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ABSTRACT 
The computational cost of finite impulse response (FIR) 
filters used in the channelizer of a software defined radio 
(SDR) receiver is dominated by the complexity of the 
coefficient multipliers. Previous works have focused on 
minimizing the number of adders employed in the 
coefficient multipliers. These works have not considered 
reducing the complexity of each adder, which is 
significant in SDR applications that require low power 
and high-speed. In this paper, we present a coefficient- 
partitioning algorithm for minimizing the complexity of 
adders used in the multipliers. Our algorithm exploits the 
fact that when multiplication is realized using shifts and 
adds, the adder width can be minimized by limiting the 
shifts of the operands to shorter lengths. Design 
examples show that the proposed method offers an 
average full adder reduction of 20% over the common 
subexpression elimination (CSE) methods. 

1. INTRODUCTION 
The most computationally intensive part of the wideband 
receiver of an SDR is the channelizer since it operates at 
the highest sampling rate [1]. It extracts multiple 
narrowband channels from a wideband signal using a 
bank of FIR filters, called channel filters. Low power 
and high-speed FIR filters implemented with the 
minimum number of adders are required in the 
channelizer. Among the approaches for reducing the 
number of adders in the multipliers of FIR filters, the 
CSE techniques in [2]-[4] produced the best hardware 
reduction since it deals with multiplication of one 
variable (input signal) with several constants 
(coefficients). However, the methods in [2]-[4] have not 
addressed the issue of minimizing the complexity of 
each adder of the multiplier, which is significant in low 
power and high-speed implementations. The complexity 
of implementation of FIR filters in terms of the number 
of full adders (FAs) required for each multiplier was 
presented in [5]. A method for optimizing the CSE 
method in [2] to implement low-complexity channel 
filters was also proposed in [5]. This technique is based 
on the extension of conventional two-nonzero bit (2-bit) 
common subexpressions (CS) in [2] to form three-
nonzero bit and four-nonzero bit super-subexpressions 
(called 3-bit and 4-bit SS, respectively) by exploiting 
identical shifts between a 2-bit bit CS and a third 
nonzero bit, or between two 2-bit CS. Since employing 
SS reduces the number of adders, the number of FAs is 
also reduced correspondingly – this is the basic approach 
adopted in [5]. The main limitation of the method in [5] 

is its dependence on the statistical distribution of shifts 
between the 2-bit CS in the canonic signed digit (CSD) 
representations of FIR filter coefficients. Moreover, the 
routing complexity of the filters designed using the 
method in [5] is higher than that of the 2-bit CSE 
techniques in [2]-[4] as the former method has more 
number of subexpressions.  

 
In this paper, an efficient coefficient-partitioning (CP) 
algorithm to implement the multipliers of channel filters 
with a minimum number of FAs is proposed. We 
combine three techniques: the CP algorithm, the pseudo 
floating-point (PFP) representation and the CSE, to 
reduce the number of FAs. The FA reduction techniques 
proposed in this paper do not employ super-
subexpressions proposed in [5] and hence they do not 
have the dependence on statistical distribution of shifts 
between the 2-bit CS. The problem that we address here 
is how to minimize the number of FAs required in each 
adder of a given minimum-adder filter structure.  

 
The paper is organized as follows. A review of multiplier 
complexity analysis is provided in section 2. In section 
3, we present our CP method. In section 4, we provide 
design examples to illustrate our method. Section 5 
provides our conclusions. 

