Shared-Storage Auction
Ensures Data Availability

Hady W. Lauw,
S.C. Hui,
and Edmund Lai

Nanyang Technological University

22

SEPTEMBER ¢ OCTOBER 2004

Most current e-auction systems are based on the client—server architecture. Such

centralized systems provide a single point of failure and control. In contrast, peer-

to-peer systems permit distributed control and minimize individual node and link

failures’ impact on the system. The shared-storage-based auction model described

in this article decentralizes services among peers to share the required processing

load and aggregates peers’ resources for common use. The model is based on

the principles of local computation at each peer, direct inter-peer communication,

and a shared storage space.

raditional auctions occur in an open-
cry, first-price manner in auction
houses, where participants outbid
each other openly in real time; eventual-
ly, the bidder who submits the highest
price wins the auction and pays that price
in exchange for the item on auction. The
Internet now facilitates electronic auc-
tions, breaking the geographical barrier
and time constraints imposed by tradi-
tional auctions. Current e-auction sys-
tems, such as eBay (www.ebay.com),
Amazon.com Auctions (http://auctions.
amazon.com), and Yahoo! Auctions
(http://auctions.yahoo.com), are based on
client-server architectures. They imple-
ment aggregated storage, computation,
and network traffic at the server, which
plays a role like an auction house in
offering essential services for a fee.
Clients’ reliance on the server has two
main risks. First, information centraliza-
tion makes the server an attractive target
for hackers, thus exposing the whole sys-

Published by the IEEE Computer Society

1089-7801/04/$20.00 © 2004 IEEE

tem to the possible risk of abuse. The log-
ical extension of this danger is that a
downed server can cause the system to
fail (client-server setups are particularly
susceptible to denial-of-service attacks).
On the other hand, peer-to-peer (P2P)
systems adopt a network-based comput-
ing style that neither excludes nor inher-
ently depends on centralized control
points.! The machines that make up such
systems can communicate directly
between themselves without using central
servers® (P2P nodes have equal capacity
for sharing information). In systems such
as Napster,® Gnutella,* and Freenet,®> each
user can take the role of producer and
consumer of resources (files, processor
cycles, hard-disk space, and so on).
Unlike retail, which is largely busi-
ness-to-consumer, an auction is funda-
mentally a consumer-to-consumer or
business-to-business activity. Like peers
in a P2P network, auction participants
have similar or equal standings® — a

IEEE INTERNET COMPUTING

participant could be a seller in one auction and a
buyer in another. The equal participation in auc-
tions and on P2P networks suggests that P2P could
be a natural way to implement e-auctioning,.

In this article, we describe a proposed P2P
model for e-auctions based on shared storage - the
shared-storage-based auction. Our main motiva-
tion for investigating such a model comes from
P2P’s potential to remove the server’s centralized
control and bottleneck effects. Our model goes one
step further than existing P2P solutions by adopt-
ing a shared-storage feature that ensures continu-
ous peer-data availability. Data is kept in a storage
system formed by the aggregate storage resources
contributed by peers on the network and whose
utility is shared among the peers themselves. We
have implemented a prototype system on the JXTA
platform and evaluated its performance.

Shared-storage-based
auction model
P2P storage systems have three types of memory
components: directory, cache, and data store.’ The
directory maps a file identifier to one or more
locations currently holding each file, which
improves searching performance because the loca-
tions listed on the directory point to peers that are
likely to return responses. The cache is used to
temporarily store data items and increase their
availability. The data store permanently maintains
data items to ensure that at least one copy of a
given item remains in the system.

Based on the memory components deployed,
there are six possible architectures:

data-store only,

cache only,

cache and data store,
directory and data store,
directory and cache, or
all three.

Systems that use only the data store, such as
Gnutella, must query many peers to search for data.
Storage systems aided only by a cache, such as that
used by JXTA Discovery Service to store and dis-
tribute advertisement files, reduce the number of
peers to query. Freenet, which uses directory and
cache, involves even fewer peers in queries, and
Napster, which has a central directory, is especially
efficient at searching (although it’s also more vul-
nerable to attacks targeting the central directory).
A possible method of implementing a shared-

IEEE INTERNET COMPUTING

www.computer.org/internet/

Storage-Shared Auction

storage-based auction model is to build auction
capabilities into an existing system with a shared
storage feature. The model’s search efficiency
would then depend directly on the shared-storage
system on which it was implemented.

