
FIR filter implementation by efficient sharing of horizontal
and vertical common sub-expressions

A.P.Vinod, E.M-K.Lai, A.B.Premkumar, and C.T.Lau

The vertical common subexpression elimination (CSE) method proposed by Jang et al. does not

guarantee hardware reduction over conventional horizontal CSE method in practical linear phase finite

impulse response (LPFIR) filter implementations. A method to implement FIR filters with a minimum

number of adders by efficiently combining horizontal and vertical common subexpressions is proposed

here.

Introduction: Multiple constant multiplications (MCM) in digital filters refer to multiplication of one

variable with multiple constants [1]. Common subexpression elimination proposed to tackle the MCM

problem minimizes the number of additions by extracting the common parts among the constants

represented in canonic signed digit (CSD) form [1]-[3]. Methods proposed in [2] and [3] eliminate

redundant computations in multiplier blocks by employing the most common horizontal subexpressions

among the CSD coefficients. Recently, Jang et al. proposed a vertical CSE technique as a better

solution to the MCM problem [4]. However, this method does not guarantee hardware savings over

conventional horizontal CSE method in practical LPFIR filters. In this letter, an efficient way to

combine both horizontal and vertical subexpressions to achieve considerable hardware reduction in

high-speed/low-power FIR filters is presented.

Conventional common subexpression methods: The number of adders (or subtractors), required to

implement an LPFIR filter of length N using CSE method can be computed using the expression:

,aN

 (1) assba NNNN +−−= 2)1(

where is the total number of nonzero bits in all N coefficients, is the total number of

subexpressions in the

bN sN







2
N symmetric coefficients and is the number of adders required for

distinct subexpressions. A linear phase raised cosine FIR filter used for pulse shaping in the

intermediate frequency (IF) processing block of a GSM receiver is considered to illustrate the CSE

asN

 1

method. The filter specifications are: cutoff frequency 135.44 kHz, roll-off factor 0.22 and

sampling frequency is 541.67 kHz, which is twice the baud rate of GSM. The nonzero bits of the

symmetric

,15=N







2
N coefficients along with the highest value coefficient, in 12-bit CSD form are

shown in Fig. 1. For notational convenience, -1 is represented by n. In the CSD representation shown in

our examples, the signs of coefficient values are assumed positive for convenience. Without using

CSE, the number of adders required to implement the filter is which is 30 in this case. The

conventional horizontal common subexpressions 101 and 10n indicated with bold lines are given by:

),7(h

,1−bN

21 >>x

.3=

21 >>+ x

1x

sN

 and (2) 12 = xx 13 −= xx

where represents the shift operation and represents the input signal. Thus, from (2) we obtain

 and from Fig. 1, When horizontal CSE is used, the number of adders required is 22

from (1). This offers a reduction rate of 26.7% when compared to direct implementation without CSE.

On the other hand, the vertical common subexpressions 10001, 1000n, and 101 indicated with dotted

lines in Fig. 1 would require 25 adders since and The reduction of 16.7% achieved by

the vertical CSE is considerably lower than that using horizontal CSE.

>>

2=asN .5=sN

4= asN

Distribution of common subexpressions: It has been reported that in LPFIR filters, the most significant

bits (MSB) of adjacent coefficients are identical since they have similar values and therefore a large

number of vertical subexpressions occur [4]. However, our observation is that in most of the practical

LPFIR filters, the magnitudes of adjacent coefficients are not similar and hence it is unlikely that their

MSB are identical when represented in CSD. We observe that many adjacent coefficients have

identical least significant bits (LSB) as the wordlength is increased from 8-bit to 16-bit and hence more

vertical subexpressions can be obtained for larger wordlengths. However, it is observed that the

increase in horizontal common subexpressions with increasing wordlength is even greater. Statistically,

horizontal common subexpressions, 101, 10n, 1001, and 100n occur more frequently in the CSD form

of LPFIR filters and hence these subexpressions are the most common horizontal subexpressions. The

number of vertical common subexpressions that exist in CSD coefficients is fewer than the most

common horizontal subexpressions. The CSD form of the raised cosine filter shown in Fig. 1 illustrates

this observation. Hence fewer adders are required when horizontal subexpressions are used to realize

the filter.

 2

Proposed common subexpression sharing method: Further reduction of adders can be achieved by

efficiently combining horizontal and vertical subexpressions. To achieve this, firstly the four most

common horizontal subexpressions, 101, 10n, 1001, and 100n, are extracted from the coefficient set

represented in CSD. The remaining nonzero bits are examined for suitable vertical common

subexpressions. Consider the same example shown in Fig. 2, where conventional horizontal

subexpressions are given by (2). From the remaining bits, two vertical subexpressions, 101 and n01, are

obtained:

]2[114 −+= xxx and (3)]2[115 −+−= xxx

where [-k] represents the delay operation. By combining the common subexpressions (2) and (3), the

output of the filter can be represented as:

(4) 10]14[5]14[11]12[4]12[3]10[
12]8[9]8[2]8[1]7[2]6[12]4[

9]4[3]4[11]2[4]2[105

23133

542125

431323

>>−+>>−+>>−+>>−+>>−+
>>−−>>−+>>−+>>−+>>−+>>−+

>>−+>>−+>>−+>>−+>>+>>=

xxxxx
xxxxxx

xxxxxxy

We consider the transposed direct form FIR filter structure for implementation. It can be noted that

only twenty adders are required to implement the filter, two for horizontal common subexpressions (2),

two for vertical common subexpressions (3), and sixteen for filter output (4). This method results in

reduction rates of 16.6% and 6.6% when compared to vertical and horizontal common subexpression

methods, respectively. We present two examples to show the minimum adder realization of LPFIR

filters by efficiently combining horizontal and vertical common subexpressions.

