
A Greedy Common Subexpression Elimination
Algorithm for Implementing FIR Filters

Abstract— The complexity of Finite Impulse Response (FIR)
filters is dominated by the number of adders (subtractors) used
to implement the coefficient multipliers. A greedy Common
Subexpression Elimination (CSE) algorithm with a look-ahead
method based on the Canonic Signed Digit (CSD)
representation of filter coefficients for implementing low
complexity FIR filters is proposed in this paper. Our look-
ahead algorithm chooses the maximum number of frequently
occurring common subexpressions and hence reduces the
number of adders required to implement the filter. This adder
reduction is achieved without any increase in critical path
length. Design examples of FIR filters show that the proposed
method offers an average adder reduction of about 20% over
the best known CSE method.

I. INTRODUCTION
FIR filters find extensive application in mobile

communication systems due to its linear phase property and
absolute stability. Low complexity and high speed digital
filtering for mobile computing and communication
applications require dedicated hard wired implementation of
the filters. The number of additions (subtractions) used to
implement the coefficient multiplier determines the
complexity of FIR filters. Many approaches including
coefficient coding using efficient arithmetic schemes,
coefficient optimization techniques, distributed arithmetic
techniques, read-only memory (ROM) - based designs, and
common subexpression elimination (CSE) techniques have
been proposed. Among these, the CSE techniques in [1]–[4]
produced the best hardware reduction since it deals with
multiplication of one variable (input signal) with multiple
constants (coefficients). The goal of CSE is to identify
multiple occurrences of identical bit patterns that are present
in the CSD representation of coefficients, and eliminate these
redundant multiplications. In [1], a graphical algorithm was
proposed to identify and eliminate 2-bit subexpressions. A
more efficient method was proposed in [2] which eliminated
the most commonly occurring 2-bit subexpressions. As an
additional criterion in the subexpression identification
process, an estimation of a latch count improvement was also
considered in [2]. A modification of the 2-bit CSE technique

presented in [1] for identifying the “proper” patterns for
elimination of common sub expression and to maximize the
optimization impact was proposed in [3]. In [4], the
technique in [2] was modified to minimize the logic depth
(critical path length) into the digital structure. In [5], it has
been shown that the Horizontal Common Subexpression
Elimination (HCSE) technique offered better reduction of
adders and Logic Depth (LD) than Vertical Common
Subexpression Elimination (VCSE) in FIR implementations.
The Bull-Horrock’s (BH) algorithm [6] and Reduced Adder
Graph-n-dimensional (RAG-n) [7], used for the synthesis of
filter coefficients are graph dependent, which produced
multipliers with large logic depth (critical path length). A
new Binary Subexpression Elimination (BSE) method was
proposed in [8] using binary representation of filter
coefficients that offered better adder reductions than
previous CSD-based CSE methods. However the
subexpression elimination in BSE [8] is not done by the most
resourceful method because of the sequential checking and
formation of binary bit patterns. This results in many bits
being ungrouped and additional adders being required to
implement them.

In this paper, we propose a CSE algorithm based on CSD
representation of coefficients, which combines three
techniques - the HCSE, the VCSE and the look-ahead
technique. Our method provides adder reductions in case of
filter coefficients with both smaller and larger word lengths.
Moreover our technique does not increase the LD of the
filter.

The rest of the paper is organized as follows. In Section
II, we briefly review the BSE [8]. Section III shows an
illustrative example of our method. Our CSE algorithm is
presented in Section IV. In Section V, design examples of
FIR filters and their comparisons are presented. Section VI
provides our conclusions.