Architecture

Our model’s main architectural components are
peers that act as a collective shared-storage system.
A seller uses the shared storage to publicize his or
her auction, a buyer discovers auctions by search-
ing among the storage entries, and a bid goes
directly to the seller for local processing. In con-
trast to the client-server model, network peers
rather than the server provide storage. Furthermore,
because all communication is addressed directly to
the intended recipient, we eliminate the “middle-
man” server, whose role would have been only to
facilitate — but not participate in — the communi-
cation between peers.

Our architecture’s main characteristics are
shared network storage, local computation, and
direct communication. Law-governed auctions
also use the latter two features. (See the “Related
Work in P2P E-Auction Systems” sidebar, next
page, for more on law-governed auctions.) The
principal difference is the means of information
exchange: the law-governed auction uses an
external registry, whereas with our method it is an
intrinsic part of the auction system, made up of
resources contributed by the peers themselves. In
the latter, the auction system’s utility is not reliant
on external component availability.

To function as a repository for auction infor-
mation, a shared storage system must have

e substantial capacity to store information on
numerous auctions,

e continuous availability to enable round-the-
clock retrieval,

e searchability to provide multiple matching
responses to a query, and

e user mobility to enable retrieval from different
locations on the network, letting users connect
from different computers and still access the
same data.

To ensure acceptable performance, the system
should also support the cache memory component,
at least. We could gain higher performance by using
the directory in addition to the cache. A data store
could be helpful by ensuring that at least one copy
of a data item is permanently available on the net-

SEPTEMBER ® OCTOBER 2004

23

Nontheme Feature

Related Work in P2P E-Auction Systems

To solve the client-server architecture’s
single point of failure and control prob-
lem in supporting e-auctions, several re-
searchers have proposed peer-to-peer
alternatives for e-auction models. In con-
trast to the shared-storage-based model,
these alternatives either still maintain some
centralized components or do not allow
user mobility. Some examples include
Enchére,' a law-governed auction model,?
and Lightshare (www.lightshare.com).
Users access Enchére, a serverless dis-
tributed auction system, through auto-
nomous workstations loosely connected as
a network. The simple, totally decentralized
design uses direct communication, as users
communicate via network messages. How-
ever, it doesn’t support user mobility — bid-
ders must sit through the auction process at
the same computer on which they sign on.
Fontoura and his colleagues developed
the law-governed auction model to counter

the fact that servers make the auction-
process decisions in client—server environ-
ments.2 To return the decision-making to the
participants, an information-holding auction
registry replaces the server. When register-
ing an auction, the seller specifies how it is
to be conducted. Buyers can query the reg-
istry to find out an auction’s details and start
bidding if they accept the rules laid down for
that particular auction. However, a registry
failure could disrupt the whole system.
Lightshare’s main goal is to enable the
sale of digital goods that require careful han-
dling of copyright issues over a P2P network.
The system uses a server, which acts as the
single point of entry, but transfers a signifi-
cant load to its clients. Users must create
auctions through the server; but the seller’s
own computer saves the data after that. To
search for an auction, buyers query the serv-
er, which in turn searches the sellers’ stor-
age space in real time. However, this design

doesn’t solve the single-point-of-failure
problem because it still requires a server.
These systems use two different
approaches to data storage. The local-stor-
age approach can’t support user mobility
because the peer-specific data might not be
accessible when a user moves to another
computer. The central-storage approach is
susceptible to single points of failure. Our
shared-storage-based auction model
attempts to solve these problems by stor-
ing redundant copies of peer-specific data
on the distributed storage contributed and

shared by peers on the network.

References
I.). Banatre et al,, “The Design and Building of

Enchere, a Distributed Electronic Marketing Sys-

tem,” Comm. ACM, vol.49, no. |, 1986, pp. [9-29.
2. M.Fontoura, M. lonescu,and N. Minsky, “Law-Gov-

erned Peer-to-Peer Auctions,” Proc. | I th Int’l Conf.

World Wide Web, ACM Press, 2002, pp. 109-116.

SEPTEMBER e OCTOBER 2004

work, but it isn’t essential because most auction
information doesn’t require permanent storage.

A problem with peer-contributed data storage
is that peers can go offline without warning. Con-
tinuous availability can be assured only through
some data redundancy and duplication. User
mobility can be supported because data are acces-
sible from anywhere on the network. For instance,
users can move from computer to computer and
still access their data as long as the computer being
used is connected to the network.

