
1

PSECMAC: A Novel Self-Organizing

Multi-Resolution Associative Memory

Architecture
S. D. Teddy, C. Quek, and E. M.-K. Lai,Senior Member, IEEE

Abstract

The cerebellum constitutes a vital part of the human brain system that possesses the capability to

model highly nonlinear physical dynamics. The CMAC associative memory network is a computational

model inspired by the neurophysiological properties of the cerebellum, and it has been widely used

for control, optimization and various pattern recognition tasks. However, the CMAC network’s highly

regularized computing structure often leads to: (1) a suboptimal modeling accuracy; (2) poor memory

utilization; and (3) the generalization–accuracy dilemma. Previous attempts to address these shortcomings

have limited success and the proposed solutions often introduce a high operational complexity to the

CMAC network. This paper presents a novel neurophysiologically-inspired associative memory architec-

ture named PSECMAC that non-uniformly allocates its computing cells to overcome the architectural

deficiencies encountered by the CMAC network. The non-uniform memory allocation scheme employed

by the proposed PSECMAC network is inspired by the cerebellar experience-driven synaptic plasticity

phenomenon observed in the cerebellum, where significantly higher densities of synaptic connections

are located in the frequently-accessed regions. In the PSECMAC network, this biological synaptic

plasticity phenomenon is emulated by employing a data-driven adaptive memory quantization scheme that

defines its computing structure. A neighborhood based activation process is subsequently implemented

to facilitate the learning and computation of the PSECMAC structure. The training stability of the

PSECMAC network is theoretically assured by the proof of its learning convergence which will be

presented in this paper. The performance of the proposed network is subsequently benchmarked against

Manuscript received xxxxx; revised xxxxx; accepted xxxxx

S. D. Teddy is with the Data Mining Department, Institute for Infocomm Research, Singapore, 119613. The work in this
paper was performed during her PhD candidature at the Centre for Computational Intelligence, School of Computer Engineering,
Nanyang Technological University, Singapore.

C. Quek is with the Centre for Computational Intelligence, School of Computer Engineering, Nanyang Technological
University, Singapore, 639798 (email: ashcquek@ntu.edu.sg).

E. M.-K. Lai is with the Institute of Information Sciences and Technology, Massey University, Wellington, New Zealand.

2

the CMAC network and several representative CMAC variants on three real-life applications, namely:

pricing of currency futures option, banking failure classification, and modeling of the glucose–insulin

dynamics of the human glucose metabolic process. The experimental results have strongly demonstrated

the effectiveness of the PSECMAC network in addressing the architectural deficiencies of the CMAC

network by achieving significant improvements in the memory utilization, output accuracy as well as the

generalization capability of the network.

Index Terms

PSECMAC, CMAC, cerebellum, brain-inspired, multi-resolution, associative memory, learning con-

vergence, neural networks.

I. Introduction

The human brain is the underlying biological structure responsible for human intelligence, in which

complex networks of neurons collaborate in a highly non-linear manner to create a massive information

computing system. The cerebellum is one brain region in which the neuronal connectivity is sufficiently

regular to facilitate a comprehensive understanding of its functional properties. It is located at the

bottom rear of the head (the hind-brain) and constitutes a vital part of the brain system that mediates

motor movement control and a number of sub-conscious cognitive functions [1], including the learning

and memory of procedural and motor skills. The human cerebellum functions as a motor movement

calibrator [2] and possesses the capability to model highly complex and nonlinear physical dynamics to

facilitate the precise and rapid executions of dexterous movements and fluid motor reflexes [3]. Hence, it

is highly desirable to construct a computational model of the human cerebellum in order to capture and

to emulate its rapid and nonlinear function learning capability. Such a computational tool has diverse use

in applications such as autonomous control and pattern recognition where there are generally no precise

mathematical descriptions of the problem’s characteristics and the inherent process behavior can only be

inferred from measurable physical observations.

The Cerebellar Model Articulation Controller (CMAC) [4] is a neural network inspired by the neuro-

physiological properties of the human cerebellum and is widely recognized for its localized generaliza-

tion and rapid algorithmic computations. As a computational model of the human cerebellum, CMAC

manifests as an associative memory network [5], [6], and employs error correction signals to drive the

network learning and memory formation processes. This allows for simple computation, fast training,

local generalization and ease of hardware implementation [2], [7], which subsequently motivates the

prevalent use of CMAC-based systems for process control and optimizations [8]–[13], modeling and

3

control of robotic manipulators [14]–[16], as well as various signal processing and pattern-recognition

tasks [17]–[19]. The learning convergence of the CMAC network has also been established in [20]–[22].

However, there are several major architectural limitations associated with the CMAC network, which arise

from the rigidness of its computing structure. The CMAC associative memory network employs a highly

regularized grid-like computing structure (i.e. equally spaced memory cells along each input dimension)

that indirectly enforces the uniform quantization of a problem’s input-output (I/O) mapping space. On

the other hand, meaningful real-life applications are generallyheteroskedastic, where the problems are

often characterized by highly nonlinear I/O trends and statistically varying data patterns. Such observations

implied that specific regions of these problems’ I/O associative spaces are more informative (and therefore

demand a higher modeling resolution) than others. For such an application, the simplistic approach of

adopting uniformly quantized I/O mapping space (as in the memory space of CMAC) to model the

problem’s input-output data characteristics may not be adequate as it often leads to: (1) a suboptimal

system where there is a lack of modeling accuracy at the important regions of the I/O mapping space;

(2) poor memory utilization as characterized by a large number of untrained memory (computing) cells

(when no memory hashing is employed); and (3) a trade-off between the generalization capability and the

modeling fidelity of the network. That is, a small-sized CMAC with fewer memory cells is able to better

generalize the characteristics of the training data, but a large-sized CMAC network with fine modeling

resolution produces more accurate outputs.

In the existing literature, there has been a number of attempts to address such limitations of the

CMAC network. Generally, these efforts can be broadly classified into two major approaches: the multi-

resolution discrete CMAC and the fuzzy CMAC variants. The multi-resolution discrete CMAC variants

employ computing cells with crisp boundaries and attempt to produce a more efficient mapping of the I/O

associative space via the optimization of the network quantization decision functions [23]–[26] or with

the use of multi-layered CMAC networks of increasing resolutions [27], [28]. The fuzzy CMAC systems,

on the other hand, employ fuzzified cell boundaries of varying sizes to enhance memory efficiency [19],

[29]–[34] as well as ensuring network interpretability via the incorporation of formalized fuzzy inference

schemes [35]–[39]. These CMAC extensions will be briefly discussed in Section III-C. However, such

approaches have limited success in addressing CMAC’s architectural shortcomings and often do so at

the expense of introducing a high operational complexity. Most of these variants also do not attempt

to establish proof of the system’s learning convergence, which is often crucial for control and function

approximation tasks. Moreover, since human behavioral studies have established that learning stability

in the human cerebellum is central to the acquisition and the subsequent execution of smooth and

4

precise motor movements [40]–[42], any credible computational model of the cerebellum should therefore

guarantee a stable learning process. In addition, although various memory hashing techniques [43], [44]

have been proposed to improve the memory efficiency of a CMAC network, the use of hash-coding

results in memory collisions, increases the computational complexity and distorts the computational

interpretability of the resultant CMAC network [45]–[47].

In this paper, we propose a novel neurophysiologically-inspired multi-resolution associative memory

network named thePseudo Self-Evolving CMAC(PSECMAC) network that non-uniformly quantizes its

memory cells. The proposed PSECMAC associative memory network is inspired by neuroscience and

human behavioral studies on the cerebellar learning process, where it has been shown that significantly

higher densities of the cerebellar synaptic connections are located at the frequently-accessed regions of

the cerebellum that are activated by repeated learning episodes [48]. This cerebellar-based experience-

driven synaptic plasticity phenomenon is emulated in the PSECMAC network by employing a data-

driven adaptive memory quantization scheme for the derivation of its computing structure. That is, from

a machine learning perspective, more memory cells are assigned to model regions of the data space that

contain higher densities of the training exemplars. This seeks to avoid the architectural deficiencies in the

CMAC model and justifies PSECMAC as a more efficient computing model of the human cerebellum.

Unlike the CMAC network which employs a multi-layered computing structure, the proposed PSECMAC

network consists of only a single-layer of computing cells. This attempts to enhance the computational

comprehensibility of the PSECMAC network and to avoid the high memory requirement of the CMAC

network in which extensive overlappings of the computing layers are needed to achieve a smooth output. In

the PSECMAC network, the computational principles of the multi-layered CMAC network are retained

via a neighborhood activation of its single layer of computing cells, and the operational similarities

between the CMAC model and the proposed PSECMAC network is presented in Section III-B.

The rest of the paper is organized as follows. Section II briefly describes the construct of the human

cerebellum and highlights the multi-resolution neurophysiological property of the cerebellum that inspired

the development of the proposed PSECMAC network. Section III outlines the basic principles of the

CMAC associative memory network, and provides a conceptual mapping of the functional similarities

between the multi-layered CMAC model and the single-layered implementation of the proposed PSEC-

MAC network. This is followed by a comparative survey on existing CMAC variants. Section IV presents

the architecture of the PSECMAC associative memory network and the proof for learning convergence

of the PSECMAC network is established in Section V. Section VI evaluates the performance of the

PSECMAC network on three real-life applications, namely: (1) the pricing of the GBP vs. USD currency

5

futures options; (2) the classification of US banking failures; and (3) the modeling of the insulin dynamics

of the human metabolic process. Section VII concludes this paper.

II. The Human Cerebellum

The human cerebellum is a brain construct that functions primarily as the movement regulator and is

important for a number of motor and cognitive functions, including learning and memory [49], [50].

Together with the striatum (part of basal ganglia formation), the cerebellum constitutes the human

procedural memory system, which is a facet of the brain’s information computing capacity that represents

a memory tract for the acquisition of skills and procedures [3]. Due to its structural neuronal organization

and anatomic simplicity, the cerebellum is one of the few brain constructs where the patterns of intrinsic

connections are known in considerable details [1]. This section presents the underlying anatomical and

physiological characteristics that subserve the cerebellar learning and memory formation process.

A. Memory Formation in the Cerebellum – The Anatomy of the Cerebellar Circuit

The most striking feature of the human cerebellum is the near-crystalline structure of its anatomical

layout. However, despite its remarkably uniform anatomical structure, the cerebellum is divided into

several distinct regions. Each of these regions receives sensory information from different parts of the

brain as well as the spinal cord and projects to different motor systems. Such physical connectivity

suggests that different regions of the human cerebellum perform similar computational operations but

on different sensory inputs [51]. In order to effectively accomplish its motor regulatory functions, the

cerebellum is provided with an extensive repertoire of information about the objectives (intentions),

actions (motor commands) and outcomes (feedback signals) associated with a physical movement. There

are two main sets of extra cerebellar afferents: themossy fibersand theclimbing fibers, both of which

carry sensory inputs from the periphery as well as sets of motor commands-related information from the

cerebral cortex [52].

These cerebellar afferent inputs flow into thegranule celllayer of the cerebellar cortex. The mossy fiber

inputs, which carry both sensory afferent and cerebral efferent signals, are relayed by a massive number of

granule cells. These granule cells work as expansion encoders by combining different mossy fiber inputs.

Subsequently, each of the granule cells extends an ascending axon that rises up to the molecular layer

of the cerebellar cortex asparallel fiber. These parallel fibers in turn serve as the inputs to thePurkinje

cellsat the cerebellar cortex. The Purkinje cells are the main computational units of the cerebellar cortex.

Each Purkinje cell draws its inputs from the parallel fibers and the climbing fiber. The parallel fibers

6

input to the Purkinje cells provide large vectors of sensory and command-related information, while the

climbing fibers are thought to function as training signals that regulate the modifications of Purkinje

cells’ synaptic weights. The parallel fibers run perpendicularly to the flat fan-like dendritic aborization of

the Purkinje cells, enabling the greatest possible number of parallel fibers and Purkinje cells contacts per

unit volume. The Purkinje cells perform combinations of the synaptic inputs, and their axons carry the

output of the cerebellar cortex downwards into the underlying white matter and subsequently to thedeep

cerebellar nuclei. The outputs of the deep cerebellar nuclei form the overall output of the cerebellum.

In contrast to the massive synaptic connectivity of the parallel fibers to the Purkinje cells, each of the

Purkinje neurons receives input from exactlyoneclimbing fiber. There exists atopographical mappingin

the synaptic connections between the cerebellar cortex, the deep cerebellar nuclei and the inferior olivary

from which the climbing fibers originate [53], [54]. This topological mapping results in a modular structure

or cluster known asmicrozones, which involves approximately3000 Purkinje cells. The Purkinje cells

of a microzone project to one corresponding deep cerebellar nucleus. The olivocerebellar projections to

the cerebellar cortex are also arranged in a similar manner: a sub-nuclei of the inferior olive project

to a microzone of Purkinje cells sharing the same target nucleus [55]. Therefore, the output of the

cerebellar cortex is organized as a series ofdiscrete modules, where each of them is provided with a

private connection with the inferior olive [54]. Such an arrangement suggests a pattern of neighborhood

activation of Purkinje cells belonging to the same microzone for each computation of output in the

cerebellum.

Memory formation in the cerebellum is facilitated by the information embedded in its synaptic connec-

tions. The cerebellum corresponds to an associative memory system that performs a nonlinear mapping

from the mossy fiber inputs to the Purkinje cells’ outputs. The granule cell layer acts as an association layer

that generates a sparse and extended representation of the mossy fiber inputs. The synaptic connections

between the parallel fibers and the dendrites of the Purkinje cells form an array of modifiable synaptic

weights of the cerebellar computing system. The Purkinje cell array subsequently forms the knowledge

base of the cerebellum and the output of the cerebellar memory system is generated by integrating the

content of the activated Purkinje cells.

