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Abstract— The complexity of Finite Impulse Response (FIR) 
filters is dominated by the number of adders (subtractors) used 
to implement the coefficient multipliers.  A greedy Common 
Subexpression Elimination (CSE) algorithm with a look-ahead 
method based on the Canonic Signed Digit (CSD) 
representation of filter coefficients for implementing low 
complexity FIR filters is proposed in this paper. Our look-
ahead algorithm chooses the maximum number of frequently 
occurring common subexpressions and hence reduces the 
number of adders required to implement the filter. This adder 
reduction is achieved without any increase in critical path 
length. Design examples of FIR filters show that the proposed 
method offers an average adder reduction of about 20% over 
the best known CSE method. 

I. INTRODUCTION  
FIR filters find extensive application in mobile 

communication systems due to its linear phase property and 
absolute stability. Low complexity and high speed digital 
filtering for mobile computing and communication 
applications require dedicated hard wired implementation of 
the filters. The number of additions (subtractions) used to 
implement the coefficient multiplier determines the 
complexity of FIR filters. Many approaches including 
coefficient coding using efficient arithmetic schemes, 
coefficient optimization techniques, distributed arithmetic 
techniques, read-only memory (ROM) - based designs, and 
common subexpression elimination (CSE) techniques have 
been proposed. Among these, the CSE techniques in [1]–[4] 
produced the best hardware reduction since it deals with 
multiplication of one variable (input signal) with multiple 
constants (coefficients). The goal of CSE is to identify 
multiple occurrences of identical bit patterns that are present 
in the CSD representation of coefficients, and eliminate these 
redundant multiplications. In [1], a graphical algorithm was 
proposed to identify and eliminate 2-bit subexpressions. A 
more efficient method was proposed in [2] which eliminated 
the most commonly occurring 2-bit subexpressions. As an 
additional criterion in the subexpression identification 
process, an estimation of a latch count improvement was also 
considered in [2]. A modification of the 2-bit CSE technique 

presented in [1] for identifying the “proper” patterns for 
elimination of common sub expression and to maximize the 
optimization impact was proposed in [3]. In [4], the 
technique in [2] was modified to minimize the logic depth 
(critical path length) into the digital structure. In [5], it has 
been shown that the Horizontal Common Subexpression 
Elimination (HCSE) technique offered better reduction of 
adders and Logic Depth (LD) than Vertical Common 
Subexpression Elimination (VCSE) in FIR implementations. 
The Bull-Horrock’s (BH) algorithm [6] and Reduced Adder 
Graph-n-dimensional (RAG-n) [7], used for the synthesis of 
filter coefficients are graph dependent, which produced 
multipliers with large logic depth (critical path length). A 
new Binary Subexpression Elimination (BSE) method was 
proposed in [8] using binary representation of filter 
coefficients that offered better adder reductions than 
previous CSD-based CSE methods. However the 
subexpression elimination in BSE [8] is not done by the most 
resourceful method because of the sequential checking and 
formation of binary bit patterns. This results in many bits 
being ungrouped and additional adders being required to 
implement them. 

In this paper, we propose a CSE algorithm based on CSD 
representation of coefficients, which combines three 
techniques - the HCSE, the VCSE and the look-ahead 
technique. Our method provides adder reductions in case of 
filter coefficients with both smaller and larger word lengths. 
Moreover our technique does not increase the LD of the 
filter. 

The rest of the paper is organized as follows. In Section 
II, we briefly review the BSE [8]. Section III shows an 
illustrative example of our method. Our CSE algorithm is 
presented in Section IV. In Section V, design examples of 
FIR filters and their comparisons are presented. Section VI 
provides our conclusions.  

II. BINARY SUBEXPRESSION ELIMINATION (BSE) 
In BSE [8], three techniques are combined for reducing 

the number of adders - Binary Horizontal Subexpression 
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Elimination (BHSE), the Binary Vertical Subexpression 
Elimination (BVSE) and the hardwiring of the final stage 
adder. In the BHSE technique, the Binary Horizontal 
Common Subexpressions (BHCSs), x6 to x9,  are formed 
from the binary representation of coefficients as follows.  