Actors

All auctions include two types of participants: sell-
ers and buyers. Software actors interface with these
human participants and encapsulate role-specific
task executions.

In our e-auction model, an auctioneer module
encapsulates the auctioning tasks and selects exe-
cution-task details from the human seller. In turn,
buyers use bidder modules to help locate auctions
and submit bids. Bidder modules can contain intel-
ligent bidding strategies that act as proxies to sub-
mit bids, without the need for the human buyer’s
constant intervention.

In the client-server model, modules equivalent
to our software actors are instantiated only at the

www.computer.org/internet/

server. In our system, software actors operate at
each peer, which means peers take over the com-
putation load, distributing the load among them-
selves and not relying on a central server. Each
peer can also act as an auctioneer and a bidder
simultaneously in different auctions.

Services

We define a service as an interface with which
software actors interact to facilitate auctioning
and bidding activities. This encapsulation protects
software actors from changes in task-
implementation details. Our model includes three
main services: repository, bid, and presence.
Together, they let the shared-storage-based auc-
tion deliver equivalent properties to those in cur-
rent client-server-based auctions.

Creating and publishing auctions. The auctioneer
creates an auction by constructing a transaction
record containing details, such as the starting bid,
item description, auction end date, and so on. The
auctioneer then publishes this record through the
repository service, allowing potential bidders to
find out about the auction through one of the
search options provided by the repository service.

The repository service information exchange

IEEE INTERNET COMPUTING

assumes that the cache is supported by shared net-
work storage; each peer maintains a cache to store
its own and other peers’ files. To publish informa-
tion, a peer thus replicates its own files and stores
them on many different peers. This increases the
files’ availability because they might be accessible
from some peers even when others are offline.

Publishing also involves negotiating with other
peers to keep the files in their caches. To keep the
files up to date and prevent storage overload, each
must have an expiration time, after which those
peers still storing it will remove it from their caches.
Occasionally, the peer publishing a file could refresh
it to keep copies available in the network. To main-
tain consistency among the many copies of each
piece of information, the publishing peer should
specify short lifetimes and publish frequently so that
up-to-date files regularly replace outdated ones.

Because the auctioneer is the sole authoritative
author of an auction’s transaction record, we must be
able to verify that a published record is genuine. Dig-
ital signing ties the auctioneer’s identity to each trans-
action record. In addition to preventing attackers
from masquerading as auctioneers and publishing
malicious content, it also disallows real auctioneers
from repudiating their published records being used
by bidders as a basis for bidding decisions.

Discovering an auction and its current state. Bid-
ders find out about auctions by using the reposi-
tory service to discover the most recent transac-
tion records published by the auctioneers. Figure
1 illustrates a scenario in which a bidder finds
information in other peers’ caches. To locate infor-
mation, the repository service first looks up the
local cache. In the best case, a copy of that infor-
mation can quickly be found on the local cache.
The requestor searches other peers’ remote caches
if the local cache has no suitable response;
expanding the search in such a manner also lets
the requestor seek fresher or more varied respons-
es. In the example in Figure 1, the Finder first con-
tacts known peers in and outside the LAN to
search in their caches. Peers 1 and 2 have no
matching result and, thus, don’t reply. Peer 3 finds
a matching result and returns it to the Finder. Peer
3 might also forward the query to Peer 4 if the
query has not been forwarded more than a certain
number of times. If Peer 4 also had a matching
result, it would respond directly to the Finder.

In addition to monitoring the auction’s state (as
published by the auctioneer), we must monitor
other bidders’ activities. Although it is the auc-

IEEE INTERNET COMPUTING

Storage-Shared Auction

Internet On the

same LAN,
no response

On another LAN, =5
no response Peer 2

Receives forwarded

query, returns
response

directly

Peer 3

Returns response
and forwards
query to others

Figure |.Finding information remotely. A peer, labeled Finder,
initiates a query, which is forwarded to other peers up to a certain
number of hops. Any peer that caches the information being

queried responds directly to the Finder peer.

tioneer’s responsibility to stay connected for as
long as possible to serve potential bidders, an auc-
tioneer might need to go offline temporarily in
some cases while bidders are serving bids. Though
not yet confirmed by the auctioneer, these bids
might represent important information — for
example, the amount of the current highest bid. To
address this, bidders queue their bids locally when
the auctioneer is offline, while publishing their bid-
ding intentions to other bidders through the repos-
itory service. Thus, each bidder can monitor other
competing bids until the auctioneer is back online.