II. BINARY SUBEXPRESSION ELIMINATION (BSE)
In BSE [8], three techniques are combined for reducing

the number of adders - Binary Horizontal Subexpression

S. Vijay+, A.P.Vinod*, Edmund M-K.Lai@

+Dept. of Instrumentation and Control Engg., *School of Computer Engg., @Institute of Information Sciences and Tech.
+National Institute of Technology, Trichy, India, *Nanyang Technological University, Singapore,

@Massey University, New Zealand, Email: +imvijays@gmail.com, *asvinod@ntu.edu.sg, @E.Lai@massey.ac.nz

Elimination (BHSE), the Binary Vertical Subexpression
Elimination (BVSE) and the hardwiring of the final stage
adder. In the BHSE technique, the Binary Horizontal
Common Subexpressions (BHCSs), x6 to x9, are formed
from the binary representation of coefficients as follows.

 [0 1 1] = x6 = 2-1x1
 + 2-2x1 (1)

 [1 0 1] = x7 = x1 + 2-2x1 (2)

 [1 1 0] = x8 = x1 + 2-1x1 (3)

 [1 1 1] = x9 = x1 + 2-1x1 + 2-2x1 (4)

A direct realization of the BHCSs (1)-(4) would require 5
adders. But as x8 can be obtained from x6 by a shift
operation and x9 from x8 using an adder, only 3 adders are
required to realize the BHCSs (1)-(4) as shown by (5) and
(6).

 x6 = 2-1x1
 + 2-2x1 = 2-1 (x1

 + 2-1x1) = 2-1x8 (5)

 x9 = x1 + 2-1x1 + 2-2x1 = x8 + 2-2x1 (6)

In the BVSE technique, the basic BVCS [1 1] is taken and
implemented as

 x10 = x1 + x1[-1] (7)

The main disadvantage of the BSE [8] is that BHCSs are
formed without a look-ahead and therefore many bits are left
ungrouped after obtaining the BHCSs. Moreover, as the
number of nonzero bits in binary representation is
considerably larger than CSD representation, the BSE has
the disadvantage of starting with a large number of nonzero
bits in the optimization space compared to CSD-based CSE
methods.

III. NEW COMMON SUBEXPRESSION METHOD
We propose an improved CSE method based on the CSD

representation of the filter coefficients that maximizes the
elimination of common subexpressions. The basic idea of
our method is searching and selecting patterns with a look
ahead to eliminate redundant Horizontal and Vertical
Common Subexpressions (HCSs and VCSs) so that the
subexpressions are maximized and least number of nonzero
bits are left ungrouped. The grouping is done in such a way
that the logic depth of the multiplier is kept minimal. As our
CSE uses CSD, the initial optimization space has fewer
numbers of nonzero bits unlike BSE [8].

The proposed CSE method can be illustrated using the
example of a 12-tap FIR filter coefficients given in Table I.
The patterns are selected based on a look-ahead method, as
shown in Figures 1(a) and 1(b). Fig. 1(a) shows the
conventional sequential subexpression formation for an
example filter h0 and h1, whereas Fig. 1(b) shows the same
fusing our look-ahead method. Note that there are two
ungrouped bits in Fig 1(a), whereas all the bits are grouped
in Fig 1(b), which minimizes the number of adders. The
HCSs x3 = 3 = [1 0 1], x4 = 4 = [1 0 -1] , x5 = 5 = [1 0 0 1] ,

x6 = 6 = [1 0 0 -1] and VCS x2 = 2 = [1 1] and their negated
versions are indicated inside rectangles in Table I.

Fig. 1(a). Grouping by the Sequential method

Fig 1(b). Grouping by the Look-Ahead method

TABLE 1. CSD REPRESENTATION OF FILTER COEFFICIENTS
 1 2 3 4 5 6 7 8 9 10 11 12

h0 0 0 1 0 1 0 0 -1 0 1 0 1
h1 0 0 1 0 1 0 1 0 0 -1 0 0
h2 0 0 0 0 1 0 0 0 0 1 0 1
h3 0 0 0 1 0 1 0 1 0 0 1 0
h4 0 0 0 1 0 1 0 -1 0 0 1 0
h5 0 1 0 0 1 0 1 0 0 1 0 0