                 [0 1 1] = x6 = 2-1x1
 + 2-2x1                                              (1) 

                 [1 0 1] = x7 = x1 + 2-2x1                                  (2) 

                 [1 1 0] = x8 = x1 + 2-1x1                                  (3)                                

                 [1 1 1] = x9 = x1 + 2-1x1 + 2-2x1                       (4) 

A direct realization of the BHCSs (1)-(4) would require 5 
adders. But as x8  can be obtained from x6  by a shift 
operation and x9 from x8 using an adder, only 3 adders are 
required to realize the BHCSs (1)-(4) as shown by (5) and 
(6). 

       x6 = 2-1x1
 + 2-2x1 = 2-1 ( x1

 + 2-1x1 ) = 2-1x8               (5) 

       x9 = x1 + 2-1x1 + 2-2x1 = x8 + 2-2x1                             (6) 

In the BVSE technique, the basic BVCS [1 1] is taken and 
implemented as 

                             x10 = x1 + x1[-1]                                  (7) 

The main disadvantage of the BSE [8] is that BHCSs are 
formed without a look-ahead and therefore many bits are left 
ungrouped after obtaining the BHCSs. Moreover, as the 
number of nonzero bits in binary representation is 
considerably larger than CSD representation, the BSE has 
the disadvantage of starting with a large number of nonzero 
bits in the optimization space compared to CSD-based CSE 
methods. 

III. NEW COMMON SUBEXPRESSION METHOD 
We propose an improved CSE method based on the CSD 

representation of the filter coefficients that maximizes the 
elimination of common subexpressions. The basic idea of 
our method is searching and selecting patterns with a look 
ahead to eliminate redundant Horizontal and Vertical 
Common Subexpressions (HCSs and VCSs) so that the 
subexpressions are maximized and least number of nonzero 
bits are left ungrouped. The grouping is done in such a way 
that the logic depth of the multiplier is kept minimal. As our 
CSE uses CSD, the initial optimization space has fewer 
numbers of nonzero bits unlike BSE [8].     

The proposed CSE method can be illustrated using the 
example of a 12-tap FIR filter coefficients given in Table I. 
The patterns are selected based on a look-ahead method, as 
shown in Figures 1(a) and 1(b). Fig. 1(a) shows the 
conventional sequential subexpression formation for an 
example filter h0 and h1, whereas Fig. 1(b) shows the same 
fusing our look-ahead method. Note that there are two 
ungrouped bits in Fig 1(a), whereas all the bits are grouped 
in Fig 1(b), which minimizes the number of adders. The 
HCSs x3 = 3 = [1 0 1], x4 = 4 = [1 0 -1] ,   x5 = 5 = [1 0 0 1] , 

x6 = 6 = [1 0 0 -1] and VCS x2 = 2 = [1 1] and their negated 
versions are indicated inside rectangles in Table I.  

 

Fig. 1(a). Grouping by the Sequential method 

 

 
Fig 1(b). Grouping by the Look-Ahead method 

TABLE 1.  CSD  REPRESENTATION  OF  FILTER  COEFFICIENTS 
 1 2 3 4 5 6 7 8 9 10 11 12 

h0 0 0 1 0 1 0 0 -1 0 1 0 1 
h1 0 0 1 0 1 0 1 0 0 -1 0 0 
h2 0 0 0 0 1 0 0 0 0 1 0 1 
h3 0 0 0 1 0 1 0 1 0 0 1 0 
h4 0 0 0 1 0 1 0 -1 0 0 1 0 
h5 0 1 0 0 1 0 1 0 0 1 0 0 

 
Table II is obtained from Table I by substituting the 
respective pattern numbers in the respective bit positions, 
i.e., HCSs, [1 0 0 -1] = 6, [1 0 1] = 3, [1 0 0 1] = 5 and VCS, 
[1 1] = 2. Further, multiple occurrences of two HCSs with 
identical shifts between them or an HCS and a nonzero bit 
with identical shifts between them are grouped to form 
super-subexpressions (SSs). In Table II, the SS 8 is formed 
from the HCS [1 0 1] and the bit ‘1’ with a shift difference 
of one between them (as in h3) and the SS 9 is formed from 
the HCS [1 0 1] and the bit ‘-1’ with a shift difference of 
one between them (as in h4).  