Example 1: We consider the Parks-McClellan design of a LPFIR filter whose specifications are N=26,

pass-band and stop-band edges at nd respectively. The infinite-precision filter coefficients

and their CSD representation using 8 bits and 16 bits are shown in Table 1. It can be noted that the

magnitudes of adjacent coefficients are considerably different. As a consequence, their MSB portions

have fewer identical bits. In the proposed method, horizontal common subexpressions of 101, 10n,

1001, and 100n are first extracted from the CSD representation. From the remaining nonzero bits,

vertical common subexpressions 1001, 100n, and 10001 are utilized. Comparison of the number of

adders required for the filter using the common subexpression methods and reduction rates with respect

to the implementation without using any subexpressions are shown in Table 2. The results indicate that

the proposed method offers a reduction rate of 11% over vertical common subexpression method [4].

π2.0 a π25.0

 3

Example 2: In this example, a linear phase Parks-McClellan FIR filter with identical taps, N=219, as in

[4] is considered. The pass-band and stop-band edges of the filter are nd respectively. For

the 16-bit CSD implementation, 386 adders are required when vertical common subexpression method

is used. Employing the proposed method, adder requirement is reduced to 337, which is 8% less.

π2.0 a π25.0

Conclusion: In this letter, we have shown that the vertical CSE method does not guarantee minimum

adder implementation of LPFIR filters. We have shown that transposed direct form CSD filter

structures with minimum number of adders can be realized by efficiently combining horizontal and

vertical common subexpressions that exist in the filter coefficients. The filters realized using the

proposed method require fewer adders than conventional horizontal and vertical CSE methods.

References

1 POTKONJAK, M., SHRIVASTA, M.B., and CHANDRAKASAN, P.A.: ‘Multiple constant
multiplications: Efficient and versatile framework and algorithms for exploring common subexpression
elimination’. IEEE Trans. Computer-Aided Design, 1996, 15, (2), pp.151-161

2 HARTLEY, R.I.: ‘Subexpression sharing in filters using canonic signed digit multipliers’. IEEE
Trans. Circuits Syst. II, 1996, 43, (10), pp. 677-688

3 YAGYU, M., NISHIHARA, A, and FUJI, N.: ‘Fast FIR digital filter structures using minimal
number of adders and its application to filter design’. ICICE Trans. Fundam. Electron. Commun.
Comput. Sci., 1996, E79-A, (8), pp. 1120-1129

4 JANG, Y., and YANG, S.: ‘Low-power CSD linear phase FIR filter structure using vertical
common sub-expression’. Electronics Letters, 2002, 38, (15), pp. 777-779

Author’s affiliations:
A.P.Vinod, E.M-K.Lai, A.B.Premkumar, and C.T.Lau (School of Computer Engineering, Nanyang
Technological University, Nanyang Avenue, Singapore 639798)

Email: asvinod@ntu.edu.sg

 4

Figure captions:

Fig. 1 Common sub-expressions (CSE) in 15-tap linear phase raised cosine filter coefficients. Hartley’s
Horizontal CSE (solid) and Jang et al’s Vertical CSE (dotted)

Fig. 2 Combined Horizontal and Vertical common sub-expressions in 15-tap linear phase raised cosine
filter coefficients

Table captions:

Table 1 Coefficients of the 26-tap Parks-McClellan linear phase FIR filter in example 1

Table 2 Number of adders required to implement the filter in example 1

 5

Figure 1

 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

)0(h 1 n 1 1
)1(h
)2(h 1 n 1
)3(h
)4(h 1 n 1 n
)5(h
)6(h 1 1 1 1
)7(h 1

 6

Figure 2

 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

)0(h 1 n 1 1
)1(h
)2(h 1 n 1
)3(h
)4(h 1 n 1 n
)5(h
)6(h 1 1 1 1
)7(h 1

 7

Table 1

Infinite-precision
Coefficients

)12()0(hh −

8-bit CSD form
12− 82−

16-bit CSD form
12− 162−

-0.00933078669575 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 –1 0 0 1 0 -1
0.07628237421426 0 0 0 1 0 1 0 -1 0 0 0 1 0 1 0 0 -1 0 0 0 1 0 0 -1
0.03135623682714 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 -1 0
0.01374432164657 0 0 0 0 0 1 0 -1 0 0 0 0 0 1 0 0 -1 0 0 0 0 1 0 0
-0.00948598843682 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 -1 0 -1 0 1
-0.03358586396879 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 -1 0 0 1
-0.04680063247432 0 0 0 1 0 -1 0 -1 0 0 0 1 0 -1 0 0 0 0 0 0 0 -1 0 -1
-0.03819695824263 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 -1 0 0 1 0 0 -1
-0.00271831937636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 1 0
0.05563093697248 0 0 0 1 0 0 -1 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 -1 0 1
0.12420551537587 0 0 1 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 -1 0 1 0 -1 0 -1
0.18473033065671 0 1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 -1 0 1 0 0 1 0 1 0
0.22024453765020 0 1 0 0 -1 0 0 0 0 1 0 0 -1 0 0 0 1 0 –1 0 0 0 0 1

 8

Table 2

Implementation method 8-bit CSD Reduction rate (%) 16-bit CSD Reduction rate (%)
Vertical CSE [4] 37 17.7 84 29.4
Conventional horizontal CSE 35 22.2 72 39.4
Proposed method 32 28.9 70 41.2

 9

