
VLIW INSTRUCTION SCHEDULING FOR DSP PROCESSORS
BASED ON ROUGH SET THEORY

Shu Xiao, Edmund M-K. Lai and A. P. Vinod

School of Computer Engineering, Nanyang Technological University, Singapore 639798

ABSTRACT

Power-balanced instruction scheduling for Very Long In-
struction Word (VLIW) processors is an optimization prob-
lem which requires a good instruction-level power model
for the target processor. Conventionally, these power mod-
els are deterministic. In this paper, we propose a rough
program problem formulation to handle the imprecision in-
volved in the VLIW power models. A problem-specific ge-
netic algorithm is proposed to solve it. Our experiments
revealed that the actual occurrence of optimal schedules ob-
tained by integer programming often have a large deviation
of the objective function values, due to the ignorance of
imprecision accumulation. The results justified our rough
programming approach to find an optimal schedule which
makes sure that the effects of these imprecision could be
minimized.

1. INTRODUCTION

Power-aware instruction scheduling for very long instruc-
tion word (VLIW) processors is the task of producing a
schedule of VLIW instructions so that the average power
consumption is minimized or the power variation over the
execution time of the program is minimized, while the dead-
line constraints are met [1–4]. An appropriate instruction-
level power model is needed for this problem. In all cur-
rently published models, the power parameters given pre-
cise deterministic values [5–8]. Since these models are es-
timated from empirical measurements, there will always be
some degree of imprecision. The variations in the measured
values are usually handled by using themeanor medianof
a large number of measurements. Furthermore, in order to
reduce the complexity of the power model, some approxi-
mation techniques such as instruction clustering [9] have to
be employed which contributes to the imprecision involved.

These average value power models, however, simplifies
the instruction scheduling formulation. Effective solutions
can be obtained by forumulating it as a mixed-integer pro-
gram which can be solved efficiently [4]. While these ap-
proximations using the average values allow us to optimize
power consumption in the average sense, they are not good
enough in power critical applications. For example, one

cannot guarantee that the optimal schedule obtained with
the average value models that a hard power variation limit
for chip reliability will not be exceeded in live situations.
Therefore, it is desirable to take into account the impreci-
sion involved in the power models.

One possible approach is to formulate the scheduling
program using uncertain programming. There are several
approaches to uncertain programming [10]. They include
stochastic programming, fuzzy programming and rough pro-
gramming. In this paper, we focus on the use of rough pro-
gramming to the power-aware VLIW instruction schedul-
ing problem. Rough programming is based on rough set
theory [11]. One advantage of rough set techniques is that
they do not need any prior information on the data. This is
in contrast with statistics which requires the assumption of
prior probability distributions. Similarly, basic probability
assignments are needed for those based on the Dempster-
Shafer theory. For fuzzy set theory, fuzzy membership func-
tions are required. The scheduling problem is formulated as
a chance-constraint rough program. A problem-specific ge-
netic algorithm (GA) is proposed to solve it.

The rest of the paper is organized as follows. The rough
programming formulation for this optimization problem is
described in Section 2. Section 3 presents our problem-
specific genetic algorithm. Our experimental results are pre-
sented in Section 4.

2. PROBLEM FORMULATION

The reader is referred to [10] for a formal definition of a
rough variable. A power parameterpi can be expressed as
a rough variable in the form([a, b], [c, d]) where[a, b] is its
lower approximation and[c, d] its upper approximation and
c ≤ a ≤ b ≤ d are real numbers. Then the scheduling prob-
lem can be formulated as the following chance-constraint
rough program:



P1: min P (X, ξ)inf (α)
subject to

X =
⋃

xk
i i = 1, ..., n; k = 1, ..., t

xk
i ∈ {0, 1} i = 1, ..., n; k = 1, ..., t

(1)

G(X) ≤ 0
L(X) = 0 (2)

The objective function is defined by

P (X, ξ)inf (α) = inf{P |Tr{P (X, ξ) ≤ P} ≥ α} (3)

An instruction scheduleX is a set of binary decision vari-
ablesxk

i , which has a value of1 if instructioni is allocated
to time slotk; otherwise its value is0. n is the number of
instructions inX and t is the number of time slots avail-
able.G(X) ≤ 0 andL(X) = 0 are the processor resource
constraints, and data dependency and instruction deadline
constraints respectively. The functionP (X, ξ) returns the
power variation ofX given the set of power consumption
parametersξ of the target processor. Since the elements of
ξ are rough variables, the values of this function are also
rough. The rough values of this function are ranked by its
α-pessimistic valueP (X, ξ)inf (α) which is is the smallest
valueP satisfyingTr{P (X, ξ) ≤ P} ≥ α. This means
that, for a givenX, the rough return ofP (X, ξ) will be
below the pessimistic valueP with a confidence level of
α. The formal definition of the trust measure operatorTr()
can be found in [10]. A rough eventA must hold if its trust
measureTr(A) is 1, and fail if its trust measureTr(A) is 0.

