In this paper, we propose a CMAC architecture for reducing the memory re-
quirements. It makes use of adaptive quantization based on hierarchical cluster-
ing technique, which we refer to as Hierarchical-Clustering based Adaptive Quan-
tization Cerebellar Model Arithmetic Computer (HCAQ-CMAC). The proposed
architecture is tested on an automated car maneuver control application. The
experimental results show a significant improvement on the memory utilization.

2 CMAC Network

The CMAC behaves like a memory, where a particular input to output mapping
acts as the address decoder. Each possible input vector selects a unique set of
cells, the weighted sum of which is the output of the network for that particular
input combinations.

An example of the cell memory allocation is depicted in Figure 2 for a 2-
dimensional input. From this point of view, CMAC can be considered a memory
in which the memory cells are uniformly distributed along the input dimensions.
Each of the input dimension can be considered as being quantized into discrete
steps or quantization levels. The input value will first be quantized into one of
the levels, and the result will be the index which is used to access the memory
locations. The idea of HCAQ-CMAC is based on this observation.

(a) 2D CMAC Memory Cells (b) 2D HCAQ CMAC Memory Cells

Fig. 1. Comparison of CMAC and HCAQ-CMAC Memory Surface

3 The HCAQ-CMAC

Figure 2 shows an example of a two-dimensional HCAQ-CMAC network. In
HCAQ-CMAC, the memory cells are distributed in a non-uniform way according
to the degree of variations of the target function to be learned. This is in contrast
to Figure 2 where the cells are distributed uniformly.

Hierarchical Clustering for Efficient Memory Allocation 475

The idea is to perform a non-uniform quantization of the input variables to
obtain a more efficient coverage of the overall input space. The more changes
observed in the region of an input variable, the more memory space will be
allocated to that particular region along that axis. This results in a finer quan-
tization level inside the input range for which “high frequency of activities” are
observed. This implies that more memory cells are allocated to the range of
input which holds more information than the rest of the input space.

3.1 Adaptive Quantization

The idea of adaptive quantization is to capture the input distribution and output
variation. For this purpose, hierarchical clustering technique is employed. The
clustering method is applied separately on each individual input dimension. For
each input dimension, we start off by having each individual training data sample
as a cluster. In each iteration, the two nearest clusters with the smallest merging
cost function are merged to form a single cluster. The cost function is defined
as the distance between the mean output value of the two clusters, expressed
mathematically as

f(M, N) =
∑

i∈M Xi

nM
+

∑
j∈N Xj

nN
(1)

where M and N are two different clusters, and Xi is the ith output value con-
tained in a cluster.

The clusters-merging iteration is continued until the number of clusters in
that input dimension reaches the predefined memory size. This step is effectively
clustering the nearest data points having similar output together, and allocating
more storage cells into those densely populated areas which contain a high degree
of variation in the target output.

3.2 Memory Allocation

Following the adaptive quantization, is the memory allocation, in which each
of the individual cluster is allocated a memory axes along its particular dimen-
sion. The result of the memory allocation is an adaptively quantized CMAC
associative neural network, as in the example depicted in Fig. 1 for 2D input
case.

3.3 Network 1-Point Training and Neighborhood Retrieval

The learning equation employed is the Widrow-Hoff learning equation, modified
for 1-point update and neighborhood retrieval HCAQ-CMAC:

Zi
xj ,yj

=
1

SN

⎡

⎣
∑

k∈K,l∈L

Wi
k,l

⎤

⎦ (2)

K = {Q[xj] − NRx ≤ k ≤ Q[xj] + NRx} (3)

476 S.D. Teddy and E.M.-K. Lai

L = {Q[yj] − NRy ≤ k ≤ Q[yj] + NRy} (4)

Wi+1
Q[xj],Q[yj]

= Wi
Q[xj],Q[yj]

+ α
[
Wi

Q[xj],Q[yj]
− Dxj ,yj

]
(5)

Here, i is the iteration number, Vj = (xj , yj) is the two dimensional input to a
2D HCAQ-CMAC, Q[·] is the quantization function, Zi

xj ,yj
is the output of the

network for input Vj , SN is the number of elements inside the neighborhood
of the current input, N is the neighborhood constant, Rx and Ry are both the
input space range for input dimension x and y respectively, and Wk,l is the
HCAQ-CMAC memory cell at index (k, l). Neighborhood retrieval is employed
to smoothen the output of HCAQ-CMAC so that fluctuations of the retrieved
output are reduced.