Table II is obtained from Table I by substituting the
respective pattern numbers in the respective bit positions,
i.e., HCSs, [1 0 0 -1] = 6, [1 0 1] = 3, [1 0 0 1] = 5 and VCS,
[1 1] = 2. Further, multiple occurrences of two HCSs with
identical shifts between them or an HCS and a nonzero bit
with identical shifts between them are grouped to form
super-subexpressions (SSs). In Table II, the SS 8 is formed
from the HCS [1 0 1] and the bit ‘1’ with a shift difference
of one between them (as in h3) and the SS 9 is formed from
the HCS [1 0 1] and the bit ‘-1’ with a shift difference of
one between them (as in h4).

TABLE II. FINAL REPRESENTATION OF FILTER COEFFICIENTS
 1 2 3 4 5 6 7 8 9 10 11 12

h0 0 0 2 0 6 0 0 0 0 3 0 0
h1 0 0 0 0 2 0 6 0 0 0 0 0
h2 0 0 0 0 0 0 0 0 0 3 0 0
h3 0 0 0 8 0 0 0 0 0 0 2 0
h4 0 0 0 9 0 0 0 0 0 0 0 0
h5 0 5 0 0 0 0 5 0 0 0 0 0

From Table II, we can express the output of the example as :

(8) 5][5x725][5x224][9x423][2x1123][9x42

2][3x1021][6x721][2x523x1026x522x32ky

−−+−−+−−+−−+−−+

−−+−−+−−+−+−+−=

The number of Multiplier Block Adders (MBAs) required to
implement the filter using the direct method (method using
shifts and adds) in Table I is 18. The proposed Greedy CSE
method needs only 11 MBAs (6 for the subexpressions and
5 for the actual realization), which is a reduction of 39%
over the direct method. The reduction percentage is larger
when higher order filters are considered.

 1 2 3 4 5 6 7 8 9 10 11 12

h0 0 0 1 0 1 0 1 0 -1 0 -1 0

h1 0 0 1 0 0 1 0 0 1 0 0 0

 1 2 3 4 5 6 7 8 9 10 11 12

h0 0 0 1 0 1 0 1 0 -1 0 -1 0

h1 0 0 1 0 0 1 0 0 1 0 0 0

IV. THE PROPOSED GREEDY ALGORITHM
In this section, we explain the proposed CSE method. We
make use of both HCSs and VCSs, but we take into account
only [1 1] and [-1 -1] as the VCSs as we are able to
completely exploit the symmetry of the coefficients (due
their same sign). Our CSE procedure is as follows:
Step 1: Design the filter of length N according to the desired
specification.
Step 2: Obtain the CSD representation of the coefficients for
desired word length.
Step 3: The algorithm checks for nonzero bits at (z, w),
(z+1, w) , (z, w+2) and (z+1, w+2) where ‘z’ is the
coefficient and ‘w’ is the bit position.
Case 1: When there is a HCS and VCS at (z, w), and when
the nonzero bits at (z, w) and (z+1, w) are of the same sign:
(a) First the VCS at (z, w) is considered - the number of
subexpressions present and the non pairable bits are found
for the rest of the bits in the (z) coefficient.
(b) Then the HCS at (z, w) is considered and the same
procedure as (a) is followed.
(i) The number of subexpressions and non-grouped bits are
compared for both these procedures and the one with the
largest number of patterns is chosen as the method to pair up
the rest of that (z) coefficient.
(ii) If the number of subexpressions and non-grouped bits is
the same, then the procedure considering the HCS is
implemented as they are easier to realize.
(c) Depending on whether the VCS or HCS at (z, w) is
chosen to group and form subexpressions, increment w by 1
or 3 respectively. If w <= N-1, go to step 3. Otherwise go to
step 4.
(d) If the nonzero bits at (z, w) and (z+1, w) are not of the
same sign, then the HCS at (z, w) is selected. Increment w.
If w <= N-1, go to step 3. Else go to step 4.
Case 2: A similar procedure as illustrated above is used
when there is a HCS at (z+1, w) and a VCS at (z, w), the
nonzero bits at (z, w) and (z+1, w) being of the same sign:
(a) First, the VCS at (z, w) is considered. The number of
subexpressions present and non grouped bits are found for
the rest of the bits in the (z+1) coefficient.
(b) Then the HCS at (z, w) is considered and the same
procedure as (b) is followed.
(i) The number of subexpressions and non-grouped bits are
compared for both these procedures and the one with the
largest number of patterns is chosen as the method to pair up
the rest of that (z+1) coefficient.
(ii) If the number of subexpressions and non-grouped bits is
the same, then the procedure considering the HCS is
implemented as they are easier to realize.
(c) Depending on whether the VCS at (z, w) or HCS at
(z+1, w) is chosen to group and form subexpressions,
increment w by 1 or 3 respectively. If w <= N-1, go to step
3. Otherwise go to step 4.
(e) If the nonzero bits at (z, w) and (z+1, w) are not of the
same sign, then the HCS at (z+1, w) is selected. Increment
w. If w <= N-1, go to step 3. Else go to step 4.