Solving this program involves searching for the mini-
mumα-pessimistic valueP (X, ξ)inf (α) among all feasible
schedulesX. Since the objective function to be optimized
is multimodal and the search space is particularly irregu-
lar, genetic algorithm [12] is an appropriate tool for obtain-
ing solutions to this rough program. Next, we propose a
problem-specific genetic algorithm to solve the rough pro-
gram.

3. IMPLEMENTATION OF GA

3.1. Chromosome Encoding and Initial Population

Each chromosome is an array of integer variables each rep-
resenting an instruction. The integer value indicates the ex-
ecution time slot allocated to that instruction.

An initial population of candidate schedules is a set of
feasible schedules created randomly. ”Seeded” with sched-
ules obtained through conventional scheduling algorithms,
the functionrandomchange1instruction()generates a new
schedule by changing the allocated time slot of an instruc-
tion randomly. This process is repeated until we have a
whole population of initial feasible chromosomes.

3.2. Fitness Evaluation

Rough simulation [10] plays an important role in rough sys-
tems. In order to computeP (X, ξ)inf (α) for a candidate
X, the following rough simulation process is used. LetR
be the sample size. For each power consumption parameter
pi ∈ ξ (i = 1, 2, 3, . . .), randomly takeR samples from
its lower and upper approximations,lki (k = 1, . . . , R) and
uk

i (k = 1, . . . , R), respectively. The value of the function
P (X, ξ)inf (α) is given by the minimum value ofv such
that

l (v) + u (v)
2R

≥ α (4)

wherel (v) , u (v) ≤ R denote the number of samples that
satisfy

P
(
X, lk1 , . . . , lki , . . .

)
inf

(α) ≤ v

and
P

(
X,uk

1 , . . . , uk
i , . . .

)
inf

(α) ≤ v

respectively.

3.3. Selection, Crossover, and Mutation

Our design for chromosome selection adopts the rank-based
roulette-wheel selection scheme [12]. The chromosomes
are sorted in non-increasing order of fitness. Theith chro-
mosome is assigned a probability of selection by a nonlinear
function,q(i) = a(1 − a)i−1. The actual selection is done
using the roulette wheel procedure as in Figure 1.

q0 = 0;1

for i ← 1 to pop sizedo2

Calculate accumulative probabilities for theith3

chromosomeqi←
i∑

j=1

q(j);

end4

Generate a random numberr within [0, qpop size];5

Select theith chromosome such thatpi−1 < r < pi;6

Algorithm 1 : Chromosome selection by roulette
wheel.

The selection process is performed for whole popula-
tion. The selected parents for crossover operation are de-
noted byV ”

1 , V ”
2 , V ”

3 , . . . and divided into pairs:

(V ”
1 , V ”

2 ), (V ”
3 , V ”

4 ), (V ”
5 , V ”

6 ), . . .

We use a2-point crossover operator which chooses2 cut-
ting points at random and alternately copies each segment
out of the two parents. The crossover process may pro-
duce unfeasible schedules due to violations of constraints
described in Section 2. To avoid the creation of infeasible
schedules, constraints check operators have been included.



If feasible offsprings cannot be created, the parents will not
be replaced.

To prevent premature convergence, a mutation process
is used by randomly change the allocated time slot of an
instruction to obtain a new feasible schedule. When a pre-
determined number of generations is reached, the algorithm
stops. The maximum number of generations depends on the
size of the problem, i.e. the number of instructions and the
number of available time slots.