B. Learning in the Cerebellum – The Physiological Aspects of the Cerebellar Circuit

As the movement regulator, the cerebellum evaluates the disparities between the formulated intention and

the executed action and subsequently adjusts the operations of the motor centers to affect and regulate the

ongoing movement [56], [57]. Neuroscience has established that the cerebellum performs an associative

7

mapping from the input sensory afferent and cerebral efferent signals to the cerebellar output, which is

subsequently transmitted back to the cerebral cortex and spinal cord through the thalamus [2], [58]–[61].

The physiological process of constructing an associative pattern map constitutes the underlying neuronal

mechanism of learning in the human cerebellum.

Neuroscience research has established that the human cerebellum adopts an error-correction-driven

supervised learning paradigm [51]. This implies that cerebellar learning requires extended trials with

repeated exposures to similar sequence of movements in order to achieve a finely calibrated mapping

between the intended and actual execution of motor movements. The existence of microzones [53], [54],

as well as the established role of the climbing fibers as the teaching signals to the Purkinje cells, suggest

that the cerebellar circuitry performs neighborhood-based training of the synaptic weights. That is, the

cerebellar input (motor commands and sensory signals) and output (corrective error signals) pairing of a

learning episode alters the synaptic weights of a cluster of Purkinje cells that is topographically defined by

the corresponding microzones. This neighborhood-based learning mechanism enables a faster convergence

of the cerebellar learning process, and underlies the generalization of skill learning in everyday life.

The cerebellar learning mechanism is facilitated by the modifiable synaptic transmissions (cerebellar

synaptic plasticity) and the synaptic reorganization capability (cerebellar structural plasticity) of its

neuronal connections. Research into the physiology of the human cerebellum has sufficiently demonstrated

that the Long Term Depression (LTD) of the Purkinje cells’ firing potentials in response to synaptic

inputs from the parallel fibers is the underlying cellular mechanism responsible for cerebellar synaptic

plasticity [51], [52], [58], [61]–[63]. However, scientific evidence suggests that synaptic depression may

not be adequate for forming permanent, long term memories of motor programs [61]. Instead, there are

evidences of morphological alterations of the cerebellar cortex following extensive cerebellar learning.

These studies on the experience-driven cerebellar structural plasticity phenomenon have demonstrated

that complex motor skill learning actually leads to an increase in the number of synapses within the

cerebellar cortex [42], [48], [64], [65]. In such studies, rats were given acrobatic training by challenging

them to acquire complex motor skills necessary to traverse a series of obstacles. It was discovered that

rats with such training developed an increased density of the parallel fibers to Purkinje cells synapses

per unit volume. The increased synaptic density was accomplished by increased dendritic aborization and

increased dendritic spine densities along the Purkinje cells’ spiny branchlets [65]. Such an observation

constitutes a plasticity-driven biological manifestation of the multi-resolution nature of the cerebellar

circuitry. Similar plasticity characteristics were also observed along the olivocerebellar pathway. The

olivocerebellar axons and climbing fibers are capable of remarkable structural plasticity that is regulated

8

via their interactions with the Purkinje cells [55]. This neurobiological adaptation process underlies the

formation of long term procedural memory at the cerebellum.

The experience-driven cerebellar structural plasticity phenomenon suggests that the cerebellum orga-

nizes its learned knowledge in an adaptive and non-linear manner, where repeated training (exposures to

a particular input-output mapping association tuple) yields an increase in the synaptic connections as well

as finer calibrations in the neural circuitry of the Purkinje cells. This results in the biological formation

of a more precise knowledge representation scheme. These neurophysiological observations inspired the

development of the proposed multi-resolution PSECMAC associative memory network.

III. CMAC as a Computational Model of the Human Cerebellum

The Cerebellar Model Articulation Controller (CMAC) associative memory network is a well-established

computational model of the human cerebellum [4], [5] that was constructed to explain the information-

processing characteristics of its biological counterpart. This section presents the basic computational

principles of the CMAC neural network and reviews some of the CMAC variants proposed in the literature.

A. Basics of CMAC Neural Network

The CMAC network functions as a static associative memory that models the non-linear mapping between

the mossy fiber inputs and the Purkinje cell outputs. The massive mesh of granule cell encoders in the

cerebellum corresponds to an association layer that generates a sparse and extended representation of

the mossy fiber inputs. The synaptic connections between the parallel fibers and the dendrites of the

Purkinje cells forms an array of modifiable synaptic weights that motivates the grid-like CMAC computing

structure. In the human cerebellum, the outputs of the activated Purkinje cells are combined to form the

cerebellar output. In CMAC, the network output is computed by aggregating the memory contents of the

active computing cells. The CMAC network is essentially a multi-dimensional memory array, in which an

input acts as the address decoder to access the respective memory cells containing the adjustable weight

parameters that constitutes the corresponding output. CMAC learns the correct output response to each

input vector by modifying the contents of the selected memory locations via an error-correction learning

scheme. For each input, the difference between the CMAC response and the known target response is

computed and the weight values of the selected memory cells in the network are adjusted accordingly.

B. A Single Layer Model of the CMAC Network

In the original implementation of the CMAC network proposed by Albus [66], the network memory

cells are divided into layers. The number of layers in a CMAC network is determined by the number

9

of quantization functionsdefined. That is, one quantization function corresponds to one layer. This also

implicitly means that all the input dimensions have the same number of quantization functions. Figure 1(a)

depicts an example of a 2-input CMAC network with four quantization functions (and therefore four

layers) in each of the input dimensions. The resultant 2-dimensional grid in Figure 1(a) corresponds to

the input space of the CMAC network that is used to learn the associative mapping patterns for256

input–output vector combinations. The quantization functions of the network are defined as follows:

Along dimensionS1:
S1Q1 → {A,B, C, D}
S1Q2 → {E,F, G,H, I}
S1Q3 → {J,K, L, M, N}
S1Q4 → {O,P,Q,R, S}

(1)

Along dimensionS2:
S2Q1 → {a, b, c, d}
S2Q2 → {e, f, g, h, i}
S2Q3 → {j, k, l,m, n}
S2Q4 → {o, p, q, r, s}

(2)

whereiQj denotes the quantization function for thejth layer of theith dimension and{} denotes the set

of quantization levels. Each of the quantization levels (i.e. A, B, C, etc.) denotes a memory axis in the

respective layer. The intersections of the memory axes of a layer constitute the memory locations for that

layer. For instance, with respect to Figure 1(a), there are16 memory cells corresponding to the pair of

quantization functionsS1Q1 andS2Q1 in layer 1. During the operations of the CMAC network, the input

vector is first quantized into the corresponding quantization level at each layer, and this forms the address

index used to access the memory location in that layer. Each input vector selectsonememory cell from

a layer. In the CMAC of Figure 1(a), the input vector of(6, 6) selects a total of four memory cells (i.e.

C1 to C4). The output of the CMAC network is subsequently computed by the linear combination of

the memory contents of the selected cells.

The multi-layered implementation of the CMAC network often renders the network operations difficult

to comprehend. Moreover, in such an implementation, extensive layers of overlapping computing cells

are required to produce a smooth output. Therefore, we proposed in this paper a generic single layer

implementation with neighborhood computations to retain the modeling principles of the original multi-

layered CMAC network. Figure 1(b) illustrates such a single-layered model of a 2-input CMAC network

consisting of64 memory cells. The two dimensional computing grid corresponds to the memory space

of the CMAC network. In Figure 1(b), each input dimension isquantizedinto eight discrete quantization

steps (or levels). Similar to the multi-layered CMAC, the input vector to this network is quantized to

the corresponding level for each input dimension to obtain the index address of the winner memory cell.

However, in the single-layered CMAC model, each input vector selects a neighborhood of memory cells

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Input Space

A B C D

E F G H I

J K L M N

O P Q R S

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

m2*

m1*

S1

S2

C1
C2

C3
C4

(a) An example of a 2D CMAC network (m∗
1 refers to

the set of quantization functions along theS1 dimension
and m∗

2 refers to the set of quantization functions along
the S2 dimension)

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

M17 M18 M19 M20 M21 M22 M23 M24

M25 M26 M27 M28 M29 M30 M31 M32

M33 M34 M35 M36 M37 M38 M39 M40

M41 M42 M43 M44 M45 M46 M47 M48

M49 M50 M51 M52 M53 M54 M55 M56

M57 M58 M59 M60 M61 M62 M63 M64

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15
0-1

2-3
4-5

6-7
8-9

10-11
12-13

14-15

Memory Space
Quantized S2

Quantized
S1

S1

S2

(6,6)

(b) A single layer perspective of the 2D CMAC network
example shown in Figure 1(a)

Fig. 1. Comparison of multi-layered and single-layered CMAC implementation for 2-dimensional input problem

or neurons that is centered at the winner memory cell.

The conceptual similarities between the proposed single-layered model and the original multi-layered

implementation of the CMAC network can be examined from their respective modeling principles. The

layered cell activations in the original CMAC network contributed to three significant computational

objectives: (1) smoothing of the computed output; (2) facilitating a distributed learning paradigm; and (3)

activating similar or highly correlated computing cells in the I/O associative space. These three modeling

principles are similarly conserved in the single-layered model of the CMAC network via the introduction

of a neighborhood-based computational process. The activation of the neighboring cells in the input

space of the single-layered CMAC corresponds to the simultaneous activation of the highly correlated

cells in its multi-layered counterpart. This contributes to the smoothing of the computed output since

the neighborhood-based activation process results in continuity of the network output. In addition, the

distributed learning paradigm for each input-output training pair is achieved by a neighborhood update

process of the single-layered CMAC model.

11

C. CMAC Variants

The significance of an efficient memory allocation scheme to the performance of a CMAC based system is

evidenced by the number of CMAC variants proposed to address the issue in the literature. Generally, the

solutions offered by the CMAC variants are of two main approaches: (1) multi-resolution based discrete

quantization; and (2) fuzzy quantization of the input space. The motivation for the former is to derive an

efficient mapping of the memory cells onto the input-output associative space to enhance memory usage

via increasingly finer output resolutions without inducing high computational complexity of the resultant

network. The fuzzified CMAC variants, on the other hand, attempt to address the rigidness of the crisp

boundaries and the problem of a constant output resolution imposed by employing discrete quantization

functions with the use of fuzzy membership for the quantization process. In addition, the mapping of a

formalized reasoning process helps to improve the computational interpretability of the opaque CMAC

network. A literature survey presented in [67] presents a brief analysis of the various fuzzified CMAC

(FCMAC) architectures proposed in the literature [19], [29]–[39]. In addition, the survey [67] also briefly

outlines a summary of some of the crisp CMAC variants reported in the literature [23]–[28].

IV. PSECMAC: A Self-Organizing Multi-Resolution Associative Memory Network

The proposed non-uniformly quantized PSECMAC network is inspired by the findings of neurophys-

iological studies of the learning phenomenon observed in the human cerebellum, where significantly

higher densities of the cerebellar synaptic connections are located at the high-throughput regions of the

cerebellum [42], [48], [64], [65] where frequent access facilitates the acquisition and execution of skilled

behavioral responses in everyday life (i.e. experience-dependent adaptation). The PSECMAC network is

a single-layered self-organizing multi-resolution computational model of the cerebellum that employs a

data-driven adaptive memory quantization scheme. The experience-based synaptic adaptation process

observed in the human cerebellum is emulated via the use of the Pseudo Self-Evolving Cerebellar

(PSEC) [68] clustering technique that determines the data density profile of the training exemplars

along each input dimension. The memory quantization step sizes of the PSECMAC network (and hence

the placements of its computing cells) are subsequently adapted based on the computed information

distribution of the training data. In the PSECMAC network, memory efficiency is enhanced by allocating

more memory (computing) cells to the densely data-populated regions of the I/O associative space. This

subsequently lowers memory wastage as the number of untrained (unused) computing cells is reduced.

Meanwhile, the accuracy of the PSECMAC network’s output in the high-throughput I/O subspaces (which

conceptually correspond to the often-accessed regions of the cerebellar cortex) is simultaneously enhanced

12

Memory cell 1

2

3

4

5

6

1 2
3 4

5 6

k = Q1[xj]

l = Q1[yj]

Winner

x

y

Input
Space

1
2 3 4

5
6 l = Q2[yj]

1

2

3

4

5

6

k = Q2[xj]

Memory axis
Winner

x

y

Input
Space

(a) 2D CMAC Memory Cells

Memory cell 1

2

3

4

5

6

1 2
3 4

5 6

k = Q1[xj]

l = Q1[yj]

Winner

x

y

Input
Space

1
2 3 4

5
6 l = Q2[yj]

1

2

3

4

5

6

k = Q2[xj]

Memory axis
Winner

x

y

Input
Space

(b) 2D PSECMAC Memory Cells

Fig. 2. Comparison of CMAC and PSECMAC memory surface for 2-dimensional input problem

with a higher modeling resolution.

Figure 2 graphically illustrates the fundamental architectural difference in the organization of the

memory (computing) cells to define the I/O mapping space between the proposed PSECMAC network

and the CMAC model. In CMAC, the memory cells are uniformly distributed over the entire associative

(memory) space. The computing cells in the PSECMAC network, on the other hand, are intentionally

assigned to create an efficient representation of the data distribution. In this section, the structural and

parameter learning phases of the proposed PSECMAC associative memory network are presented.

A. The PSECMAC Network Architecture

The proposed PSECMAC network architecture employs a two-phased learning process, namely: structural

learning and parameter tuning. The objective of the structural learning phase is to create the PSECMAC

network’s associative structure by computing the quantization decision functions for each input dimension.

Subsequently, the input to output associative information of the training data samples are learnt by adapting

the memory contents of the PSECMAC network in the parameter tuning phase. The initial step in the

PSECMAC structural learning phase is to identify the regions of the I/O space with high data densities.