Case 3: When only a HCS exists at (z, w), then select the
HCS. Increment w. If w <= N-1, go to step 3. Otherwise go
to step 4.
Case 4: When only a VCS exists at (z, w), then select the
VCS. Increment w by 1. If w <= N-1, go to step 3.
Otherwise go to step 4.
Step 4: When w > N-k, where k is the length of the pattern
that is checked, set w = 1 and increment z by 1, go to step 3.
When w > N-k, and z = (number of filter taps)/2, go to step
5.
Step 5: Once the HCSs and the VCSs are grouped, the
coefficients are now checked for SSs like [1 0 1 0 1], [1 0 1
0 -1], [1 0 -1 0 1], [1 0 -1 0 -1] and their negated versions.
Implement these SSs only if they occur at least twice in the
coefficient matrix. This keeps a check on the LDs. When w
> N-k, where k is the length of the pattern that is checked,
set w = 1 and increment z by 1, go to step 5. When w > N-k,
and z = (number of filter taps)/2, terminate the program.

V. DESIGN EXAMPLES
In this section, we present examples of implementing

several FIR filters of different length and frequency
response specifications using the proposed algorithm and
provide comparisons with the CSE [2] and the BSE [8]
methods. FIR filters are designed using the Parks–
McClellan algorithm.

Example 1: In this example, the filter pass-band and stop-
band frequencies are 0.2π and 0.22 π respectively. The
comparison is done for different filter lengths of 20, 50, 80,
120, 200, 400 and 800 and for different wordlengths of 12,
16, 20 and 24 bits. Our proposed CSE gives a significant
reduction of adders. Fig. 2 shows the comparison of
reductions of adders achieved using our CSE method, the
NR-SCSE [4] and the BSE [8] method, over the Hartley’s
CSE method [2], when the filter tap is 120 for wordlengths
of 12, 16, 20 and 24 bits. The average adder reduction
achieved using our method is 50.9% over the NR-SCSE [4]
and 11.24% over BSE [8]. Overall, for all the filters in
example 1, our method offers an average adder reduction of
56.6% over the CSE [2], 50.2% over the NR-SCSE [4] and
17.8% over the BSE [8]. The LDs of filters realized using
our method are almost identical to that of BSE [8].

Example 2: In this example, the FIR filters employed in the
filter bank channelizer of D-AMPS are considered as in [9].
Note that the decimation is moved to the left of the band-
pass filters using the noble identity and the sampling rate
chosen is 34.02MHz. The channel filters extract 30 kHz
DAMPS channels from the input signal after down sampling
by a factor of 350. The pass-band and stop-band edges are
30 kHz and 30.5 kHz respectively. The peak pass-band
ripple is chosen as 0.1 dB. Table III shows the comparison
of adders and LDs needed to implement the 610-tap filter
corresponding to a stop-band attenuation of -65 dB for word

lengths 12, 16, 20 and 24 bits, using our CSE method and
the methods in NR-SCSE [4] and BSE [8].