4. EXPERIMENTAL RESULTS

The target processor is the TMS320C6711 which is a VLIW
digital signal processor. We conducted measurements for
each power consumption parameter using the experimen-
tal setup as in [13]. A set of experiments have been gen-
erated where each experiment is to measure the processor
core current running a program composed of a sequence
of instructions. Different instruction instances are consid-
ered in terms of opcode, operands, conditional registers,
cross registers, functional units or inter-instruction effect.
Based the measured data, we characterize the power con-
sumption parameters as rough variables described by their
lower and upper approximations which encapsulate the im-
precision involved. Rosetta Toolkit [14] is a rough set the-
ory tool to analyze data. The possible current values on
real line are discretized using the Boonlean reasoning algo-
rithm and then the lower and upper approximations for each
power consumption parameter are computed.

Rough program formulation and GA are tested using the
digital signal processing benchmarks from Trimaran [15].
Conventional scheduling algorithms in Trimaran is used to
produce the non-power-aware schedules for comparison. The
confidence levelα is set to0.9. In our problem, the crossover
operators often cannot create enough feasible offsprings due
to violations of the constraints. Therefore, in order to pre-
vent premature convergence, the crossover probability is set
to a low value0.2 while the mutation rate is set to a high
value 0.8. The population sizepop size are 30. Tuning
these parameter values to be suitable for a specific data set
may give rise to improved performance of the GA.

For any given target instruction block, we conduct in-
struction scheduling by means of mixed integer program-
ming and rough programming separately. Current devia-
tions (from the mean) of the schedules obtained by rough
program formulation are compared with those of the sched-
ules obtained by mixed integer program formulation, with
respect to their deviations of their objective function values
under all realization of the power parameters. Next, we give
a simple example to illustrate this comparison.

Example 1 Consider an instruction block consisting of four-
teen instructions:{addaw, add, addaw, add, ldw, mv, ad-
daw, stw, b, addaw, cmpeq, stw, ldw, b}.

Table 1. Rough power consumption parameters in Exam-
ple 1.

paddaw, padd,
pmv, pcmpeq

pldw,pstw pb

(∅, [190, 214]) (∅, [214, 233]) (∅, [190, 207])

Using an average value model, the scheduling problem
is formulated as a mixed-integer program and solved by a
branch and bound algorithm as in [4]. The optimal sched-
ule is given byXMIP = {x1

1, x
1
2, x

4
3, x

1
4, x

2
5, x

4
6, x

1
7, x

2
8, x

4
9,

x5
10, x

5
11, x

5
12, x

6
13, x

6
14} where the superscripts indicate the

time slot in which the instruction is being scheduled.
The power parameters of the target processor are repre-

sented as rough variables as shown in Table 1. The schedul-
ing problem is formulated as given byP1. The optimal
schedule obtained using the proposed genetic algorithm out-
lined in Section 3 is given byXRP = {x1

1, x
1
2, x

4
3, x

1
4, x

2
5, x

5
6,

x2
7, x

3
8, x

4
9, x

5
10, x

5
11, x

5
12, x

6
13, x

6
14}

Conducting rough simulation of these two schedules with
the possible realization of the power parameters, we have

P (XRP , ξ)inf (0.9) = 14798 (5)

P (XMIP , ξ)inf (0.9) = 17713 (6)

whereξ denotes the set of power consumption parameters
described in Table 1. (5) means, with confidence level0.9,
the current deviations (from the mean) of scheduleXRP

are less than 14798 under all the possible realization of the
power parameters inξ. (6) means, with confidence level0.9,
the current deviations (from the mean) of scheduleXMIP

are only less than 17713 under all the possible realization
of the power parameters inξ. We can see that the sched-
ule obtained by integer programming is far from a globally
optimal one if considering all the possible realization of the
power parameters.

Table 2 shows the comparison results of the schedules
obtained from more problem instances with different prob-
lem dimensions. For each problem instance, the problem
dimension (Dim.) indicates the number of time slots and
the number of instructions respectively in the instruction
block. The objective function values of the optimal sched-
ules obtained through MIP (Column ”MIP”) are generally
much larger than those obtained through rough program-
ming (Column ”RP”). This implies that the optimal sched-
ules obtained by integer programming often have a larger
deviation of the objective function values, with all the pos-
sible realization of the power parameters considered. It is
a result of the ignorance of uncertain in the power param-
eters. The rough programming approach takes parameter
imprecision into account in a natural way.



Table 2. Experimental results on instruction blocks of vari-
ous sizes from Trimaran’s benchmark program.