Subsequently, more memory cells (i.e. a finer network output granularity) are assigned to these regions

to emulate the experience-driven dendritic aborization phenomenon observed in the cerebellar learning

process during skill acquisition. Analogous to the repeated exposures of the learning episodes during

skill acquisition, these identified regions of the I/O space contain a large amount of training data points

that coexisted in close proximity. For simplicity, the PSECMAC memory allocation and non-uniform

13

quantization process is performed individually for each input dimension and consists of several steps: (1)

the identification of the data density clusters; (2) the allocation of the PSECMAC memory cells based on

the computed density profile; and (3) the derivation of the respective PSECMAC quantization decision

functions.

1) THE COMPUTATION OF DATA DENSITY CLUSTERS

In the PSECMAC network, significant data clusters supporting the inherent organization of the training

dataset are first identified via the Pseudo Self-Evolving Cerebellar (PSEC) [68] clustering algorithm

through an analysis of the density distribution of the training data points along each input dimension. The

PSEC algorithm is a density-based clustering algorithm which synergizes the merits of the incremental

learning procedure of theLearning Vector Quantization(LVQ) [69] technique with the effectiveness

of the density-based partitioning method of the DBSCAN algorithm [70]. This clustering algorithm is

inspired by the biological development of the human brain where neural cell death plays an integral part

in the refinement process of its neuronal organization [68]. Neurophysiological studies have established

that there are two overlapping stages in the development of the human brain [51]. The first stage of

this development process encompasses the formation of the basic architecture of the brain system, in

which coarse connection patterns emerge as a result of the genesis of the brain cells during prenatal

development. Subsequently, in the second stage of the brain’s development, the initial architecture is

refined and extraneous synaptic connections are pruned throughout an individual’s life-span via exposures

to various activity-dependent experiences. These two stages of the human brain adaptation process are

functionally emulated by the PSEC clustering algorithm.

The proposed PSECMAC network employs a modified PSEC (MPSEC) clustering algorithm to identify

the centers of the density clusters along each input dimension of the training data space. Adensity cluster

is defined as a cluster identified from the data density profile computed with the MPSEC algorithm. Each

density cluster is associated with acluster center, which denotes the point of highest data density in the

cluster. The MPSEC algorithm commences with an initial set of regularly-spaced density clusters, with

the mid points of these initial density clusters defined as the respective cluster centers. This initial set

of clusters is incrementallyevolvedto capture the data density profile along each input dimension to

derive a final set of density clusters. The LVQ iterative algorithm is subsequently employed to refine the

positions of the cluster centers in this final set of density clusters.

Let J and L denote the total number of input and output dimensions for a given dataset respec-

tively. Assume that a training dataset ofU =
{

(X1, Ŷ1), (X2, Ŷ2), · · · , (Xs, Ŷs), · · · , (XS , ŶS)
}

is

14

used to train the PSECMAC network, whereXs =
[

xs,1 xs,2 · · · xs,J

]T
denotes thesth input

training vector, andŶs =
[

ŷs,1 ŷs,2 · · · ŷs,L

]T
denotes the corresponding expected output tar-

get vector of the PSECMAC network. Letτ denotes the clustering iteration in MPSEC andC(τ)
j ={

C
(τ)
j,1 , C

(τ)
j,2 , · · · , C(τ)

j,n , · · · , C(τ)

j,n
(τ)
C,j

}
denotes the set of density clusters along thejth input dimension

at the τ th iteration, wheren(τ)
C,j is the the corresponding total number of density clusters. LetC(−1)

j

denotes the initial set of density clusters for the MPSEC algorithm andn
(−1)
C,j be the number of these

regularly-spaced density clusters along thejth input dimension. For each input dimensionj ∈ {1 · · ·J},

the MPSEC clustering algorithm is briefly outlined as follows:

Step 1 Initialize the clustering parameters.

An initial number of density clustersn(−1)
C,j , along with a pseudo potential thresholdβ, a

clustering termination criterionε and the LVQ learning constantαc are determined prior to

the start of MPSEC clustering iteration.

Step 2 Construct the initial set of density clusters.

The initial set of density clustersC(−1)
j is subsequently constructed withn(−1)

C,j regularly spaced

clusters such thatC(−1)
j =

{
C

(−1)
j,1 , C

(−1)
j,2 , · · · , C(−1)

j,n , · · · , C(−1)

j,n
(−1)
C,j

}
. Each density clusterC(τ)

j,n

is associated with a cluster centerP
(τ)
j,n and a density valueV (τ)

j,n . In the initial set of density

clustersC(−1)
j , the cluster centerP (−1)

j,n is assigned to the center points of the corresponding

density clusterC(−1)
j,n and the density valueV (−1)

j,n are initialized to zero. This step emulates

the formation of the initial brain system, in which extraneous connection patterns emerge as a

result of the overproduction of neurons during the prenatal brain development phase.

Step 3 Compute the initial cluster density values.

MPSEC performs structural learning by executing a one-pass learning of the density values

V
(−1)
j,n to obtain a density distribution of the training data along thejth input dimension.

Step 4 Evolve the initial set of density cluster.

For each input dimension, the initial set of density clustersC(−1)
j is evolved to capture the

inherent data density profile by identifying all the local maxima in the set of computed density

valuesV
(−1)
j,n . This step emulates the competitive neuronal selection process in human brain

development, whereby neurons with high tropic factors are identified as the winner neurons

and the remaining extraneous neurons are pruned to create a more refined structure of synaptic

connections. The clusters in the initial set of density clustersC(−1)
j whose density values form

prominent convex density peaks in the computed density distribution of Step 3 are included

15

density
profile

Data points
input

PSEC cluster centersdensity clusters

Fig. 3. A sample output of the MPSEC clustering technique

in the new set of density clustersC(0)
j . The rest of the density clusters are removed (pruned).

The remaining clusters in the new set of density clustersC(0)
j are therefore analogous to the

surviving neurons with high tropic factors in the brain neuronal selection process.

Step 5 Incremental learning of cluster centers.

The cluster centersP (0)
j,n of the new set of density clustersC(0)

j are subsequently refined to

derive the accurate positioning of the density-induced cluster centers. The incremental learning

of cluster centers are performed iteratively using the LVQ algorithm, resulting on the final set

of density clustersC(τ)
j .

Step 6 Compute the resultant density profile.

A one-pass learning of the density valuesV
(τ)
j,n in the final set of density clustersC(τ)

j is

performed to derive the density values at the final cluster centersP
(τ)
j,n . Finally, for each density

cluster C
(τ)
j,n in C(τ)

j , the left and right boundaryL(τ)
j,n and R

(τ)
j,n are computed as the center

point between the cluster centerP
(τ)
j,n and the cluster center of its corresponding left and right

neighbors.

Figure 3 illustrates the mechanism of the MPSEC clustering algorithm. Essentially, MPSEC computes a

set of density-induced clusters, whose centers denote the highest density points in the respective clusters.

The boundary between any two neighboring clusters are conveniently assumed to be at the bisection of

the two respective cluster centers. The detailed descriptions and mathematical formulations of the MPSEC

algorithm is listed in [71].

2) THE PSECMAC MEMORY ALLOCATION PROCESS

In the proposed PSECMAC network, the number of memory cells allocated to a density cluster is

proportional to the normalized density value of the corresponding cluster center. LetM̂j denotes the

16

nth cluster

quantization
step sizes are

smaller
towards the

cluster center

left subregion
right subregion

memory
cell

Lj,n
(t)

Pj,n
(t) Rj,n

(t)

quantization
point

Fig. 4. Adaptive memory cell distribution in clusterC
(τ)
j,n

total number of predefined memory cells in thejth input dimension. Then for each density clusterC
(τ)
j,n

in C(τ)
j , the number of memory cellsMj,n allocated for this cluster is computed as:

Mj,n =

 V
(τ)
j,n∑

n′∈{1···n(τ)
C,j}

V
(τ)
j,n′

× M̂j (3)

whereMj,n is the number of memory cells allocated to clusterC
(τ)
j,n in the jth input dimension,V (τ)

j,n

is the density value ofC(τ)
j,n , andn

(τ)
C,j denotes the total number of computed density clusters in thejth

input dimension.

3) THE PSECMAC QUANTIZATION DECISION FUNCTIONS

For the proposed PSECMAC network, a non-linear assignment scheme is introduced for the computation

of the quantization decision functions to vary the quantization step sizes of the memory cells of the

identified density clusters. In PSECMAC, the memory cells allocated to an arbitrary clusterC
(τ)
j,n is

equally distributed to the left and right side of the cluster center (i.e. the left and right subregions). In

each of the subregions, the quantization point of each memory cell is logarithmically assigned with respect

to the cluster center. The quantization point of a memory cell is defined as the midpoint of the memory

cell. The result of this computation is illustrated in Figure 4, which depicts the adaptively quantized

memory cells inside a cluster. Computationally, the center of each density-induced cluster constitutes the

finest data granularity. As a memory cell moves away from the cluster center, its quantization step size

increases in response to a lower density of the observed training data.

17

In this work, a logarithmic quantization technique (commonly referred to asµ-law quantization [72]) is

employed to manage the distribution of the memory cells in a cluster. The degree of non-linearity in the

quantization step sizes of the memory cells is governed by a parameterµ. Subsequently, a quantization

mapping functionQj [·] →
{

Qj,1, Qj,2, · · · , Qj,M̂j

}
is constructed to define the quantization of the

memory cells in thejth input dimension of the PSECMAC network, whereQj,n̄, n̄ ∈ {1 · · · M̂j}, denotes

the n̄th quantization point. The derivation of the quantization functionQj [·] is described as follows:

(a) Initialize n̄ = 1 (i.e. first quantization point) and define the parameterµ for the non-linear

distribution of the memory cells.

(b) For n = 1 · · ·n(τ)
C,j : Let Mj,n (computed from Equation (3)) denote the number of memory cells

allocated to a density clusterC(τ)
j,n in the jth input dimension andk be the index to the memory

cells in the density clusterC(τ)
j,n . For k = 1 · · ·Mj,n, compute the quantization point for thekth

memory cell inC
(τ)
j,n such that:

• IF the kth memory cell is in the left subregion (i.e.k ≤
⌊

Mj,n

2

⌋
) THEN:

step =
P

(τ)
j,n − L

(τ)
j,n⌊

Mj,n

2

⌋ (4)

pt = L
(τ)
j,n + (k − 0.5) · step (5)

Qj,n̄ = L
(τ)
j,n +


(
P

(τ)
j,n − L

(τ)
j,n

)
· log

(
1 + µ·|L(τ)

j,n−pt|
(P

(τ)
j,n−L

(τ)
j,n)

)
log(1 + µ)

 (6)

whereP
(τ)
j,n andL

(τ)
j,n are the center and the left boundary of the density clusterC

(τ)
j.n respectively.

Update the index̄n = n̄ + 1.

• ELSE IF Mj,n is odd and thekth memory cell is assigned to the cluster center (i.e.
⌊

Mj,n

2

⌋
<

k <
⌈

Mj,n

2

⌉
+ 1) THEN:

Qj,n̄ = P
(τ)
j,n (7)

Update the index of the current decision pointn̄ = n̄ + 1.

• ELSE IF thekth memory cell is in the right subregion (i.e.k >
⌊

Mj,n

2

⌋
) THEN:

step =
R

(τ)
j,n − P

(τ)
j,n⌊

Mj,n

2

⌋ (8)

18

pt = P
(τ)
j,n + (k −

⌊
Mj,n

2

⌋
− 0.5) · step (9)

Qj,n̄ = R
(τ)
j,n −


(
R

(τ)
j,n − P

(τ)
j,n

)
· log

(
1 + µ·|pt−R

(τ)
j,n|

(R
(τ)
j,n−P

(τ)
j,n)

)
log(1 + µ)

 (10)

whereR
(τ)
j,n is the right boundary of the density clusterC

(τ)
j.n . Update the index̄n = n̄ + 1.

Note that the second condition (Equation (7)) is met only whenMj,n is odd. Otherwise, the number

of allocated memory cells to the left and right subregions of clusterC
(τ)
j,n are evenly allocated and

is equal to
⌊

Mj,n

2

⌋
.

After the completion of this placement process, the quantization mapping functionQj [·] is defined for

thejth input dimension. The computed quantization decision points of each input dimension subsequently

form the memory axes of the proposed PSECMAC network and are used to define its overall computing

structure. The intersections of these memory axes denote the computing cells of the PSECMAC network

and define the I/O associative space. The training of this PSECMAC computing structure is described in

the following two sections.

B. The PSECMAC Computational Process

The PSECMAC network employs aWeighted Gaussian Neighborhood Output(WGNO) computation

process, where a set of neighborhood-bounded computing cells is activated to derive the network’s output

response to the given input stimulus. In this computation process, each of the neighborhood cells has

a weighted degree of activation that is inversely proportional to the distance of the cell from the input

stimulus point. The objective of the WGNO scheme is to minimize the influences of the input quantization

errors on the computed network output. In addition, it introduces a ”smoothing” effect on the PSECMAC

output and enhances the generalization capability of the PSECMAC network.

Let Ys denotes the computed PSECMAC network output for an input stimulusXs = [xs,1, xs,2, · · ·xs,J]

to the PSECMAC network. The WGNO computation process is defined as follows:

Step 1: Determining the region of activation.

The size of the activated PSECMAC neighborhood with respect to inputXs is defined byN ∈

[0 · · · 1], a user-specified parameter that governs the relative size of the neighborhood of activated

PSECMAC cells to the overall memory space. The neighborhood activation boundaries are defined

on per-dimension basis such thatN = 0.2 denotes an activation boundary of20% relative to the

range of the respective input dimension. A neighborhood constant ofN = 0.2 therefore signifies

19

di

PSECMAC Memory Cells

x

Neighborhood corresponding to x

N size

Pi

di

di1

di2

Pi

x

Fig. 5. An example of a 2D PSECMAC neighborhood

an neighborhood activation of(0.2)J × 100% relative to the entire input space, whereJ denotes

the total number of input dimension. For the input stimulusXs, its activation neighborhood is

defined as:

lbs,j = xs,j − 0.5 ·N · rangej (11)

rbs,j = xs,j + 0.5 ·N · rangej (12)

j ∈ {1, 2, · · · , J}

where lbs,j denotes the left activation boundary,rbs,j denotes the right activation boundary, and

rangej is the domain for thejth input dimension. Subsequently, the memory cells encapsulated

within the neighborhood defined by the computed boundaries are activated in response to the

input stimulusXs. A PSECMAC activation neighborhood is illustrated as Figure 5. The size

of the neighborhood affects the accuracy of the computed PSECMAC output. The larger the

neighborhood size, the more generalized is the output of the PSECMAC network. Conversely,

a smaller neighborhood size results in a more accurate output computation. Therefore, a larger

neighborhood size is suitable for a dataset that is sparse in the input space as this increases the

generalization ability of the PSECMAC network. A smaller neighborhood size, on the other hand,

is suitable for a compact dataset so as to produce more accurate results.