TABLE II.  FINAL  REPRESENTATION  OF  FILTER  COEFFICIENTS 
 1 2 3 4 5 6 7 8 9 10 11 12 

h0 0 0 2 0 6 0 0 0 0 3 0 0 
h1 0 0 0 0 2 0 6 0 0 0 0 0 
h2 0 0 0 0 0 0 0 0 0 3 0 0 
h3 0 0 0 8 0 0 0 0 0 0 2 0 
h4 0 0 0 9 0 0 0 0 0 0 0 0 
h5 0 5 0 0 0 0 5 0 0 0 0 0 

 
From Table II, we can express the output of the example as : 

(8)     5][5x725][5x224][9x423][2x1123][9x42

2][3x1021][6x721][2x523x1026x522x32ky

−−+−−+−−+−−+−−+

−−+−−+−−+−+−+−=

The number of Multiplier Block Adders (MBAs) required to 
implement the filter using the direct method (method using 
shifts and adds) in Table I is 18. The proposed Greedy CSE 
method needs only 11 MBAs (6 for the subexpressions and 
5 for the actual realization), which is a reduction of 39% 
over the direct method. The reduction percentage is larger 
when higher order filters are considered. 

 1 2 3 4 5 6 7 8 9 10 11 12 

h0 0 0 1 0 1 0 1 0 -1 0 -1 0 

h1 0 0 1 0 0 1 0 0 1 0 0 0 

 1 2 3 4 5 6 7 8 9 10 11 12 

h0 0 0 1 0 1 0 1 0 -1 0 -1 0 

h1 0 0 1 0 0 1 0 0 1 0 0 0 



IV. THE PROPOSED GREEDY ALGORITHM 
In this section, we explain the proposed CSE method. We 
make use of both HCSs and VCSs, but we take into account 
only [1 1] and [-1 -1] as the VCSs as we are able to 
completely exploit the symmetry of the coefficients (due 
their same sign).  Our CSE procedure is as follows: 
Step 1: Design the filter of length N according to the desired 
specification. 
Step 2: Obtain the CSD representation of the coefficients for 
desired word length. 
Step 3: The algorithm checks for nonzero bits at (z, w), 
(z+1, w) , (z, w+2) and (z+1, w+2) where ‘z’ is the 
coefficient and ‘w’ is the bit position. 
Case 1: When there is a HCS and VCS at (z, w), and when 
the nonzero bits at (z, w) and (z+1, w) are of the same sign: 
(a)  First the VCS at (z, w) is considered - the number of 
subexpressions present and the non pairable bits are found 
for the rest of the bits in the (z) coefficient.  
(b)  Then the HCS at (z, w) is considered and the same 
procedure as (a) is followed.  
(i) The number of subexpressions and non-grouped bits are 
compared for both these procedures and the one with the 
largest number of patterns is chosen as the method to pair up 
the rest of that (z) coefficient.  
(ii) If the number of subexpressions and non-grouped bits is 
the same, then the procedure considering the HCS is 
implemented as they are easier to realize. 
(c)  Depending on whether the VCS or HCS at (z, w) is 
chosen to group and form subexpressions, increment w by 1 
or 3 respectively. If w <= N-1, go to step 3. Otherwise go to 
step 4.  
(d)  If the nonzero bits at (z, w) and (z+1, w) are not of the 
same sign, then the HCS at (z, w) is selected. Increment w. 
If w <= N-1, go to step 3. Else go to step 4. 
Case 2: A similar procedure as illustrated above is used 
when there is a HCS at (z+1, w) and a VCS at (z, w), the 
nonzero bits at (z, w) and (z+1, w) being of the same sign: 
(a)  First, the VCS at (z, w) is considered. The number of 
subexpressions present and non grouped bits are found for 
the rest of the bits in the (z+1) coefficient. 
(b)  Then the HCS at (z, w) is considered and the same 
procedure as (b) is followed. 
(i)  The number of subexpressions and non-grouped bits are 
compared for both these procedures and the one with the 
largest number of patterns is chosen as the method to pair up 
the rest of that (z+1) coefficient.  
(ii)  If the number of subexpressions and non-grouped bits is 
the same, then the procedure considering the HCS is 
implemented as they are easier to realize. 
(c)  Depending on whether the VCS at (z, w) or HCS at 
(z+1, w) is chosen to group and form subexpressions, 
increment w by 1 or 3 respectively. If w <= N-1, go to step 
3. Otherwise go to step 4. 
(e) If the nonzero bits at (z, w) and (z+1, w) are not of the 
same sign, then the HCS at (z+1, w) is selected. Increment 
w. If w <= N-1, go to step 3. Else go to step 4. 