Dim. Source MIP(mA) RP(mA) Improvement
(%)

(6,14) Wave 17713 14798 16.5
(9,14) Wave 48225 30552 36.6
(13,14) Fir 99643 82177 17.5
(10,20) Bmm 94124 71452 24.1
(14,15) Bmm 106120 72826 31.4
(10,22) Bmm 72757 45416 37.6
(12,19) Fir 107432 83827 22.0
(12,22) Bmm 137611 104337 24.2
(17,16) Fib-mem 141390 130557 7.7
(19,23) Fir 255739 230823 9.7
(21,21) Bmm 240921 212049 12.0
(13,35) Bmm 228399 134942 40.9
(23,22) Bmm 273203 221874 18.8
(25,24) Bmm 286887 168803 41.2
(27,24) Fir 316431 152204 51.9
(31,30) Bmm 537007 491859 8.4
(35,34) mm-dyn 704769 666751 5.4

5. CONCLUSIONS

Rough programming has been applied to the problem of
power-balanced VLIW instruction scheduling with power
model uncertainties. We formulated the scheduling prob-
lem as a chance-constraint rough program and a problem-
specific genetic algorithm is developed to solve it. The ex-
perimental results show that the schedules obtained through
rough programming have real power variations which are
guaranteed to be within the optimal values with the desired
level of confidence. This is in contrast with the conven-
tional approach using mixed-integer programming where
the power variations of the obtained instruction schedules
cannot be guaranteed.

6. REFERENCES

[1] H. Yun and J. Kim, “Power-aware modulo scheduling
for high-performance VLIW processors,” inProc. Int.
Symp. on Low Power Electronics and Design, Hunt-
ington Beach, California, USA., Aug. 2001, pp. 40–
45.

[2] H. Yang, G. R. Gao, and C. Leung, “On achiev-
ing balanced power consumption in software pipelined
loops,” in Proc. Int. Conf. on Compilers, Architec-
ture, and Synthesis for Embedded Systems, Grenoble,
France, Oct. 2002, pp. 210–217.

[3] C. Lee, J. K. Lee, T. T. Hwang, and S. C. Tsai, “Com-

piler optimization on VLIW instruction scheduling for
low power,” ACM Trans. Design Automation of Elec-
tronic Syst., vol. 8, no. 2, pp. 252–268, Apr. 2003.

[4] S. Xiao and E. M-K. Lai, “A branch and bound
algorithm for power-aware instruction scheduling of
VLIW architecture,” inProc. Workshop on Compilers
and Tools for Constrained Embedded Syst., Washing-
ton DC, USA, Sept. 2004.

[5] H. Mehta, R. M. Owens, and M. J. Irwin, “Instruc-
tion level power profiling,” inProc. IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, 1996,
vol. 6, pp. 3326–3329.

[6] V. Tiwari, S. Malik, A. Wolfe, and M. T. Lee, “Instruc-
tion level power analysis and optimization of soft-
ware,” inProc. Int. Conf. on VLSI Design, Jan. 1996,
pp. 326–328.

[7] C. Gebotys, “Power minimization derived from
architectural-usage of VLIW processors,” inProc. De-
sign Automation Conf., Los Angeles, USA, 2000, pp.
308–311.

[8] V. Zaccaria, M. Sami, D. Sciuto, and C. Silvano,
Power estimation and optimization methodologies for
VLIW-based embedded systems, Kluwer, Boston,
2003.

[9] A. Bona, M. Sami, D. Sciutos, C. Silvano, V. Zaccaria,
and R.Zafalon, “Energy estimation and optimization
of embedded VLIW processors based on instruction
clustering,” inProc. Design Automation Conf., New
Orleans, USA, 2002, pp. 886–891.

[10] B. Liu, Theory and practice of uncertain program-
ming, Physica-Verlag, Heidelberg, 2002.

[11] Z. Pawlak,Rough Sets: theoretical aspects of reason-
ing about data, Kluwer, Boston, MA, 1991.

[12] D. E. Goldberg, Genetic algorithms in search, op-
timization and machine learning, Addison-Wesley,
Boston, MA, 1989.

[13] J. T. Russell and M. Jacone, “Software power esti-
mation and optimisation for high performance, 32-bit
embedded processors,” inProc. Int. Conf. on Com-
puter Design: VLSI in Computers & Processors, Oct.
1998, pp. 328–333.

[14] J. Komorowski, A. Skowron, and A. Øhrn, “The
Rosetta toolkit,” inHandbook of Data Mining and
Knowledge Discovery, W. Kl Ed. Oxford University
Press, 2000.

[15] “Trimaran: An infrastructure for research in
instruction-level parallelism,” .