2. MULTIPLIER COMPLEXITY 
For completeness, a brief review of the complexity of the 
multiplier formulated in [5] is provided here. For an 
adder whose operands have ranges 1r  and 2r  (range is 
the number of bits of an operand) such that ,12 rr >  the 
adder width is assumed as .2r  Consequently, at the most 

2r  FAs are needed to compute the sum. (If overflow 
occurs, )1( 2 +r  FAs are required. For simplicity, we 
assume only 2r  FAs throughout the paper).   
Case I: Odd number of operands: The number of FAs, 

),( oN  required to compute the output corresponding to a 
coefficient with n (for n odd) operands can be 
determined using the expression [5]: 

++++++++= 978756534312 322 rarrarrarrarNo    

1211910 22 rrar ++                                                         (1) 
where s'ia  are equal to zero except .12 =−na   
Case II: Even number of operands: The number of FAs, 

),( eN  required to compute the output corresponding to a 
coefficient with n operands is given by [5]: 

    1210186042 332 rrcrrcrrNe +++++=              (2)           
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Note that range is same as span in [5]. In this paper, we 
use the term span in the PFP representation. 
Correspondingly, nr  is the range of the nth operand, 
which is same as ns  in [5]).  
The coefficient ,0101010000101001.0=kh  is used as an 
example to illustrate the CSE method [2] here. In direct 
implementation, (i.e., the implementation using shifts 
and adds and without CSE or any other multiplier 
optimization techniques) the filter tap output is 
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where 1x  is the input. In this case, n is 6 (even), ,2r  ,4r  
and 6r  are 15, 20 and 24 respectively. Using (2) the total 
number of FAs required to compute (3) in direct method 
is ,22 642 rrr ++  i.e., 103 FAs. The goal of the CSE 
technique [2] is to identify multiple occurrences of 
identical bit patterns in the coefficient set. The pattern [1 
0 1] is present thrice in this example, which can be 
expressed as a common subexpression (CS), 

                       2112 >>+= xxx                          (4) 
Using the CS (4), the output can be expressed as [2]                                                                                     

           14105 222 >>+>>+>>= xxxyk            (5) 
Fig. 1 shows the multiplication structure using CSE. The 
numerals adjacent to the data path represents the number 
of bitwise right shifts. It requires 102 =r  FAs for 
computing (4) and 44242032 =+=+ rr  FAs for (5) as 
shown alongside the adders ,1A  2A  and 3A . The 
numerals in brackets alongside the adders indicate the 
number of FAs used in the adder. Thus in this case, 54 
FAs are required for computing ky  using CSE method 
[2], which is a reduction of 47% over the direct method. 
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Fig.1. FIR multiplier realization using CSE [2]. 

3. COEFFICIENT-PARTITIONING  
The key idea in our approach is to reduce the ranges of 
the operands so that the adder width can be reduced 
which in turn minimizes the number of FAs. To achieve 
this, firstly the coefficients are encoded using the PFP 
representation and then partitioned for further reduction 
of range. 

Definition1 (Pseudo floating-point (PFP) 
representation): The general representation of CSD for 
the ith filter coefficient that has a wordlength B is 
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where .0iijij aac −=  The term 0ia  is known as the shift 

and the upper limit value, )( 0)1( iBi aa −− , is known as 
the span. Instead of expressing the coefficients using B-
bit CSD, it can be expressed as a (shift, span) pair using 
fewer bits. For example, the PFP form of the coefficient 
in the example in Fig. 1 is 

).222222(2 11975205 −−−−−− +++++  The term 52−  
is the shift part, and the bracketed term is the span part. 
The shift operation can be performed after the addition 
of all the terms of the span part. This reduces the 
effective wordlength of the coefficient to that of the span 
(11 bits), which in turn reduces the ranges of the 
operands. Using (2), the number of FAs required to 
implement the PFP coefficient multiplier is 78. We shall 
now show that by combining the PFP coding scheme 
with the CSE and then partitioning the resulting 
expression, further reduction of FAs can be achieved. 