4 Experiments and Results

We demonstrate the performance of the proposed HCAQ-CMAC for a multi-
input experiment. In particular, the HCAQ-CMAC network is used as a car a
automatic steering controller. The car simulator was developed in [9] and [10]. It
consists of a vehicle model together with a 3D virtual driving environment. The
simulated car is equipped with 8 directional sensors in the 8 different directions of
the car, as shown in Figure 4. The sensor readings were taken at every simulation
time interval. The inputs to the HCAQ-CMAC network are the 4 front sensor
values: FLSTB (Front Left Sensor to Barrier), FRSTB (Front Right Sensor to
Barrier), SFLSTB (Side Front Left Sensor to Barrier), SFTSTB (Side Front
Right Sensor to Barrier). The output of the network controls the steering angle.
The car is driven along a path in a multi-lane circuit shown in Figure 2. Training
data are obtained by sampling human drivers’ steering control actions for the
specified track. A 4-dimensional HCAQ-CMAC is trained on the steering angle
response to data from the four front car sensors. Over 100 seconds of driving
data are collected for training. The auto-driving performances are compared with
those obtained using a standard CMAC network, employing the same learning

(a) Car sensors’ placement (b) Driving Track

Fig. 2. Simulation Environment

Hierarchical Clustering for Efficient Memory Allocation 477

Table 1. Comparison of Results from CMAC and HCAQ-CMAC Testing

CMAC HCAQ-CMAC

Memory size per dimension 8 10 5 6
Neighborhood size 0.2 0.2 0.1 0.1

Training

Learning constant 0.1 0.1 0.1 0.1
Final epoch training error 28.5546 30.104 22.6618 22.6607
Training time 9031 ms 14453 ms 3438 ms 4000 ms

Testing

Average deviation from centre line 0.3499 m 0.2068 m 0.2216 m 0.2058 m
Average deviation of car orientation 0.7272 rads 0.7594 rads 0.6891 rads 0.6969 rads

(a) HCAQ CMAC Driving Path (size = 6) (b) CMAC Driving Path (size = 10)

Fig. 3. Driving paths comparison

function and parameters. The results are tabulated in Table 1. Figure 3 gives
a visualization of the tack path obtained using 6 × 6 × 6 × 6 HCAQ-CMAC as
compared to the path obtained using 10×10×10×10 CMAC. It is observed that
using a HCAQ-CMAC whose size is only 60% of the original CMAC network (in
each dimension), driving qualities are very similar. This significant improvement
on memory allocation will not only reduce memory requirement of a CMAC
network, but will also reduce the network training time.

5 Conclusions

We have presented the HCAQ-CMAC as an enhancement to the original CMAC
architecture. HCAQ-CMAC improves memory utilization of CMAC by allocating
more memory cells in the region where rapid changes in the output of the target
function are observed. The performance has been evaluated on multiple-input
application – an automated car maneuver control. Simulation results show that
significant reduction in memory size can be achieved in HCAQ-CMAC, while
still maintaining comparable quality of performance compared to the standard
CMAC network. Further research in this direction will include a more detailed

478 S.D. Teddy and E.M.-K. Lai

study of the computational complexity of the proposed approach and apply it
to other application areas.

References

1. Albus, J.S.: A new approach to manipulator control: The cerebellar model articu-
lation controller (CMAC). J. Dynamic Syst., Measurement, Contr., Trans. ASME
(1975) 220–227

2. Yamamoto, T., Kaneda, M.: Intelligent controller using CMACs with self-organized
structure and its application for a process system. IEICE Trans. Fundamentals
E82-A (1999) 856–860

3. Commuri, S., Jagannathan, S., Lewis, F.L.: CMAC neural network control of robot
manipulators. J. Robot Syst. 14 (1997) 465–482

4. Wahab, A., Tan, E.C., Abut, H.: HCMAC amplitude spectral subtraction for noise
cancellation. Intl. Conf. Neural Inform. Processing (2001)

5. Huang, K.L., Hsieh, S.C., Fu, H.C.: Cascade-CMAC neural network applications
on the color scanner to printer calibration. Intl. Conf. Neural Networks 1 (1997)
10–15

6. Moody, J.: Fast-learning in multi-resolution hierarchies. In: Adv. Neural Infor.
Processing Syst. Volume 14. Morgan Kauffman Publishers (1989) 29–38

7. Menozzi, A., Chow, M.: On the training of a multi-resolution CMAC neural net-
work. 23rd. Intl. Conf. Ind. Electron. Contr. Instrum. 3 (1997) 1130–1135

8. Yeh, M.F., Lu, H.C.: On-line adaptive quantization input space in cmac neural
network. IEEE Intl. Conf. Syst., Man, Cybern. 4 (2002)

9. Pasquier, M., Quek, C., Toh, M.: Fuzzylot: A self-organizing fuzzy neural rule-
based pilot system for automated vehicle. Neural Networks 14 (2001) 1099–1112

10. Ang, K.K., Quek, C.: An improved mcmac with momentum neighborhood and
average trapezoidal output. IEEE Transactions on Systems, Man and Cybernetics
Part B 30 (2000) 491–500

	Introduction
	CMAC Network
	The HCAQ-CMAC
	Adaptive Quantization
	Memory Allocation
	Network 1-Point Training and Neighborhood Retrieval

	Experiments and Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