Sending a bid to the auctioneer. The bid service
encapsulates the exact mechanism of how a bid-
der communicates a bid to the auctioneer. It for-
mulates and delivers a bid message directly to the
auctioneer, overcoming potential obstacles such as
firewalls, which the service bypasses by using one
or more intermediaries (peers on the same LAN but
outside the firewall that could help forward the
messages to the intended recipient).

To account for peers’ transient presence — any
peer could go offline at any time or come online
from any network location — our model’s presence
service asserts each peer’s identity, informing oth-
ers of its current status and network location. Each
e-auction human user has a unique identifier, such
as an email address, which identifies this user to
other users on files containing information on this
user’s presence and auctions. Using this unique
identifier, the human user can still be identified
even if he or she connects to the network from dif-

www.computer.org/internet/

SEPTEMBER ® OCTOBER 2004

25

Nontheme Feature

Application | Auction application |
layer T I
Act * ¥
ctor ’ Bidder ‘ ’ Auctioneer ‘
layer T !
- v N x| K é N
. ’ Bid service ‘ ’ Repository service ‘
Service u
layer ‘ Presence service ‘
- -
Discovery service l
JXTA I 4 I
core layer | Resolver service M |

| Any peer on the network |

Figure 2. E-auction layered architecture. The system architecture
consists of four layers, with the upper layers running more coherent
and complicated tasks, such as buying and selling, by using more
basic services provided by the lower layers, such as exchanging
messages and finding information.

1,800

1,600 —m— Processing bid

g —=— Publishing transaction record
1,400

™= Signing transaction record

51,200
1,000 |
800
600,
400
200-

0 T T T T T T T
| 10 20 30 40 50 60 70 80 90 100
Bid sequence

Time (msec

Figure 3. Effect of publishing and signing on bid processing. As an
auction goes on, more bids are accepted and the bidding history gets
longer, resulting in a larger transaction record. It gradually takes
longer and longer to publish and digitally sign the growing
transaction record, leading to longer response time. Here, we
measured the time taken to process the first bid, the second bid, and
so on, up until the 100th bid for the same auction.

ferent network locations. Consequently, because the
user’s network location could change, we must first
dynamically map the user’s unique identifier to his
or her current physical network location. To perform
address resolution and presence detection, the pres-
ence service running on each peer periodically
publishes the following information about the user
currently residing on that peer: unique identifier,
current network location, and presence status
(online or offline). This information also includes an
expiry time to ensure freshness. Before submitting
a bid, the bidder must first discover a fresh piece of
the auctioneer’s presence information to find out
the auctioneer’s latest known network location.

26 SEPTEMBER e OCTOBER 2004 www.computer.org/internet/

Winning the auction. As in real-world auctions, an
e-auction bidder must submit the highest bid to
win. Because bids go to the auctioneer and the
other bidders, a bidder can correctly expect to win
an auction after submitting the highest bid. We
verify this by monitoring the auctioneer’s final
published transaction record, which declares all the
bids made and who the final winning bidder is. To
ensure nonrepudiation, bidders digitally sign each
bid message they send to the auctioneer.

Performance Analysis

We implemented our system on the open-source
JXTA platform, which is released as an open stan-
dard. We can readily use the cache-supported P2P
storage system available in the form of JXTA’s
Discovery Service. Figure 2 shows our system’s
four-layer architecture: JXTA core, service, actor,
and application. The core layer consists of core
services provided by JXTA that use storage and
communication functionalities on the JXTA net-
work. The service layer implements common
functionalities commonly required by software
actors (the bidder and auctioneer) for publishing
and finding auction-related information (reposi-
tory service) or the user’s current network loca-
tion (presence service), as well as for exchanging
bids (bid service). The actor layer defines two role-
specific modules: Auctioneer to play the role of a
seller and Bidder to play the role of a buyer. The
application layer integrates all the services and
layers into a single application and provides a
user interface for human users. Because each self-
contained layer interacts with its lower layers
through a set of well-defined interfaces, it is not
coupled to the particular implementation of the
lower layers; it is therefore protected from having
to change its implementation as a result of
changes to its lower layers.

Our e-auction system is written in Java
JDK1.4.0, running on top of the JXTA-J2SE stable
release of 8 February 2002 (build 49b). As a result,
it should run on any machine for which a Java vir-
tual machine is available. To test the computa-
tional load of processing incoming bids, we ran a
peer playing the auctioneer role on a PC (with Pen-
tium III 1 GHz and 256MB SDRAM) running Win-
dows XP, and measured the time it took to process
bids coming from multiple competing bidder peers.