3.1. FA Reduction Using Coefficient-Partitioning 
 
The basic idea of CP is to reduce the range of the span 
part of PFP by partitioning it into two parts. 
Definition 2 (Order): The most significant bit of a filter 
coefficient represented in CSD form is defined as the 
order of the coefficient.   
Firstly, the CSD coefficient is expressed using CS and 
the resulting expression is then coded using PFP 
representation. Let M  represents the span of the PFP 
representation. The span part is partitioned into two parts 
of length 2/M  (or two sub-components of lengths 
 2/M  and  2/M  if M  is odd). The latter sub-
component is then scaled by its order to reduce its span. 
The ‘partitioned and scaled’ versions of the PFP 
coefficients thus obtained can be added using fewer 
numbers of FAs since their ranges are reduced. Consider 
the same example of the filter tap shown in Fig. 1. Using 
PFP, the filter output obtained in CSE method (5) can be 
expressed as )22(2 2

9
2

5
2

5 xxx −−− ++ . In this case, the 
span )(M  is 9 and the shift is 5. Partitioning the span 
part into two parts, )(1 nh  and ),(2 nh  we have 
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where )(nh  is the sum of )(1 nh  (MSB half) and )(2 nh  
(LSB half). The LSB part is further scaled by its order, 

,2 5−  and expressed as )2(2)( 2
4

2
5

2 xxnh −− += . Fig. 2 
shows the implementation of the filter tap using our CP 
method. When compared with the CSE method in Fig. 1, 
the adders 2A  and ,3A  have shorter widths since the 
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ranges of their operands are shorter. The shift 52−  of 
)(2 nh  and that of the final expression 

)22(2 2
9

2
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2
5 xxx −−− ++  are performed after the 

addition stages as shown alongside the data paths at the 
outputs of adders 2A  and 3A  respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Multiplier realization using CP method. 

Thus, our method requires only 43 FAs to implement the 
filter tap, which is a reduction of 20.4% compared with 
the CSE method [2]. Note that both methods have 
identical critical path lengths (3 adder-steps) and hence 
their multiplier delays are same. 

The steps of the CP algorithm are as follows. 

Step 1: Design the filter of length N . 

Step 2: Obtain the CSD representation of the coefficients 
for a desired wordlength. Set .0=k  
Step 3: Identify the CS [1 0 1] and [1 0 –1] and their 
negated versions in )(kh . Express the filter output 
corresponding to the coefficient )(kh  using HCSE. 
Step 4: Express the HCSE output corresponding to )(kh  
in PFP. Set M = span. 
Step 5: Partition the span part into two parts of length 

.2/M  Scale the latter part by its order. 
Step 6: Increment k. If ,Nk ≠  go to Step 3. Otherwise, 
terminate the program.  
We also examined the adder complexity reduction 
achieved by partitioning the coefficient into more than 
two sub-components. If 2x  and 3x  are the CS obtained 
from the input ,1x  and 

jkx  represents the data from the 

set { }321 ,, xxx  that has to be shifted corresponding to the 
position of the j-th CSD bit, the general expression for 
filter output corresponding to a coefficient )(nh of 
wordlength B  is 
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where { }, 1 0, ,1−∈js   { }, ........B 1, ,0∈jp  and z  is the 

number of nonzero digits. If 
1sp  is the shift, (8) can be 

expressed in PFP form as 
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Partitioning )(nh  into n  sub-components at equal 
intervals (i.e., ,1n  ,....2n ),n  (9) can be written as 
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In this case, the widths of the adders in the intermediate-
stages of the multiplier are larger since the multiple inner 

shifts, ),2 ......., ,2 ,2( 32 nsss ppp −−−  in (10) need to be 
performed prior to the intermediate additions. Hence, 
each of these intermediate-stage adders would require 
more FAs. On the other hand, when the coefficient is 
partitioned into two sub-components, only one inner 

shift operation exists (i.e., )2 2sp−  and this is done just 
before the final-stage adder of the multiplier.  Therefore, 
the widths of the adders in the preceding stages that 

compute the sum of the bracketed term of 22 sp−  are less 
and only the final-stage adder requires the highest width. 
Hence, partitioning a coefficient into two halves offers 
the best reduction of FAs than partitioning into multiple 
parts. 