Step 2: Computing the Gaussian weighting function.

20

A Gaussian weighting factorgk is associated with each activated PSECMAC cell to determine

its contribution towards the computation of the network output. The Gaussian weighting factor is

defined as:

gk = (1− dk)e−d2
k/2γ2

(13)

whereγ is the Gaussian width constant anddk denotes the normalized Euclidean distance from the

kth activated cell to the input stimulusXs (see Figure 5). LetKs be the set of activated PSECMAC

cells in the computed neighborhood. Subsequently,dk is defined as

dk =
‖Qk −Xs‖

maxk′∈Ks
‖Qk′ −Xs‖

(14)

whereQk = [Q1,k, Q2,k, · · · , QJ,k] denotes the quantization point of cellk in the memory space.

Step 3: Retrieving the PSECMAC Output.

The PSECMAC network outputYs is computed as a weighted linear combination of the memory

contents of the activated cells such that:

Ys =

∑
k∈Ks

(gk ·W(k))∑
k∈Ks

gk
(15)

whereKs denotes the set of neighborhood-activated PSECMAC cells, andW(k) is the stored

weight value(s) of the activated PSECMAC cell with indexk.

C. The PSECMAC Learning Process

This section describes the parameter tuning phase of the proposed PSECMAC network. Parameter tuning

is performed for the PSECMAC network to learn the mapping of the input-output associative patterns from

the training data tuples. To emulate the neighborhood learning phenomenon of the human cerebellum [51],

[54], the PSECMAC network adopts aWeighted Gaussian Neighborhood Update(WGNU) process.

WGNU combines the Widrow-Hoff training algorithm [73] with the Gaussian weighting function defined

in Equation (13). The objective of this neighborhood update scheme is to distribute the effect of learning

to increase the generalization capability of the PSECMAC network.

For an arbitrary input-output training data tuple(Xs, Ŷs), the PSECMAC learning process is mathe-

matically described as follows:

1) Compute the PSECMAC outputY(i)
s at theith training iteration:

Y(i)
s =

∑
k∈Ks

(
gk ·W(i)(k)

)∑
k′∈Ks

gk′
(16)

21

whereKs is the set of activated computing cells corresponding to the inputXs, gk is the Gaussian

weighting factor of thekth activated memory (computing) cell,W(i)(k) denotes the memory content

of thekth activated memory cell at theith iteration, andY(i)
s is the output of the PSECMAC network

to the inputXs at theith iteration.

2) Compute the network output error at theith iteration:

Err(i)
s = Ŷs −Y(i)

s (17)

whereErr(i)
s denotes the output error of the PSECMAC network to the inputXs at theith iteration,

andŶs is the desired (target) output of the PSECMAC network in response to the inputXs.

3) Update the stored network weights:

W(i+1)(k) = W(i)(k) + ∆W(i)(k) k ∈ Ks (18)

∆W(i)(k) = α
gk∑

k′∈Ks
gk′

Err(i)
s︸ ︷︷ ︸

local error for cellk

k ∈ Ks (19)

whereα is the learning constant, andW(i)(k) denotes the content (weight) of thekth activated

cell in the neighborhoodKs in PSECMAC in response to the input stimulusXs at theith training

iteration.

The PSECMAC memory learning phase commences with the computation of the network output corre-

sponding to the input stimulusXs. A learning error is computed based on the derived PSECMAC output

and the target response. This error is subsequently distributed to all the activated computing (memory)

cells based on the Gaussian weighting factors. The local errors are then used to update the memory

contents of the activated cells. As a computational model of the human cerebellum, the PSECMAC

network exhibits properties that are highly similar to the neurobiological and neurophysiological aspects

of its biological counterpart. The correspondence between the characteristics of the human cerebellum

and the proposed PSECMAC network are listed in [74].

V. The PSECMAC Learning Convergence

This section presents the mathematical proof of the learning convergence of the proposed PSECMAC

network. This proof is modeled closely after the theoretical proof of convergence of the basic CMAC

network presented in [21]. Figure 6 depicts an example of the memory surfaceZ of a 2-input PSECMAC

network.Z(q1,q2) denotes the network cell with the address index(q1,q2). With respect to Figure 6, the

22

X1

X2

Z

Q1,1 Q1,2

Q1,M1

Q1,3

Q 2,1
Q 2,2

Q 2,3

Q 2,M 2

...
...

......
...

...

...

...

Z(q1,q2)q2

q1
^

^

Fig. 6. An example of the 2-input PSECMAC Memory Content

Z

Conceptual Linearization Implementation

Z[0]

Z[2]

Z[1]

Z[0]
Z[1]

WT

M̂ Memory cells

Z[M]^

Z[M]^

Fig. 7. 2D PSECMACY →W mapping

quantization points along theX1 dimension are{Q1,1, Q1,2, Q1,3, · · ·Q1,M̂1
} and along theX2 dimension

are{Q2,1, Q2,2, Q2,3, · · ·Q2,M̂2
} respectively. However, for simplicity, equal memory size per dimension

is assumed in the proof of convergence, i.e.M̂1 = M̂2 = · · · = M̂ , whereM̂ is the memory size per

dimension.

A. Mathematical Perspective of The PSECMAC Network

The PSECMAC network employs the WGNO and WGNU computations for the network retrieval and

update operations respectively and the activated neighborhoods of the two processes are centered at the

corresponding multi-dimensional input vector to the network (See Figure 5). The conceptual memory

surfaceZ of a multi-input PSECMAC network can be expressed as a one-dimensional weight arrayW.

Figure 7 illustrates thelinearizationof the conceptual memory surfaceZ to the physically implemented

one-dimensional weight arrayW for a two-dimensional PSECMAC example. With respect to the PSEC-

23

MAC network, the computed output for thesth input sample at theith learning iteration is defined

as:

Y(i)
s =

∑
k∈Ks

(
gk ·W(i)(k)

)∑
k′∈Ks

gk′
(20)

whereY(i)
s is the computed output of the multi-dimensional PSECMAC to thesth input training vector

at the ith iteration, Ks is the set of activated computing cells corresponding to thesth input training

vector,gk is the Gaussian weighting factor of thekth activated memory (computing) cell, andW(i)(k)

denotes the content of thekth activated memory cell at theith iteration.

For simplicity, only scalar output is considered here. That is, the PSECMAC network presented here

for the proof of learning convergence is a multi-input single-output system. However, this proof can

be easily extended to a multi-input multi-output PSECMAC system without any loss of generality. The

computed output of the single output PSECMAC system is expressed as:

y(i)
s =

∑
k∈Ks

(
gk ·W(i)(k)

)∑
k′∈Ks

gk′
(21)

wherey
(i)
s denotes the computed output of the single-output PSECMAC network with respect to thesth

input training sample at theith training iteration.

Assume a training datasetU of S tuples, i.e.U = {(X1, Ŷ1), (X2, Ŷ2), · · · , (Xs, Ŷs), · · · , (XS , ŶS)}.

Let the total number of memory cells in the PSECMAC network beM̂J whereJ is the total number

of input dimensions and the column vectorAs denotes the activation mask of the PSECMAC memory

cells with respect to thesth input training sample. That is,

AT
s = [as,1 as,2 · · · as,M̂J]︸ ︷︷ ︸

1×M̂J array

(22)

as,j =
gj∑

k∈Ks
gk

, j ∈ {1 · · · M̂J} (23)

gj = 0, if j /∈ Ks (24)

whereKs denotes the set of activated memory cells in the neighborhood selected by thesth input training

sample. Hence, the maskAT
s identifies the activated memory cells corresponding to the neighborhood

selected by thesth input training sample and subsequently weights these cells using the Gaussian

neighborhood function defined in Equation (13). The scalar output of the PSECMAC network can thus

24

be formulated as a vector multiplication such that

ys = [as,1 as,2 · · · as,M̂J]︸ ︷︷ ︸
1×M̂J array

Ws = AT
s Ws (25)

whereWs is the memory content of the entire PSECMAC network structure at the time when thesth

input training sample is presented.

The memory update operation of the PSECMAC network for thesth input training sample is subse-

quently defined as:

W(i)
s+1 = W(i)

s + ∆W(i)
s︸ ︷︷ ︸

α×local error

= W(i)
s + αAs

learning error︷ ︸︸ ︷
{ŷs −AT

s W(i)
s }︸ ︷︷ ︸

local error

(26)

whereW(i)
s+1 denotes the memory content of the entire PSECMAC network structure when the(s+1)th

training sample is presented in theith training iteration,α is the learning constant,As is the activation

mask of the PSECMAC memory cells, and̂ys denotes the desired (expected) PSECMAC output for the

sth training sample.

The difference of the PSECMAC memory contents between two successive iterations for thesth input

training sample (denoted asDw(i)
s) is therefore defined as:

Dw(i)
s = W(i+1)

s −W(i)
s

= W(i+1)
s−1 + ∆W(i+1)

s−1︸ ︷︷ ︸
W

(i+1)
s

− (W(i)
s−1 + ∆W(i)

s−1)︸ ︷︷ ︸
W

(i)
s

= Dw(i)
s−1︸ ︷︷ ︸

W
(i+1)
s−1 −W

(i)
s−1

+αAs−1{ŷs−1 −AT
s−1W

(i+1)
s−1 }︸ ︷︷ ︸

∆W
(i+1)
s−1

−αAs−1{ŷs−1 −AT
s−1W

(i)
s−1}︸ ︷︷ ︸

∆W
(i)
s−1

= Dw(i)
s−1 − αAs−1AT

s−1 (W(i+1)
s−1 −W(i)

s−1)︸ ︷︷ ︸
Dw

(i)
s−1

= (I− αAs−1AT
s−1︸ ︷︷ ︸

outer product

)Dw(i)
s−1 (27)

Note that the activation maskAs is constant for an arbitrary given input training samples across different

training iterations. This is because the PSECMAC network structure is fixed after the structural learning

phase.

25

Following Equation (27), let

Es ≡ (I− αAsAT
s) whereEs is M̂J × M̂J matrix (28)

and

Dw(i) ≡
[

Dw(i)
1 Dw(i)

2 · · · Dw(i)
S

]
(29)

whereS denotes the total number of input training samples.

The learning convergence of the PSECMAC network is established via the convergence of the network

memory contents as training approaches infinity [21], [75]. In this case, the sufficient and necessary

condition for the PSECMAC learning process to convergence can be expressed as:

lim
i→∞

Dw(i)
s = [0], ∀s ∈ {1 · · ·S}, or in matrix notation (30)

lim
i→∞

Dw(i) = [0]M̂J×S (31)

where[0] is the null matrix.

Substituting Equation (28) into Equation (27), one obtains

Dw(i)
s = Es−1Dw(i)

s−1 (32)

The PSECMAC network is trained iteratively on a set ofS training samples. Whens = 1, from

Equation (32)

Dw(i)
1 = E0Dw(i)

0 (33)

such that

Dw(i)
0 = Dw(i−1)

S (34)

(i.e. by recycling the training samples in their existing order for each new training iteration). Following

the definition of Equation (34),

E0 = ES (35)

⇒ A0 = AS (From Equation (28))

From the results of Equations (32 – 35),Dw(i) (See Equation (29)) can be expanded and re-expressed

26

as

Dw(i) =
[

Dw(i)
1 Dw(i)

2 · · · Dw(i)
S

]
=

 ESDw(i−1)
S︸ ︷︷ ︸

Dw
(i)
1

E1Dw(i)
1︸ ︷︷ ︸

Dw
(i)
2

· · · ES−1Dw(i)
S−1︸ ︷︷ ︸

Dw
(i)
S


=

 ES ES−1Dw(i−1)
S−1︸ ︷︷ ︸

Dw
(i−1)
S

E1 ESDw(i−1)
S︸ ︷︷ ︸

Dw
(i)
1

· · · ES−1 ES−2Dw(i)
S−2︸ ︷︷ ︸

Dw
(i)
S−1

 (36)

Decompose theDw terms on the right hand side repeatedly to obtain the following:

Dw(i) =
[

(ESES−1 · · ·E1)Dw(i−1)
1 (E1ES · · ·E2)Dw(i−1)

2 · · ·

(ES−1ES−2 · · ·ES)Dw(i−1)
S

]
(37)

Following Equation (37), let

Gs ≡ Es−1Es−2 · · ·E1ESES−1 · · ·Es, s ∈ {1 · · ·S} (38)

whereGs is a matrix multiplication ofS terms. With the definition ofGs, Equation (37) can be re-

expressed as

Dw(i) =
[

Dw(i)
1 Dw(i)

2 · · · Dw(i)
S

]
=

[
(ESES−1 · · ·E1)︸ ︷︷ ︸

G1

Dw(i−1)
1 (E1ES · · ·E2)︸ ︷︷ ︸

G2

Dw(i−1)
2 · · ·

(ES−1ES−2 · · ·ES)︸ ︷︷ ︸
GS

Dw(i−1)
S

]
=

[
G1Dw(i−1)

1 G2Dw(i−1)
2 · · · GSDw(i−1)

S

]
(39)

It can be observed that

Dw(i)
s = GsDw(i−1)

s (40)

Consequently, it follows that

Dw(i) =
[

Dw(i)
1 Dw(i)