Processing Bids

Bid processing is the largest factor in system per-
formance.'® The system suffers some communica-

IEEE INTERNET COMPUTING

Storage-Shared Auction

Table I. Summary Application-Level Performance Comparison.

Performance criteria
System availability

Shared-storage-based
Graceful degradation

eBay

Efficiency of search method Acceptable efficiency

Quality of search results Updated as currently
known to information owner
Server

Information control Owner

tion costs as bid submissions and responses move
from bidder to auctioneer and back. Computation
costs occur in packing and unpacking message
information and in processing bid submissions
and responses.

The auctioneer must compare each incoming
bid against the current highest accepted bid value
as well as against other competing incoming bid
values and compute whether to accept it. The auc-
tioneer then updates the auction’s status by pub-
lishing a new transaction record. As Figure 3 illus-
trates, processing initial bids generally takes fewer
resources than subsequent bids. The main activi-
ties that dominate resource usage during bid pro-
cessing are signing and publishing new transac-
tion records. As more bids arrive, the transaction
record’s size grows, resulting in more bytes to be
digitally signed; this explains the proportional
increase in the time required for signing. Similar-
ly, publishing a transaction record involves I/0O
operations and network communications among
peers to update multiple local and remote caches.
This also consumes resources proportional to the
transaction record’s size.

If we assume that only a few auctions receive
hundreds of bids and that only a few bidders gen-
erally compete in an auction’s late stages, this
trend doesn’t pose a serious problem. If many bid-
ders were to adopt a wait-and-see attitude, how-
ever, these assumptions might be invalid.

Application-Level Performance Comparison
We need qualitative aspects to analyze how the
shared-storage-based model compares with other
models. Table 1 shows a summary of the applica-
tion-level performance comparisons for some
existing e-auction systems. We compared our
shared-storage-based system against eBay’s
client-server model and the Encheére, law-
governed, and Lightshare P2P models, looking at

IEEE INTERNET COMPUTING

All-or-nothing

More efficient than
shared-storage-based
Updated as
registered by
information owner

www.computer.org/internet/

Enchére
Sessions of a few
hours per day
Not applicable

Law-governed
All-or-nothing

More efficient than
shared-storage-based
Updated as registered
currently known to
by information owner
Registry operator

Not applicable

Owner

availability, search speed, response quality, and
information control.

The comparisons are qualitative as, at the point
of writing, some of the other systems’ implemen-
tations were not available for direct comparison.
For example, Lightshare was still being developed;
Enchere was a very new system, and its imple-
mentation included hardware prototypes we didn’t
have access to.

System availability. In a shared-storage-based
model, peers can log on or off at any time. Suffi-
cient redundancy means that an auction can be
constantly publicized. The system’s usability
gracefully degrades as peers leave the system, up
to a certain threshold, beyond which the system
might no longer be usable. This could be due to
the very long path lengths required to satisfy some
queries or a lack of useful resources to attract peers
to log on. Systems with a centralized component,
such as eBay, law-governed, and Lightshare, rely
on the central component’s availability, which is
either up with full functionality or completely
down. As Enchere requires participants to sit
through auction sessions, the system runs only
during such sessions.

Searching method efficiency. P2P searching is gen-
erally less efficient than other approaches because
information often is interspersed among many
peers. However, our model’s searching efficiency
should be helped by the replication of data in mul-
tiple caches, increasing its availability, instead of
storing it at only one location as Lightshare does.
Searching over a centralized database, such as that
done on eBay’s database or a law-governed auc-
tion’s registry, will be very efficient because all
information is available locally and is likely to be
indexed or sorted to optimize searching. Enchére
does not include a searching functionality; instead,

Lightshare
All-or-nothing

Less efficient than
shared-storage-based
Updated as
information owner

Owner

SEPTEMBER ® OCTOBER 2004

Nontheme Feature

28

SEPTEMBER e OCTOBER 2004

distribution of information regarding auction ses-
sions is performed outside the system.