Case 3: When only a HCS exists at (z, w), then select the 
HCS. Increment w. If w <= N-1, go to step 3. Otherwise go 
to step 4. 
Case 4: When only a VCS exists at (z, w), then select the 
VCS. Increment w by 1. If w <= N-1, go to step 3. 
Otherwise go to step 4. 
Step 4:  When w > N-k, where k is the length of the pattern 
that is checked, set w = 1 and increment z by 1, go to step 3. 
When w > N-k, and z = (number of filter taps)/2, go to step 
5. 
Step 5: Once the HCSs and the VCSs are grouped, the 
coefficients are now checked for SSs like [1 0 1 0 1], [1 0 1 
0 -1], [1 0 -1 0 1], [1 0 -1 0 -1] and their negated versions. 
Implement these SSs only if they occur at least twice in the 
coefficient matrix. This keeps a check on the LDs. When w 
> N-k, where k is the length of the pattern that is checked, 
set w = 1 and increment z by 1, go to step 5. When w > N-k, 
and z = (number of filter taps)/2, terminate the program. 

V. DESIGN EXAMPLES 
In this section, we present examples of implementing 

several FIR filters of different length and frequency 
response specifications using the proposed algorithm and 
provide comparisons with the CSE [2] and the BSE [8] 
methods. FIR filters are designed using the Parks–
McClellan algorithm.  
 
Example 1: In this example, the filter pass-band and stop-
band frequencies are 0.2π and 0.22 π respectively. The 
comparison is done for different filter lengths of 20, 50, 80, 
120, 200, 400 and 800 and for different wordlengths of 12, 
16, 20 and 24 bits. Our proposed CSE gives a significant 
reduction of adders. Fig. 2 shows the comparison of 
reductions of adders achieved using our CSE method, the 
NR-SCSE [4] and the BSE [8] method, over the Hartley’s 
CSE method [2], when the filter tap is 120 for wordlengths 
of 12, 16, 20 and 24 bits. The average adder reduction 
achieved using our method is 50.9% over the NR-SCSE [4] 
and 11.24% over BSE [8]. Overall, for all the filters in 
example 1, our method offers an average adder reduction of 
56.6% over the CSE [2], 50.2% over the NR-SCSE [4] and 
17.8% over the BSE [8]. The LDs of filters realized using 
our method are almost identical to that of BSE [8]. 
 
Example 2: In this example, the FIR filters employed in the 
filter bank channelizer of D-AMPS are considered as in [9]. 
Note that the decimation is moved to the left of the band-
pass filters using the noble identity and the sampling rate 
chosen is 34.02MHz. The channel filters extract 30 kHz 
DAMPS channels from the input signal after down sampling 
by a factor of 350. The pass-band and stop-band edges are 
30 kHz and 30.5 kHz respectively. The peak pass-band 
ripple is chosen as 0.1 dB. Table III shows the comparison 
of adders and LDs needed to implement the 610-tap filter 
corresponding to a stop-band attenuation of -65 dB for word 



lengths 12, 16, 20 and 24 bits, using our CSE method and 
the methods in NR-SCSE [4] and BSE [8].  

 
Fig. 2. Reduction of adders in designing the filters in 

example 1 for 16-bit word length. 

 
Fig. 3. Reduction of adders in designing the 610-tap  

D-AMPS filter for different word lengths. 
 
From Table III, it can be seen that our method offers 
considerable reduction in the number of adders with almost 
no increase in the LDs.  

TABLE III.   COMPARISON  OF  THE   D-AMPS  CHANNEL  FILTER  WITH 
610  TAPS  FOR  DIFFERENT  METHODS 

The reduction of adders for the 610-tap filter for different 
word lengths is shown in Fig. 3. Overall, considering all the 
D-AMPS filters in example 2, our method offers an average 
adder reduction of 62.3% over the NR-SCSE [4] and 19.6% 
over the previously BSE [8]. The LDs of our method are 
almost same as that of BSE [8].  
 

VI.  CONCLUSIONS 
We have presented a greedy CSE algorithm based on 

CSD representation of coefficients to implement low-
complexity FIR filters. We have shown that the look-ahead 
method proposed by us maximizes the grouping of the 
subexpressions, thus leaving minimum number of unpaired 
nonzero bits. The average reduction of adders using our 
method is 20% over the best known CSE method (BSE [8]). 
The logic depths of filters implemented using our method is 
almost identical to that of BSE [8].   
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Word 
Length 

CSE [2] NR-SCSE 
[4] 

BSE [8] Proposed 
CSE 

 LO LD LO LD LO LD LO LD 
12 260 3 247 2 47 3 30 3 
16 525 4 462 4 168 3 125 3 
20 774 4 680 4 306 4 282 4 
24 1007 4 872 5 496 4 441 5 