2 · · · Dw(i)
S

]
=

[
G1Dw(i−1)

1 G2Dw(i−1)
2 · · · GSDw(i−1)

S

]

27

=

 G1 G1Dw(i−2)
1︸ ︷︷ ︸

Dw
(i−1)
1

G2 G2Dw(i−2)
2︸ ︷︷ ︸

Dw
(i−1)
2

· · · GS GSDw(i−2)
S︸ ︷︷ ︸

Dw
(i−1)
S


=

[
(G1)2Dw(i−2)

1 (G2)2Dw(i−2)
2 · · · (GS)2Dw(i−2)

S

]
(41)

Decompose theDw terms on the right hand side repeatedly to obtain the following:

Dw(i) =
[

(G1)iDw(0)
1 (G2)iDw(0)

2 · · · (GS)iDw(0)
S

]
(42)

whereDw(0)
s denotes the change in the memory contents of the PSECMAC network for the first training

iteration when thesth training sample is presented. With respect to Equation (42), the memory difference

matrix Dw(i) must approach a null matrix as training tends to infinity (i.e.i →∞) in order to establish

the learning convergence of the proposed PSECMAC network. Hence, the PSECMAC network learning

process converges if and only if

(Gs)iDw(0)
s = [0], ∀s ∈ {1 · · ·S} (43)

By definition, the difference vectorDws
(0) can be expressed as

Dw(0)
s = W(1)

s −W(0)
s

= W(1)
s−1 + ∆W(1)

s−1︸ ︷︷ ︸
W

(1)
s

−W(0)
s

= W(1)
s−2 + ∆W(1)

s−2︸ ︷︷ ︸
W

(1)
s−1

+∆W(1)
s−1 −W(0)

s (44)

Decompose theW(i)
s terms on the right hand side repeatedly to obtain:

Dw(0)
s = W(1)

1 + ∆W(1)
1 + ∆W(1)

2 + · · ·+ ∆W(1)
s−2 + ∆W(1)

s−1 −W(0)
s

= W(0)
S + ∆W(0)

S︸ ︷︷ ︸
W

(1)
1

+∆W(1)
1 + · · ·+ ∆W(1)

s−2 + ∆W(1)
s−1 −W(0)

s

= W(0)
s + ∆W(0)

s︸ ︷︷ ︸
W

(0)
s+1

+∆W(0)
s+1 + · · ·+ ∆W(0)

S + ∆W(1)
1 + · · ·+ ∆W(1)

s−1 −W(0)
s

= ∆W(0)
s + ∆W(0)

s+1 + · · ·+ ∆W(0)
S + ∆W(1)

1 + · · ·+ ∆W(1)
s−1 (45)

From Equation (26), the PSECMAC memory update due to thesth input training sample at theith

28

iteration (∆W(i)
s) is computed as:

∆W(i)
s = αAs

learning error︷ ︸︸ ︷
{ŷs −AT

s W(i)
s }︸ ︷︷ ︸

local error

(46)

where{ŷs − AT
s W(i)

s } is a scalar value and is the learning (training) error for thesth input training

sample at theith iteration. Letu(i)
s = (ŷs −AT

s W(i)
s) and it follows from Equation (46) that

∆W(i)
s = αAsu

(i)
s (47)

From Equations (42), (45) and (47), the following results.

(Gs)iDw(0)
s = (Gs)i{∆W(0)

s + ∆W(0)
s+1 + · · ·+ ∆W(0)

S + ∆W(1)
1 + · · ·+ ∆W(1)

s−1}

= (Gs)i{αAsu
(0)
s + αAs+1u

(0)
s+1 + · · ·+ αAs−1u

(1)
s−1}

= α(Gs)i{Asu
(0)
s + As+1u

(0)
s+1 + · · ·+ As−1u

(1)
s−1} (48)

B. Learning Convergence of The PSECMAC Network

Therefore, if it can be shown thatlimi→∞(Gs)iAυ = [0] for all υ ∈ {1 · · ·S}, (Gs)iDw(0)
s in

Equation (48) will evaluate as null. Subsequently, from Equation (42), the matrixDw(i) = [0] follows.

Based on the definition ofDw(i) in Equation (29), the vectorDw(i)
s = [0], s ∈ {1 · · ·S}. Thus, from

Equations (30) and (31), the PSECMAC learning process converges. It has been proven in [76] that when

the learning constantα is such that0 < α ≤ 2, limi→∞(Gs)iAυ = [0] for all υ ∈ {1 · · ·S}. Hence, the

following theorem is established.

Theorem 1:The training process of the proposed PSECMAC network converges if the learning constant

α is such that0 < α ≤ 2.

Proof: The mathematical proof presented in [76] and [75] shows that for allυ ∈ {1 · · ·S}, when

0 < α ≤ 2, limi→∞(Gs)iAυ = [0]. From the arguments above, the training process of the PSECMAC

network converges.

VI. Experimental Results and Analysis

This section presents the experiments that have been conducted to evaluate the performance of the

proposed PSECMAC associative memory network, namely: (1) the pricing of GBP vs. USD currency

futures option; (2) US banking failure classification; and (3) the modeling of the plasma insulin dy-

namics of the human metabolic process. The performances of the PSECMAC network are dutifully

29

evaluated against the basic CMAC network and two representative CMAC variants, namely: (1) the

Multi-Resolution CMAC (MR-CMAC) [27], and (2) the Fuzzy CMAC with Yager Inference Scheme

(FCMAC-Yager) [37]. Other benchmarking architectures studied in this paper include the Generic Self-

Organizing Fuzzy Neural Network (GensoFNN) [77], the Rough Set-Based Pseudo-Outer-Product Fuzzy

Neural Network (RSPOP) [78], as well as the classical machine learning models such as the Radial

Basis Function (RBF) network and a decision table model named Inducers of Decision Table Majority

(IDTM) [79], both of which are implemented in the WEKA software package [80].

A. Pricing of GBP vs. USD Currency Futures Option

Options, as a derivative security, provide a means to manage financial risks and they are playing an

increasingly important role in modern financial markets [81]. The buyer of an option enters into a

contract with the right, but not the obligation, to purchase or sell an underlying physical or financial

asset at a later date at a price agreed upon today. The price of an option is determined by a set of

pricing factors such as time to expiry and the intrinsic value of the option. A vital aspect of option

trading is to derive and be aware of the theoretical fair value of an option. This process is calledoption

pricing. The conventional approach to option pricing is to construct parametric models that are based

on the assumptions of continuous-time finance theory [82]. The pioneering models are theBlack-Scholes

formula [83] and theBinomial Pricing Model[84]. However, these models presume complex and rigid

statistical formulations from which the prices are deduced [85]. Nonparametric methods of option pricing

based on neural networks [86]–[88], genetic algorithms [89], kernel regression [90], and neuro-fuzzy

formulations [91], on the other hand, are model-free approaches. The pricing model, which represents a

nonlinear functional mapping between the input factors and the theoretical option price, is derived from

vast quantities of historical data.

This study investigates the use of the proposed PSECMAC network for the pricing of American style

options on currency futures. In this experiment, the PSECMAC network is used to construct a pricing

model to predict the correct valuations for American call options on the British pound (GBP) and US

dollar (USD) exchange rate futures contract. The option pricing formula is represented as a function of

the following inputs:S0, X, T , andσ30; whereS0 is the current GBP vs. USD exchange rate futures

contract value;X is the strike price of the option;T is the time to maturity of the option in years; andσ30

denotes the historical price volatility of the futures contracts for the past30 trading days. Subsequently,

the notion ofmoneyness(or intrinsic value) of a futures option is introduced, which is defined as the

difference between the current futures contract valueS0 and the strike priceX (i.e. S0 −X). Thus, the

30

TABLE I

SIMULATION SET-UPS BASED ON PERMUTATIONS OF THE THREE SUB-GROUPSA, B AND C TO DEFINE THE TRAINING AND

TESTING SETS OF THE PROPOSEDPSECMACOPTION PRICING MODEL

Evaluation Model Configuration Simulation Training set Testing set

Model 1
1/3 training and
2/3 testing

I Sub-group A Sub-groups B and C
II Sub-group B Sub-groups A and C
III Sub-group C Sub-groups A and B

Model 2
2/3 training and
1/3 testing

IV Sub-groups A and B Sub-group C
V Sub-groups A and C Sub-group B
VI Sub-groups B and C Sub-group A

option pricing functionf for the valuation of the American call options on the GBP vs. USD futures to

be approximated by the PSECMAC network is defined as:

C0 = f(S0 −X, T, σ30) (49)

whereC0 is current call option price; and(S0 −X) reflects the moneyness of the option.

The data used in this study consists of the daily closing quotes of the GBP versus USD currency

futures and the daily closing bid and ask prices of the American style options on such futures on the

Chicago Mercantile Exchange (CME) [92] during the period of Sept 2002 to Aug 2003. In total,792

data samples are available in the selected futures option dataset, which contains the historic pricing data

for five different strike prices:$158, $160, $162, $166 and$168, with 159, 158, 173, 137 and165 data

samples respectively. The792 data samples are subsequently partitioned into three evenly distributed sub-

groups denoted as A, B and C, where each subgroup contains264 data tuples. A total of six different

cross-validation (CV) sets are constructed based on the permutations of these sub-groups as outlined in

Table I. The six CV sets are organized into two different evaluation models, namely Model 1 and Model

2. In Model 1, the training set is constructed using data samples from only one sub-group while the data

from the remaining two sub-groups constitute the testing set. The objective of this evaluation model is

to assess the generalization ability of the trained pricing system. In contrast, Model 2 employs the data

samples from two sub-groups for training and aims to investigate the performances of the benchmarked

pricing systems as more training samples are provided.

A PSECMAC network with a memory size of12 cells per dimension is constructed for the option

pricing problem. A neighborhood size (N) of 0.2 and a Gaussian width constant (γ) of 0.5 have

been empirically determined. Table II lists therecall (in-sample testing) andgeneralization(out-of-

sample testing) performances of the PSECMAC option pricing model for the various CV sets.RMSE

31

TABLE II

PERFORMANCES OF THE PROPOSEDPSECMACOPTION PRICING MODEL

Recall Generalization
Evaluation Model Simulation RMSE PearCorr RMSE Correlation

Model 1
I 0.1299 0.9956 0.2386 0.9858
II 0.1376 0.9954 0.2727 0.9816
III 0.1178 0.9964 0.2638 0.9847

Average 0.1284 0.9958 0.2584 0.9840

Model 2
IV 0.1382 0.9952 0.2103 0.9889
V 0.1404 0.9949 0.2210 0.9885
VI 0.1353 0.9954 0.2007 0.9902

Average 0.1380 0.9952 0.2107 0.9892

denotes the root-mean-square-error between the set of predicted and desired option prices; andPearCorr

is the Pearson correlation coefficient, a statistical measure reflecting the goodness-of-fit between the

predicted and desired pricing functions. The performances of the proposed PSECMAC option pricing

model are encouraging, with an average RMSE of approximately0.13 and 0.26 for the recall and

generalization assessments of Model 1 respectively. An average correlation of0.98 is achieved by the

PSECMAC model for the generalization evaluation, indicating a less than2% performance degradation

as the evaluation emphasis shifts from the in-sample testing (recall) to the out-of-sample evaluation

(generalization) capability of the PSECMAC pricing system. From Table II, one can also observe that a

larger training dataset improves the generalization performance of the PSECMAC option pricing model.

The experimental results of Model 2 showed a18% improvement ((0.2584−0.2107)/0.2584) in the RMSE

value over that of Model 1 for out-of-sample testing. This increase in the accuracy of the PSECMAC

option pricing model can be attributed to the improvement in the network’s ability to efficiently capture

the price dynamics and the valuation principles of the futures options with respect to the underlying

pricing factors as the number of training instances increases. A larger training dataset results in a

more comprehensive training of the entire PSECMAC associative memory surface and this increases

the generalization ability of the network to previously unseen test samples.

Subsequently, the entire set of option pricing simulations is repeated using the other benchmarked

architectures. To ensure a fair comparison, the size of the CMAC network is defined as12 cells in each

input dimension, while the MR-CMAC structure that is evaluated consists of two layers, each with6 and

12 memory cells in each input dimension respectively. The parameters for the FCMAC-Yager, RSPOP-

CRI, GenSoFNN-TVR [93] and IDTM systems have been empirically optimized for best performances,

while the RBF network is initialized to contain100 hidden layer nodes. Based on the optimal setting,

32

TABLE III

BENCHMARKING RESULTS FOR VARIOUS OPTION PRICING MODEL

Evaluation Recall Generalization
Model System ARMSE StdDev APC PI1 ARMSE StdDev APC PI1
Model 1 CMAC 0.0531 0.0124 0.9992 94.88 0.2896 0.0229 0.9792 75.93

MR-CMAC 0.0526 0.0107 0.9993 94.93 0.3838 0.0618 0.9639 69.66
PSECMAC 0.1284 0.0099 0.9958 88.24 0.2584 0.0177 0.9840 78.19
FCMAC-Yager 0.1924 0.0275 0.9911 83.12 0.5221 0.1929 0.9236 60.68
GenSoFNN-TVR 0.1759 0.0153 0.9943 84.56 0.2764 0.0507 0.9839 77.08
RSPOP-CRI 0.2562 0.0257 0.9849 78.40 0.4204 0.0630 0.9578 67.43
RBF 0.1767 0.0389 0.9920 84.30 0.3438 0.1085 0.9701 72.19
IDTM 0.2388 0.0407 0.9853 79.54 0.3964 0.0512 0.9596 68.72

Model 2 CMAC 0.0678 0.0032 0.9988 93.54 0.2579 0.0102 0.9834 78.18
MR-CMAC 0.0710 0.0022 0.9987 93.25 0.3179 0.0409 0.9756 74.03
PSECMAC 0.1380 0.0026 0.9952 87.45 0.2107 0.0102 0.9892 81.70
FCMAC-Yager 0.2365 0.0261 0.9879 79.89 0.2829 0.0110 0.9831 76.63
GenSoFNN-TVR 0.1857 0.0103 0.9948 83.90 0.2387 0.0198 0.9908 79.99
RSPOP-CRI 0.2938 0.0131 0.9787 75.65 0.3461 0.0621 0.9695 72.02
RBF 0.2389 0.0323 0.9854 79.54 0.3076 0.0470 0.9758 74.63
IDTM 0.2721 0.0124 0.9812 77.13 0.3208 0.0092 0.9740 73.74

the FCMAC-Yager network on average employs12 memory cells for each input dimension. Table III

summarizes the average RMSE (ARMSE), standard deviation (StdDev) and average Pearson correlation

(APC) findings for the evaluation Model 1 and Model 2 across the different architectures. APerformance

Index (PI1) is used to combine the ARMSE and APC measures as described in Equation (50).