4. DESIGN EXAMPLES 
Example 1: The FIR filters employed in the channelizer 
of the D-AMPS in [7] are considered. The sampling rate 
of the wideband signal chosen is 34.02 MHz as in [7]. 
The channel filters extract 30 kHz D-AMPS channels 
from the wideband signal after downsampling by a factor 
of 350. The pass-band and stop-band edges are 30 kHz 
and 30.5 kHz respectively. The peak pass-band ripple 
specification is 0.1 dB. The peak stop-band ripple (PSR) 
specifications at different frequencies and respective 
filter lengths (N) are chosen to be as in the D-AMPS 
standard [8]. These parameters are shown in Table I. 

           TABLE I. SPECIFICATIONS OF THE D-AMPS CHANNEL FILTERS 

PSR (dB) -48 -65 -85 -96 
N 260 610 940 1180 

 
The reduction of FAs over the direct implementation in 
designing the channel filters whose coefficients are 
coded using 16-bit CSD, for different filter lengths are 
shown in Fig. 3. For the filter with 1180 taps 
(corresponding to the most stringent blocking 
specification), our method (CPM) offers a reduction of 
74%, whereas the reductions offered by the SSE [5] and 
the CSE methods [2] are 62.1% and 35.6% respectively. 
The average reduction of FAs for different filter lengths 
achieved using the CSE [2] is 31.4% and the SSE [5] is 
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54.2%. On the other hand, our CP method offers an 
average reduction of 66%.  
 
 
 
 
 
 
 
 

 
 

Fig. 3. FA reduction over the direct implementation    
in designing the DAMPS channel filters for different 

filter lengths. 

Further, we examine the number of FAs needed to 
employ the filter bank channelizer, where extraction of 
each channel requires a separate narrowband filter. The 
wideband signal considered for channelization consists 
of 1134 D-AMPS channels, each occupying 30 kHz. We 
analysed the requirement of adders to implement the 
filters for extracting 70, 141, 283, 567, and 1134 
channels. The number of filter taps chosen is 1180 and 
the coefficient wordlength considered is 16 bits. Fig. 4 
shows the FA reduction achieved using different 
optimization methods over the direct implementation as 
a function of the number of extracted channels. 
  

 

 

 

 

 
 
 
Fig.4. FA reduction in implementing D-AMPS channel 

filters for different number of channels. 
 
The average reduction of FAs using CP method is 
56.6%whereas the reductions achieved using the CSE [2] 
and the SSE [5] methods are 35.6% and 43.2% 
respectively.  
Example 2: In this example, we consider the channel 
filters employed in receivers for the PDC standard. The 
sampling rate of the wideband signal is 25.6 MHz, which 
covers 1024 channels of 25 kHz spacing. The filter 
length is 1000 to meet the maximum attenuation 
requirement of –90 dB and 24-bit coefficients are 
considered. Fig. 5 shows the reduction of FAs achieved 
using various methods over the direct method for 
extracting different number of channels (128, 256, 512, 
768 and 1024). Our CP method offers an average FA 
reduction of 55%, which is better than that of the CSE 
[2] and SSE [5] methods by 15% and 22% respectively. 

 

 

 

 

 

 

Fig. 5. FA reduction for the PDC channel filters for 
different number of channels extracted. 

5. CONCLUSIONS 
We have proposed a coefficient-partitioning technique to 
efficiently implement low-complexity channel filters for 
SDR receivers. The design examples show that our 
method offers average FA reductions of 20% over the 
CSE method [2] and 15% over the SSE method [5]. 
Though we used the common subexpression techniques 
to compare our method, our algorithm can also be 
applied to reduce the FA requirement of minimum-adder 
FIR filter coefficient multipliers designed using any 
other methods. Therefore, our approach in this paper 
offers a more general solution to multiplier complexity 
reduction. 
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