Fig. 2. Reduction of adders in designing the filters in

example 1 for 16-bit word length.

Fig. 3. Reduction of adders in designing the 610-tap

D-AMPS filter for different word lengths.

From Table III, it can be seen that our method offers
considerable reduction in the number of adders with almost
no increase in the LDs.

TABLE III. COMPARISON OF THE D-AMPS CHANNEL FILTER WITH
610 TAPS FOR DIFFERENT METHODS

The reduction of adders for the 610-tap filter for different
word lengths is shown in Fig. 3. Overall, considering all the
D-AMPS filters in example 2, our method offers an average
adder reduction of 62.3% over the NR-SCSE [4] and 19.6%
over the previously BSE [8]. The LDs of our method are
almost same as that of BSE [8].

VI. CONCLUSIONS
We have presented a greedy CSE algorithm based on

CSD representation of coefficients to implement low-
complexity FIR filters. We have shown that the look-ahead
method proposed by us maximizes the grouping of the
subexpressions, thus leaving minimum number of unpaired
nonzero bits. The average reduction of adders using our
method is 20% over the best known CSE method (BSE [8]).
The logic depths of filters implemented using our method is
almost identical to that of BSE [8].

REFERENCES
[1] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, “Synthesis of
 multiplierless FIR filters with minimum number of additions,” in
 IEEE/ACM International Conference of Computer-Aided Design ,
 Los Alamitos, CA: IEEE Computer Society Press, 1995, pp. 668-671.
[2] R. I. Hartley, “Subexpression sharing in filters using canonic signed
 digit multipliers,” IEEE Trans. Ckts. Syst. II, vol. 43, pp. 677- 688 ,
 Oct. 1996.
[3] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova,
 “ A new algorithm for elimination of common subexpressions , ”
 IEEE Transactions on Computer-Aided Design of Integrated Circuits
 and Syst., vol. 18, no. 1, pp. 58-68, January 1999.
[4] M. M. Peiro, E. I. Boemo, and L. Wanhammar, “Design of high
 speed multiplierless filters using a nonrecursive signed common
 subexpression algorithm,” IEEE Trans. Ckts. Syst. II, vol. 49, no. 3,
 pp. 196-203, March 2002.
[5] A. P. Vinod and E. M-K. Lai, “Comparison of the horizontal and
 the vertical common subexpression elimination methods for realizing
 digital filters,” in Proc. of IEEE International Conference on Circuits
 and Systems, 2005, pp. 496 – 499.
[6] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,”
 Proc. Inst. Elect. Eng., vol. 138, pt. B, no. 3, pp. 401–412, Jun. 1991.
[7] A. G. Dempster and M. D. Mcleod, “Use of minimum adder multiplier
 blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, Analog
 Digit. Signal Process., vol. 42, no. 9, pp. 569–577, Sep. 1995.
[8] R. Mahesh and A. P. Vinod, “ A New Common Subexpression
 Elimination Algorithm For implementing Low Complexity FIR Filters
 in Software Defined Radio Receivers,” in Proc. IEEE International
 Symposium on Circuits and Systems, vol. 4, pp. 4515-4518, May 21-24,
 2006, Island of Kos, Greece.
[9] K.C. Zangi and R.D.Koilpillai, “Software radio issues in cellular base
 stations,” IEEE J. Select. Areas Commun., vol. 17, no.4, pp. 561-573,
 Apr.1999.

Word
Length

CSE [2] NR-SCSE
[4]

BSE [8] Proposed
CSE

 LO LD LO LD LO LD LO LD
12 260 3 247 2 47 3 30 3
16 525 4 462 4 168 3 125 3
20 774 4 680 4 306 4 282 4
24 1007 4 872 5 496 4 441 5