PI1 =
APC

(1 + ARMSE)
× 100 (50)

such that a higher PI1 value corresponds to a better pricing performance.

From Table III, one can observe that the proposed PSECMAC network achieved the best generalization

performance index (PI1) as compared to the rest of the pricing systems for both evaluation models. The

PSECMAC network achieved a generalization PI1 of 78.19 for Model 1 and81.70 for evaluation Model 2

respectively. The PSECMAC network has also comprehensively outperformed the basic CMAC network

and the benchmarked CMAC variants based on the generalization results, thereby demonstrating clearly

the effectiveness of the judicious memory cells allocation process of its self-organizing structure. Specifi-

cally, the multi-resolution structure of the PSECMAC network yields, on average, a3.7% improvement in

PI1 value over the uniformly-quantized CMAC of the same network size. However, the recall performances

of the PSECMAC network were slightly lower than those of the CMAC and MR-CMAC networks. This

33

is because the static uniform memory quantization of the CMAC and MR-CMAC networks results in

structures that are highly optimized for the training set. The PSECMAC memory allocation procedure,

on the other hand, is geared more towards obtaining an efficient characterization of the problem’s input-

output mappings. This is achieved by allocating the memory cells in a non-linear manner based on the

distribution of the training data. The effective non-linear memory quantization of PSECMAC allows for

a better description of the problem’s characteristic surface to address a new/unseen testing data. Thus,

PSECMAC is able to achieve an improved generalization performance despite a trivial degradation in

the recall performance.

Table III also showed that the generalization performances of the benchmarked CMAC variants were

inferior to those of the CMAC as well as the PSECMAC networks. The MR-CMAC network [27] is

essentially a multi-layered multi-resolution CMAC system that employs a hierarchy of CMACs with

increasing modeling resolutions to improve the generalization and accuracy of the system. Unlike the

proposed PSECMAC network that allocates the memory cells selectively to enhance the network’s

generalization capability and the accuracy of the computed output, the MR-CMAC network employs

a coarsely partitioned CMAC in the base layer to generalize the characteristics of the training data. MR-

CMAC’s output accuracy is then gradually refined with the increasingly finer modeling resolutions of the

higher-layer CMACs. Such a hierarchical associative memory model, however, may not be suitable for

applications with a high output volatility. The large performance degradation by the MR-CMAC network

as shown from the recall to the generalization pricing assessment in Table III is a clear indication of the

network’s inability to adequately generalize the characteristics of the option dataset using the coarsely

partitioned base layer and to subsequently learn the specificity of the pricing data using a second layer of

computing cells. The FCMAC-Yager network, on the other hand, suffers from a poor output accuracy for

both the recall and the generalization assessments due to the fuzzification of the inputs. FCMAC-Yager

is a Mamdani fuzzy rule based system and employs trapezoidal-shaped membership functions that often

lead to a low output accuracy due to the granularity of the membership functions. This is an inherent

limitation associated with the use of the Mamdani rule system form of knowledge representation.

The proposed PSECMAC network also achieved more accurate pricing decisions as compared to the

benchmarked neuro-fuzzy systems (i.e. GenSoFNN, RSPOP) and classical machine learning techniques

of RBF and IDTM. The evaluation results of Model 1 have shown that the PSECMAC network is able to

efficiently generalize the characteristics of the training data despite a small training set. The performances

of the proposed PSECMAC network compared favorably to those of the GenSoFNN-TVR, RSPOP-CRI,

RBF, and IDTM pricing models for the generalization assessment of Model 1. The simulation results of

34

TABLE IV

COMPARISON OF THECELL OCCUPANCY RATE OF THE PSECMACAND CMAC OPTION PRICING MODEL

CMAC PSECMAC
Simulation Total Cells Trained Cells COR Total Cells Trained Cells COR Improvement

I 1728 1064 61.57% 1728 1170 67.71% 6.14%
II 1728 1082 62.62% 1728 1178 68.17% 5.55%
III 1728 1088 62.96% 1728 1175 68.00% 5.04%
IV 1728 1126 65.16% 1728 1297 75.06% 9.91%
V 1728 1125 65.10% 1728 1227 71.01% 5.91%
VI 1728 1116 64.58% 1728 1276 73.84% 9.26%

Average 63.67% 70.63% 6.96%

Model 2 for out-of-sample testing further verified the effectiveness of the PSECMAC memory allocation

procedure in addressing the generalization–accuracy dilemma. The consistency in the PSECMAC pricing

performances is also evidenced by the StdDev values listed in Table III. The proposed PSECMAC

option pricing model achieved the lowest standard deviation for evaluation Model 1, with the StdDev

values of0.0099 and0.0177 for recall and generalization respectively. For Model 2, PSECMAC yields

StdDev values of0.0026 (recall) and0.0102 (generalization), which are highly comparable to the best-

achieved StdDev values of0.0022 (MR-CMAC) and 0.0092 (IDTM) for the recall and generalization

assessments respectively. In summary, Table III have adequately demonstrated the performance of the

proposed PSECMAC network as an accurate option pricing model.

Subsequently, the effective cell utilization rates of the PSECMAC network for all the six CV sets were

computed and compared against those of the CMAC network. The results (denoted as the Cell Occupancy

Rate) are tabulated as Table IV. The Cell Occupancy Rate (COR) is defined as the proportion of the

trained memory cells to the total network size. From Table IV, one can conclude that the PSECMAC

network consistently achieves a higher COR value than the CMAC network. An average improvement

of 6.9% was achieved for COR and this clearly demonstrates the effectiveness of the non-linear memory

allocation scheme of the proposed PSECMAC network in reducing memory wastage. A higher COR

value implies a more comprehensive training of the CMAC/PSECMAC input-output associative space

and indirectly translates to an improved generalization ability of the network. Such a notion is reinforced

by the higher generalization accuracy achieved by the PSECMAC network over the CMAC network.

B. Banking Failure Classification

Bank failure prevention is an important issue for the regulators of the banking industries. The collapse

and failure of a bank could trigger an adverse financial repercussion and generate negative impacts such

35

as a massive bail out cost for the failing bank and loss of confidence from the investors and depositors.

Technically, banks do not fail overnight, and very often, bank failures are due to prolonged periods of

financial distress. Banking regulators can therefore establish the traits of financial distress that characterize

bank failures to identify a potential failing bank. Some commonly used statistical methodologies are

multivariate discriminant analysis[94], logit analysis[95] and Cox’sproportional hazards model[96].

However, the use of such classical approaches generally results in a decision model that is neither adaptive

nor computationally interpretable to the banking regulators [97]. The PSECMAC network, on the other

hand, is an associative memory network that employs a data-driven approach for its structural and network

learning process. The single-layered PSECMAC network structure facilitates the automatic identification

and subsequent human interpretation of the traits of financial distress characterizing a bank failure. This

motivates the use of the proposed PSECMAC network to identify problem banks using thefinancial

covariatesextracted from the financial statements reported by the banks.

In this experiment, the monitored banks are classified as failed or survived (non-failing) banks based on

their financial performances. Financial variables (covariates) used to characterize the banks’ operational

quality were extracted from the Call Reports available from the Federal Reserve Bank of Chicago [98].

There are a total of nine variables and they are listed in [99].Regulatory closureis the defining event of

the failure of a bank. The observation period of the survived (non-failing) banks spans from January 1980

to December 2000 inclusively. For consistency, the financial reports for the failed and survived banks

have the same balance sheet dates. The original dataset is pre-processed to filter out the last available

financial statement for each bank in the observation period. For the failed banks, this refers to the last

records prior to failure, while the last records for the surviving banks are those submitted in year 2000

(last year of the observation period). After removing banks with missing data in their records, the final

dataset consists of548 failed banks (with failure dates spreading across the entire observation period)

and 2555 banks that survived the observation period. Thus, the failed banks constituted approximately

17.7% of the dataset while the survived banks account for the remaining82.3%.

Based on the nine selected covariates, bank failure classification using the data extracted from the last

financial statements was performed. The entire banking dataset is partitioned into five mutually exclusive

cross-validation (CV) groups denoted as CV1–5. Each group consists of one training and one test set that

are randomly generated from the set of selected surviving and failed banks. The banking dataset is initially

segregated into two pools: failed and survived (non-failing) banks. For each cross-validation group,20%

of both pools are randomly selected to form the training set while the remaining80% of the data constitute

the test set. Hence, the number of survived banks far exceeds the failed banks (”unbalanced” training

36

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Current Year Unbalanced

Type II Error

T
yp

e
I E

rr
or

CV1
CV2
CV3
CV4
CV5
EER

(a) Unbalanced Training Scenario

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Current Year Balanced

Type II Error

T
yp

e
I E

rr
or

CV1
CV2
CV3
CV4
CV5
EER

(b) Balanced Training Scenario

Fig. 8. ROC curves of the PSECMAC banking failure classification

scenario). A single output is used to differentiate between failed and survived banks. Failed banks are

denoted with output ”1” while survived banks are identified by output ”0”.

The proposed PSECMAC network and the benchmarked architectures which include CMAC, MR-

CMAC, FCMAC-Yager and GenSoFNN-CRI [99] were used to perform the bank failure classification.

The systems were constructed using the training set and the performances of the trained models are

evaluated using the testing set. The simulation is performed for all the five CV groups. The classification

threshold (to discern between failed and survived (non-failing) banks based on the nine input financial

covariates) is varied to obtain the receiver-operating-characteristic (ROC) curves of each evaluated system.

The Equal Error Rate(EER) values extracted from the ROC curves are subsequently employed as the

performance measure of the respective models. Type I error is defined as the error of mis-classifying a

failed bank as a survived (non-failing) one whereas Type II error is the mis-classification of a non-failing

bank as a failed entity. EER denotes the point where Type I equals Type II error.

The best classification performance for the PSECMAC network was empirically determined with a

network size of3 cells per dimension, a neighborhood parameter (N) of 0.3 and a Gaussian width

constant (γ) of 0.3. The CMAC network, on the other hand, obtained an optimal EER measure with4

memory cells in each dimension, whereas the MR-CMAC network achieves optimal classification rates

using two layers of CMAC with2 and 4 cells in each dimension respectively. The parameters for the

remaining benchmarked systems (i.e. FCMAC-Yager and GenSoFNN-CRI) have all been empirically

37

TABLE V

EER READINGS EXTRACTED FROM THEROC CURVES - UNBALANCED TRAINING SCENARIO

Equal Error Rate (EER) [%] Mean EER StdDev EER
System CV1 CV2 CV3 CV4 CV5 [%] [%]
CMAC 4.386 6.552 5.661 12.16 6.552 7.0622 2.9847
MR-CMAC 5.208 6.32 5.473 12.38 6.876 7.2514 2.9432
PSECMAC 5.097 4.453 5.328 8.445 3.91 5.4466 1.7660
FCMAC-Yager 8.93 7.13 7.77 8.23 5.08 7.43 1.4678
GenSoFNN-CRI 4.4 10.99 5.49 15.6 16.48 10.59 5.5740

optimized. The FCMAC-Yager system on average uses4 cells in each dimension. Figure 8(a) depicts the

ROC plots of the PSECMAC network banking failure classification system. The EER measures of the

various benchmarked systems are listed as Table V. It is evident that the classification performance of

the proposed PSECMAC network surpasses all the benchmarked architectures. The PSECMAC network

obtained a significantly lower EER value of approximately5.4% as compared to the7% EER achieved

by the CMAC network and the10.5% EER of GenSoFNN-CRI. The experimental results have clearly

demonstrated the superior modeling accuracy of the proposed PSECMAC network that is due to its non-

uniform memory allocation procedure. That is, when compared to CMAC and MR-CMAC, PSECMAC

has achieved a superior classification rate even when based on a smaller network size.

In addition, from Table V, one can observe that the classification performances of the CMAC-based

systems outperformed those achieved by the benchmarked GenSoFNN-CRI network. A plausible expla-

nation is the use of the ”unbalanced” training scenario where the proportion of survived to failed banks in

the training set is highly skewed. GenSoFNN-CRI is a connectionist neural fuzzy system whereby each

presentation of the training data activates and trains the entire computing structure. Thus, the learning

principle of the GenSoFNN-CRI to generalize or fit the behaviors/characteristics of such unbalanced

training set would likely contribute to its poor performances to discern the two overlapping but contrasting

concepts (i.e. failed and survived banks) as in the banking dataset. The PSECMAC, CMAC, MR-CMAC

and FCMAC-Yager, on the other hand, consist of an ensemble of locally active models constructed from

different segments of the training data. In such a local learning model, a skewed dataset has a limited

effect on the learned data characteristic mappings as compared to the GenSoFNN network that learns

globally. Hence, a local learning model such as PSECMAC can effectively segregate the information

expressed by the two contrasting groups of banks even though the ratio of survived to failed banks is

highly skewed. The results in Table V have demonstrated that the performance of PSECMAC, which

employs localized learning, is less likely to be perturbed by a statistically skewed dataset.