Search result quality. We determine quality based
on whether the search query’s returned results are
up to date and valid. Searching a centralized store
of information (as in eBay or a law-governed auc-
tion) turns up responses that are as fresh as what the
information owners have registered with the server
or the registry. There could be a scenario in which a
seller has new information that he or she has not yet
registered; therefore, buyers cannot access this infor-
mation. In general, a seller or buyer who is a direct
auction participant would have the most updated
information, such as possible changes in condition
or the quantity of items. Therefore, searching in real
time among peers’ caches or data store, as in the
shared-storage-based model and Lightshare, respec-
tively, is likely to return the most updated informa-
tion. Because Enchére does not have a searching
functionality, this criterion does not apply.

Information control. A shared-storage-based
model returns information control to each owner.
This information decentralization prevents hack-
ers from harvesting large quantities of information
from a single location. It also lets individual infor-
mation owners control how and to whom to reveal
what kind of information. In contrast, users would
not have any control over their information stored
in a third party’s centralized information storage,
such as eBay’s central server and the law-governed
auction’s registry.

Future Work

Our system’s performance is encouraging, though
not spectacular. Future work will include search
optimization because decentralized data makes
searching difficult. For example, we could use
more developed searching methods for distributed
environments such as the JXTA search service.
JXTA search uses specialized peers acting as
“hubs” that intelligently route queries to the most
suitable information providers. These hubs can
search more reliably than ordinary peers can,
because ordinary peers have no way to determine
which peers are better information providers. We
also could adopt security practices via crypto-
graphic techniques, but the system would incur
significant computation costs. Other avenues we
might explore include running auctions on mobile
and interoperable computing devices such as
portable PCs or PDAs. i¢

www.computer.org/internet/

References

1. L. Gong, “Peer-to-Peer Networks in Action,” IEEE Internet
Computing, vol. 6, no. 1, 2002, pp. 37-39.

2. D. Clark, “Face-to-Face with Peer-to-Peer Networking,”
Computer, vol. 34, no. 1, 2001, pp. 18-21.

3. C. Shirky, “Listening to Napster,” Peer-to-Peer: Harnessing
the Power of Disruptive Technologies, A. Oram, ed., O'Reil-
ly and Assoc., 2001, pp. 21-37.

4. G. Kan, “Gnutella,” Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, A. Oram, ed., O'Reilly and Assoc.,
2001, pp. 94-122.

5. A. Langley, “Freenet,” Peer-to-Peer: Harnessing the Power
of Disruptive Technologies, A. Oram, ed., O'Reilly and
Assoc., 2001, pp. 123-132.

6. M. Parameswaran, A. Susarla, and A.B. Whinston, “P2P
Networking: An Information-Sharing Alternative,” Com-
puter, vol. 34, no. 7, 2001, pp. 31-38.

7. J. Banatre et al., “The Design and Building of Enchére, a
Distributed Electronic Marketing System,” Comm. ACM,
vol. 49, no. 1, 1986, pp. 19-29.

8. M. Fontoura, M. Ionescu, and N. Minsky, “Law-Governed
Peer-to-Peer Auctions,” Proc. 11th Int’l Conf. World Wide
Web, ACM Press, 2002, pp. 109-116.

9. H. Hsiao and C. King, “Modeling and Evaluating Peer-to-
Peer Storage Architectures,” Proc. Int’l Symp. Parallel and
Distributed Processing, IEEE Press, 2002, pp. 240-245.

10. T. Hong, “Performance,” Peer-to-Peer: Harnessing the
Power of Disruptive Technologies, A. Oram, ed., O'Reilly
and Assoc., 2001, pp. 203-241.

Hady W. Lauw is a graduate student at the School of Com-
puter Engineering, Nanyang Technological University,
Singapore. His research interests include peer-to-peer
computing and spatio-temporal data mining. He has a
BEng in computer engineering from Nanyang Techno-
logical University. Contact him at hadylauw@pmail.
ntu.edu.sg.

S.C. Hui is an associate professor in the School of Computer
Engineering at Nanyang Technological University. His
research interests include data mining, Internet technology,
and multimedia systems. He has a BSc in mathematics and
a PhD in computer science from the University of Sussex,
UK. He is a member of the IEEE and the ACM. Contact him
at asschui@ntu.edu.sg.

Edmund Lai is an associate professor at the School of Comput-
er Engineering at Nanyang Technological University. His
research interests include wireless ad hoc networks and
digital signal processing. He received BE and PhD degrees
in electrical engineering from the University of Western
Australia. He is a senior member of the IEEE. Contact him
at asmklai@ntu.edu.sg.

IEEE INTERNET COMPUTING