38

TABLE VI

EER READINGS EXTRACTED FROM THEROC CURVES - BALANCED TRAINING SCENARIO

Equal Error Rate (EER) [%] Mean EER StdDev EER
System CV1 CV2 CV3 CV4 CV5 [%] [%]
CMAC 7.214 8.153 5.48 6.388 9.951 7.4372 1.7185
MR-CMAC 8.474 9.212 10.00 10.10 11.3 7.8172 1.0586
PSECMAC 4.995 5.574 5.898 6.932 6.90 6.0594 0.8460
FCMAC-Yager 8.77 8.78 7.5 8.19 8.42 8.33 0.5274
GenSoFNN-CRI 7.08 9.38 5.63 13.96 4.79 8.17 3.6760

The set of simulations on the benchmarked systems is subsequently repeated with a ”balanced” training

scenario. The training sets of the five CV groups are modified by randomly pruning away redundant

survived banks until the number of survived banks equals the failed banks. The testing sets of the CV

groups remain unchanged. The ROC curves of the proposed PSECMAC network for the ”balanced”

training scenario are depicted as Figure 8(b). The EER measures of the various benchmarked systems for

the ”balanced” training scenario are subsequently listed as Table VI. As observed, the mean EER value of

the GenSoFNN-CRI network for the ”balanced” training scenario improved by2.4% in comparison with

the ”unbalanced” training scenario (note that the testing sets are the same for both scenarios). In addition,

the simulation results in Tables V and VI also demonstrated that the PSECMAC and the CMAC-based

systems yielded slightly higher EER values for the ”balanced” than the ”unbalanced” training scenarios.

This minor degradation of classification performance (0.52% on average) could be attributed to the

fact that the training sets in the ”balanced” training scenario consist of a smaller number of training

samples from which these localized learning networks can learn from the actual data distribution, and

thus slightly poorer classification performances resulted. However, from the standard deviation (StdDev)

of the EER measurements listed in Tables V and VI, one can observe that the performances of the

proposed PSECMAC network are consistently good.

Lastly, the effective cell utilization rates (COR) of the proposed PSECMAC and CMAC banking

failure classification systems across the five CV groups (”unbalanced”) are analyzed. The COR values

are tabulated as Table VII. One can observe that the PSECMAC based bank failure classifier achieved a

remarkably high COR value of58% (average) as compared to the CMAC based classifier (4.2% average).

This significant improvement of53.8% in memory efficiency can be attributed to the smaller number of

memory cells required by the PSECMAC network (3 cells per dimension) as compared to the CMAC

network (4 cells per dimension) in achieving the respective optimal classification results. Thus, the COR

results of this experiment has clearly demonstrated the effectiveness of the memory allocation scheme

39

TABLE VII

COMPARISON OF THECELL OCCUPANCY RATE OF THE PSECMACAND CMAC BANKING FAILURE CLASSIFICATION

CMAC PSECMAC
Simulation Total Cells Trained Cells COR Total Cells Trained Cells COR Improvement

CV1 262144 19368 7.39% 19683 11074 56.26% 48.87%
CV2 262144 4752 1.81% 19683 6142 31.20% 29.39%
CV3 262144 16125 6.15% 19683 18768 95.35% 89.20%
CV4 262144 9765 3.73% 19683 14512 73.73% 70.00%
CV5 262144 4478 1.71% 19683 6580 33.43% 31.72%

Average 4.16% 57.99% 53.83%

employed by the proposed PSECMAC network to resolve the high memory wastage encountered by the

CMAC model.

C. Modeling the Plasma Insulin Dynamics of the Human Glucose Metabolic Process

Diabetes is a metabolic disorder where the body is no longer able to properly regulate the use and storage

of glucose in the blood, leading to prolonged periods of high (hyperglycemia) or low (hypoglycemia)

plasma glucose concentration. Currently, the standard medical treatment of diabetes primarily involves

insulin medication coupled with strict dietary control. The fundamental objective of the insulin therapy for

diabetes treatment is essentially to artificially recreate and replicate the healthy insulin profiles in a diabetic

patient in response to metabolic disturbances such as food intakes and exercises, so as to regulate the

diabetic blood glucose level within the homeostatic range of 60–110 mg/dl [100]. The human metabolic

process consists of highly complex and intertwined relationships between the plasma glucose (originating

from the food ingestion) and insulin (produced by the pancreaticβ-cells) that ensure the steady supply of

energy substrates to maintain bodily equilibrium. This motivates the use of the multi-resolution mapping

characteristics of the PSECMAC network to model the dynamics of the insulin response to food intakes

in a healthy subject. Such a non-linear healthy insulin model could subsequently be used to formulate

an appropriate insulin therapy schedule for the treatment of diabetes.

Due to the lack of real-life patient data and the logistical difficulties and ethical issues involving the

collection of such data, a well-known web-based simulator known asGlucoSim[101] from the Illinois

Institute of Technology is employed in this study to simulate a person subject to generate the metabolic

data that is needed for the construction of the healthy insulin response model. For this purpose, a human

profile for the simulated healthy subject is created and described in Table VIII. The simulated person,

Subject A, is a typical middle-aged Asian male. His body mass index (BMI) is23.0, which is within

40

Attribute Name Attribute Value
Sex Male
Age 40 years old
Race Asian
Weight 67 kg (147.71 lbs)
Height 1.70 m (5 ft 7 in)
BMI 23 (Recommended for Asian)
Lifestyle Typical office worker with moderate physical activities

such as walking briskly, leisure cycling and swimming.

TABLE VIII

THE PROFILE OF THE SIMULATED HEALTHYSUBJECTA

the recommended range for Asian. Based on the profile of Subject A, his recommended daily allowance

(RDA) of carbohydrate intake from meals is obtained from the website of the Health Promotion Board

of Singapore [102]. According to his sex, age, weight and lifestyle, the recommended daily carbohydrate

intake for Subject A is approximately346.9g.

The GlucoSim simulator requires10 different inputs, which consists of the body weight, the simulation

period, and both the time and carbohydrate content of each of the assumed daily four meals, namely:

breakfast, lunch, afternoon snack, and dinner respectively. The carbohydrate contents and the timings of

the daily meals are varied from day-to-day during the data collection phase. This is to account for the

inter- and intra-day variability of the eating habits of Subject A and to ensure that the PSECMAC insulin

model is not being trained on a cyclical dataset but elicits the inherent relationships between food intakes

and the insulin response of a healthy person. Since the human glucose metabolic process depends on the

current (and internal) body states as well as exogenous inputs (or disturbances) such as food intakes, it

is hypothesized that the plasma insulin concentration level at any given timet is a non-linear function of

prior food intakes and the historical traces of the insulin and blood glucose levels. To properly account

for the effects of prior food ingestion to the observed blood insulin level at timet, a historical sliding

window of six hours with respect tot was adopted and a soft-windowing strategy is employed to partition

the six hours into three conceptual segments, namely:Recent(i.e. previous 1 hour),Intermediate Past

(i.e. previous 1 to 3 hours) andLong Ago(i.e. previous 3 to 6 hours), resulting in only three food history

inputs. Based on these windows, three normalized weighting functions are introduced to compute the

carbohydrate content of the meal(s) taken within the recent, intermediate past or long ago periods. Thus,

inclusive of the previously measured blood glucose and insulin levels, there are a total of five inputs to

the modeling task.

41

TABLE IX

COMPARISON OF THE MODELING PERFORMANCES OF THE VARIOUS INSULIN MODELS

Recall Generalization
System RMSE PearCorr PI2 RMSE PearCorr PI2

[microU/ml] [microU/ml]
CMAC 4.5513 0.9948 17.92 11.8540 0.9695 7.54
MR-CMAC 4.4298 0.9951 18.33 11.6335 0.9722 7.70
PSECMAC 4.4441 0.9951 18.28 9.7172 0.9795 9.14
FCMAC-Yager 13.6142 0.9752 6.67 14.7771 0.9703 6.15
GenSoFNN-CRI 13.5270 0.9884 6.80 14.7830 0.9842 6.24
RSPOP-CRI 9.5183 0.9797 9.31 11.8500 0.9709 7.56
RBF 10.7197 0.9709 8.28 12.1232 0.9678 7.37
IDTM 5.2705 0.9930 15.84 17.3263 0.9336 5.09

Based on the daily inputs presented to GlucoSim, a total of100 days of metabolic data for Subject

A was collected and a sampling interval of15 minutes is adopted throughout the data collection phase.

The collected dataset is subsequently partitioned into two non-overlapping groups:20 days of data for

training and the remaining80 days for testing and evaluation of the insulin model. Simulations to model

the dynamics of the insulin response of Subject A using the PSECMAC network were performed and the

results were benchmarked against those of the basic CMAC, MR-CMAC, FCMAC-Yager, GenSoFNN-

CRI, RSPOP-CRI, RBF as well as the IDTM. Both the CMAC and PSECMAC networks are constructed

with a memory size of6 cells per dimension, and a neighborhood constant (N) of 0.1 and a Gaussian

width constant (γ) of 0.3 are adopted for the PSECMAC network. On the other hand, the MR-CMAC

network is evaluated with two layers of computing cells, each containing3 and 6 memory cells per

dimension respectively. The RBF network contains100 hidden layer nodes, while the parameters of the

FCMAC-Yager, GenSoFNN-CRI, RSPOP-CRI and IDTM systems have all been empirically optimized.

Table IX details the recall (training) and generalization (testing) performances of the various benchmarked

systems. The two performance indicators employed in the study to quantify the modeling quality of the

systems are: theroot mean-squared error(RMSE) and thePearson correlation coefficient(PearCorr)

between the actual (observed) and the predicted (computed) plasma insulin levels. These RMSE and

PearCorr measures were subsequently employed to compute thePerformance Index(denoted as PI2)

described by Equation (51).

PI2 =
PearCorr

(1 + RMSE)
× 100 (51)

Hence, a higher PI2 value reflects a better insulin modeling performance.

42

From the simulation results tabulated in Table IX, one can observe that the best recall performance was

achieved by the MR-CMAC network, with an RMSE of about4.43 microU/ml and PearCorr of99.5%

between the computed and the actual plasma insulin level. The proposed PSECMAC insulin model,

on the other hand, achieved a slightly higher RMSE value of about4.44 microU/ml. This results in a

slightly poorer recall performance (PI2 = 18.28) as compared to that of the MR-CMAC-based insulin

model (PI2 = 18.33). As described previously, the MR-CMAC network employs a layered structure of

computing (memory) cells with different resolutions to capture both the general characteristics as well

as the minute details of the training data but at the expense of high memory requirement. However, the

PSECMAC insulin model has achieved a highly comparable recall performance to the MR-CMAC model

despite using a much smaller network size. This clearly demonstrated the effectiveness of the adaptive

memory allocation scheme of the proposed PSECMAC network in the characterization of the the human

metabolic process.

Table IX also showed that the PSECMAC insulin model achieved the best generalization performance

amongst all the evaluated systems. The multi-resolution structure of the PSECMAC network resulted in

the lowest RMSE of9.72 microU/ml and a comparatively high correlation of97.9% between the computed

insulin levels and the actual healthy insulin responses, which led to the highest generalization PI2 value

of 9.14 amongst the benchmarked systems. The MR-CMAC network, which has the best performance for

the recall evaluation, yielded a PI2 value of7.70 for the generalization assessment. This further reinforces

the notion that the trained MR-CMAC insulin model is highly optimized only for the training dataset.

The generalization capability of the PSECMAC model, on the other hand, demonstrated that the network

is able to efficiently extract the inherent relationships from the training data. As shown in Table IX,

the PSECMAC insulin model also comprehensively outperformed the basic CMAC, FCMAC-Yager and

other benchmarked models. A generalization performance gain of21.1% in the PI2 value was achieved

by the adaptive memory allocation process of the PSECMAC model over the uniformly-quantized basic

CMAC model.

To further analyze the modeling performance of the PSECMAC network, the first three-days of the

insulin predictive results of the CMAC and PSECMAC insulin models for the generalization evaluation

are depicted in Figure 9. Two large overshoots are recorded in the computed CMAC insulin profile

(as highlighted byA1 and A2) in Figure 9(a). In addition, the static uniform quantization of the basic

CMAC network has also resulted in regions of untrained network cells and the effect of such untrained

network cells is highlighted asB1 (in Figure 9(a)). The non-uniform memory allocation scheme of the

PSECMAC network, on the other hand, is able to efficiently allocate the available memory cells according

43

0 750 1500 2250 3000 3750 4500
0

50

100

150

200

250

300

350

Time (mins)

P
la

sm
a

In
su

lin
 L

ev
el

 (
m

ic
ro

U
/m

l)

Predicted Insulin Level
Observed Insulin LevelA1

A2

B1

(a) Generalization performance of CMAC insulin model

0 750 1500 2250 3000 3750 4500
0

50

100

150

200

250

300

350

Time (mins)

P
la

sm
a

In
su

lin
 L

ev
el

 (
m

ic
ro

U
/m

l)

Predicted Insulin Level
Observed Insulin Level

(b) Generalization performance of PSECMAC insulin
model

Fig. 9. Modeling results of the CMAC and PSECMAC networks for the insulin response of Subject A

to the information distribution of the training data, and thus reduces the number of untrained network

cells to facilitate a consistent modeling performance as shown in Figure 9(b). This observation is further

reinforced by the analysis of the effective cell utilization rate (COR) of the PSECMAC and CMAC

insulin models. The CMAC insulin model trained on the20 days of metabolic data has462 trained cells

out of a total of7776 network cells. This translates to a COR of5.94%. The PSECMAC insulin model,

meanwhile, achieved a substantially higher COR value of14.57% with a total of 1133 trained cells.

The insulin modeling results as shown in Table IX and Figure 9 have therefore clearly demonstrated the

performance superiority of the PSECMAC over the basic CMAC network and once again highlighted the

effectiveness of the proposed multi-resolution structure of the PSECMAC network.

VII. Conclusions

This paper presents a novel neurophysiologically-inspired multi-resolution cerebellar associative memory

model named PSECMAC that is used to address the architectural deficiencies of the CMAC network. Mo-

tivated by the experience-driven synaptic plasticity phenomenon observed in the learning and adaptation

process of the human cerebellum, the PSECMAC network employs a data-driven memory quantization

scheme for the derivation of its computing structure. In the proposed PSECMAC network, the biological

cerebellar synaptic adaptation process is emulated by allocating more memory cells to the data-intensive

regions of the input space that correspond to the frequently-accessed areas of the cerebellum. This

44

translates to a finer output resolution in the task-critical (important) regions of the PSECMAC input-

output (I/O) associative space, which is analogous to the smooth and dexterous execution of well-trained

motor skills observed in human behavioral studies. The structural formation and the subsequent learning

processes of the proposed PSECMAC network are presented in the paper together with the theoretical

proof of the learning convergence of the system.

The performance of the PSECMAC network was subsequently evaluated using three real-life appli-

cations, namely: the pricing of the GBP vs. USD currency futures options, the classification of US

banking failures, and the modeling of the plasma insulin dynamics of the human metabolic process.

PSECMAC was benchmarked against the CMAC network and two representative CMAC variants (MR-

CMAC and FCMAC-Yager) as well as the GenSoFNN and RSPOP neuro-fuzzy systems and classical

machine learning techniques such as RBF and IDTM. The computed simulation results have adequately

demonstrated the effectiveness of the proposed PSECMAC network architecture in capturing the complex

input-output relationships of the three applications while addressing the architectural limitations of

the CMAC network. The PSECMAC network also outperformed all the benchmarked systems and

has achieved significant structural improvements over CMAC and its two well-established variants. It

is evident that the judicious memory allocation scheme of the PSECMAC network results in more

comprehensive training of its memory space as reflected by the significantly higher rate of memory

utilization when compared to the CMAC network.

Although the proposed PSECMAC network has achieved a significantly higher memory utilization rate,

the non-linear memory quantization process of the PSEMAC network is currently performed separately

for each input. This attempts to reduce the computational complexity arising from the application of the

novel non-uniform quantization scheme to define the associative memory structure of the PSECMAC

network, and has been shown by the simulation results to work reasonably well for low dimensional

problems (i.e. up to9-dimensional input for the banking failure classification problem). However, such

a memory allocation scheme may lead to significant memory wastage when scaled to high dimensional

problems. Also, as compared to the basic CMAC, PSECMAC incurs a one-time extra computational load

during its structural learning phase due to the use of the MPSEC algorithm and the derivation of the non-

uniform quantization decision functions to define the computing structure of the network. The operational

complexity as well as the computational load of the parameter tuning phase of the PSECMAC network,

however, are similar to those of the basic CMAC network. Extensive experimentations and theoretical

analyses need to be undertaken to study these issues and research efforts have currently been directed at

resolving the limitations of the PSECMAC network. In addition, as the memory quantization (allocation)

45

scheme employed in the PSECMAC network is based on the computed density profiles of the training

data, the proposed network is currently more suited for offline applications.

Future enhancements to the PSECMAC architecture include providing the support for online learning,

and the investigation into the usage of the PSECMAC network for other financial applications such as

stock trading and portfolio management as well as biomedical engineering deployments such as intelligent

ventilator control in intensive care. Currently, these research endeavours are actively underway at the

Centre of Computational Intelligence (C2i) [103] located at the School of Computer Engineering in

Nanyang Technological University, Singapore. The C2i lab undertakes intense research in the study and

development of advanced brain-inspired learning memory architectures [77], [78], [104], [105] for the

modeling of complex, dynamic and non-linear systems. These techniques have been successfully applied

to numerous novel applications such as signature forgery detection [106], fingerprint verification [107],

computational finance [99], [108], [109], as well as in the biomedical engineering domain [93].

References

[1] F. A. Middleton and P. L. Strick, “The cerebellum: an overview,”Trends in Cognitive Sciences, vol. 27, no. 9, pp. 305–306,

1998.

[2] J. S. Albus, “Marr and Albus theories of the cerebellum: Two early models of associative memory,”Proceedings of IEEE

Compcon, 1989.

[3] H. Eichenbaum,The Cognitive Neuroscience of Memory: An Introduction. Oxford University Press, 2002.

[4] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),”J. Dynamic

Syst., Measurement, Contr., Trans. ASME, pp. 220–227, 1975.

[5] ——, “Data storage in cerebellar model articullation controller (CMAC),”J. Dynamic Syst., Measurement, Contr., Trans.

ASME, pp. 228–233, 1975.

[6] F. H. Glanz, W. T. Miller, and L. G. Kraft, “An overview of the CMAC neural network,” inProc. IEEE Conf. Neural

Networks Ocean Eng., Washington, D.C., 1991, pp. 301–308.

[7] W. T. Miller, F. H. Glanz, and L. G. Kraft, “CMAC: An associative neural network alternative to backpropagation,”

Proceedings of the IEEE, Special Issue on Neural Networks, vol. 78, no. 10, pp. 1561–1567, 1990.

[8] T. Yamamoto and M. Kaneda, “Intelligent controller using CMACs with self-organized structure and its application for

a process system,”IEICE Trans. Fundamentals, vol. E82-A, no. 5, pp. 856–860, 1999.

[9] S. Ku, G. A. Larsen, and S. Cetinkunt, “Fast servo control for ultra-presision machining at extremely low feed rates,”

Mechatronics, pp. 381–393, 1998.

[10] G. A. Larsen, S. Cetinkunt, and A. Donmez, “CMAC neural network control for high precision motion control in the

presence of large friction,”J. Dynamic Syst., Measurement, Contr., vol. 117, pp. 415–420, 1995.

[11] S. Cetinkunt and A. Donmez, “CMAC learning controller for servo control of high precision machine tools,” inProc.

American Contr. Conf., San Fransico, CA, 1993, pp. 1976–1980.

[12] L. G. Kraft, W. T. Miller, and D. Dietz, “Development and application of cmac neural network-based control,”In D.A.

46

White and D.A. Sofge (Eds.), Handbook of Intelligent Control. Neural, Fuzzy, and Adaptive Approaches, pp. 215–232,

1992.

[13] C. S. Lin and K. Hyongsuk, “CMAC-based adaptive critic self-learning control,”IEEE Trans. Neural Networks, vol. 2,

pp. 530–533, 1991.

[14] S. Commuri, S. Jagannathan, and F. L. Lewis, “CMAC neural network control of robot manipulators,”J. Robot Syst.,

vol. 14, no. 6, pp. 465–482, 1997.

[15] H. Kano and K. Takayama, “Learning control of robotic manipulators based on neurological model CMAC,” inProc.

11th Triennial World Congr. Int. Federation of Automat. Contr., Tallinn, USSR, 1990, pp. 249–254.

[16] W. T. Miller, F. H. Glanz, and L. G. Kraft, “Application of a general learning algorithm to the control of robotic

manipulators,”International Journal of Robotics Research, vol. 6, no. 2, pp. 84–98, 1987.

[17] A. Wahab, E. C. Tan, and H. Abut, “HCMAC amplitude spectral subtraction for noise cancellation,”Intl. Conf. Neural

Inform. Processing, 2001.

[18] K. L. Huang, S. C. Hsieh, and H. C. Fu, “Cascade-CMAC neural network applications on the color scanner to printer

calibration,” Intl. Conf. Neural Networks, vol. 1, pp. 10–15, 1997.

[19] J. Ker, C. Hsu, Y. Kuo, and B. Liu, “A fuzzy CMAC model for color reproduction,”Fuzzy Sets and Systems, vol. 91,

no. 1, pp. 53–68, 1997.

[20] C. He, L. Xu, and Y. Zhang, “Learning convergence of CMAC algorithm,”Neural Processing Letters, vol. 14, no. 1, pp.

61–74, 2001.

[21] C. S. Lin and C. T. Chiang, “Learning convergence of CMAC technique,”IEEE Trans. Neural Networks, vol. 8, no. 6,

pp. 1281–1292, 1997.

[22] Y. Wong and A. Sideris, “Learning convergence in the cerebellar model articulation controller,”IEEE Trans. Neural

Networks, vol. 3, no. 1, 1992.

[23] H. M. Lee, C. M. Chen, and Y. F. Lu, “A self-organizing HCMAC neural network classifier,”IEEE Transactions on

Neural Networks, vol. 14, no. 1, pp. 15–27, 2003.

[24] M. F. Yeh and H. C. Lu, “On-line adaptive quantization input space in CMAC neural network,”IEEE Intl. Conf. Syst.,

Man, Cybern., vol. 4, 2002.

[25] H. Kim and C. S. Lin, “Use of adaptive resolution for better CMAC learning,”Intl. Joint Conf. Neural Networks, vol.

117, pp. 517–522, 1992.

[26] X. Gao, C. Wang, X. M. Gao, and S. J. Ovaska, “A new CMAC neural network model with adaptive quantization input

layer,” 3rd. Intl. Conf. Singal Processing, vol. 2, pp. 1417–1420, 1996.

[27] J. Moody, “Fast-learning in multi-resolution hierarchies,” inAdv. Neural Infor. Processing Syst.Morgan Kauffman

Publishers, 1989, vol. 14, no. 1, pp. 29–38.

[28] A. Menozzi and M. Chow, “On the training of a multi-resolution CMAC neural network,”23rd. Intl. Conf. Ind. Electron.

Contr. Instrum., vol. 3, pp. 1130–1135, 1997.

[29] J. Ozawa, I. Hayashi, and N. Wakami, “Formulation of CMAC-fuzzy system,”IEEE International Conference on Fuzzy

Systems, pp. 1179–1186, 1992.

[30] J. H. Nie and D. A. Linkens, “A fuzzified CMAC self-learning controller,”Second IEEE International Conference on

Fuzzy Systems,, vol. 1, pp. 500–505, 1993.

[31] K. Zhang and F. Qian, “Fuzzy CMAC and its application,”Proceedings of the 3rd World Congress on Intelligent Control

and Automation, pp. 944–947, 2000.

47

[32] C. C. Jou, “A fuzzy cerebellar model articulation controller,”IEEE International conference on Fuzzy Systems, pp. 1171–

1178, 1992.

[33] D. Kim, “A design of CMAC-based fuzzy logic controller with fast learning and accurate approximation,”Fuzzy Sets and

Systems, vol. 125, no. 1, pp. 93–104, 2002.

[34] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,”

IEEE Control System Magazine, vol. 12, no. 2, pp. 23–30, 1992.

[35] H. Jiang, C. Quek, and G. S. Ng, “FCMAC-EWS: A bank failure early warning system based on novel localized pattern

learning, and semantically associative fuzzy neural network,”Expert Systems with Applications, in press, 2007.

[36] C. Ting and C. Quek, “TSK-FCMAC: A novel fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme,”

under preparation, 2007.

[37] J. Sim, W. L. Tung, and C. Quek, “FCMAC-Yager: A novel Yager inference scheme based fuzzy CMAC,”IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1394–1410, 2006.

[38] M. N. Nguyen, D. Shi, and C. Quek, “FCMAC-BYY: Fuzzy cmac using bayesian ying-yang learning,”IEEE Transactions

on Systems, Man and Cybernetics, Part B, vol. 36, no. 5, pp. 1180–1190, 2006.

[39] C. Quek and Z. Guo, “FCM-AARS: A fuzzy cerebellar model network based on the approximate analogical reasoning

schema,”Pattern Recognition, under review, 2007.

[40] J. F. Medina and M. D. Mauk, “Simulations of cerebellar motor learning: Computational analysis of plasticity at the

mossy fiber to deep nucleus synapse,”Journal of Neuroscience, vol. 19, no. 16, pp. 7140–7151, 1999.

[41] P. M. Steele and M. D. Mauk, “Inhibitory control of LTP and LTD: Stability of synapse strength,”Journal of

Neurophysiology, vol. 81, no. 4, pp. 1559–1566, 1999.

[42] J. A. Kleim, M. A. Pipitone, C. Czerlanis, and W. T. Greenough, “Structural stability within the lateral cerebellar nucleus

of the rat following complex motor learning,”Neurobiology of Learning and Memory, vol. 69, pp. 290–306, 1998.

[43] J. S. Albus, “Mechanisms of planning and problem solving in the brain,”Mathematical Biosciences, vol. 45, pp. 247–293,

1979.

[44] Z. Q. Wang, J. L. Schiano, and M. Ginsberg, “Hash-coding in CMAC neural networks,”Proc. IEEE International

Conference on Neural Networks, vol. 3, pp. 1698–1703, 1996.

[45] Z. Luo, Z. Zhao, and C. Zhu, “The unfavourable effects of hash coding on CMAC convergence and compensatory

measure,”Proc. IEEE International Conference on Intelligent Processing Systems, pp. 419–422, 1997.

[46] Y. P. Hsu, K. S. Hwang, C. Y. Pao, and J. S. Wang;, “A new CMAC neural network architecture and its ASIC realization,”

Proc. Asia and South Pacific Design Automation Conference (ASP-DAC2000), pp. 481–484, 2000.

[47] Y. P. Hsu, K. S. Hwang, and J. S. Wang;, “An associative architecture of CMAC for mobile robot motion control,”Journal

of Information Science And Engineering, vol. 18, pp. 145–161, 2002.

[48] K. D. Federmeier, J. A. Kleim, and W. T. Greenough, “Learning-induces multiple synapse formation in rat cerebellar

cortex,” Neuroscience Letters, vol. 332, pp. 180–184, 2002.

[49] W. T. Thach, “What is the role of the cerebellum in motor learning and cognition?”Trends in Cognitive Sciences, vol. 27,

no. 9, pp. 331–337, 1998.

[50] F. A. Middleton and P. L. Strick, “Cerebellar output: motor and cognitive channels,”Trends in Cognitive Sciences, vol. 27,

no. 9, pp. 348–354, 1998.

[51] E. R. Kandel, J. H. Schwartz, and T. M. Jessell,Principles of Neural Science, 4th Edition. McGraw-Hill, Health

Professions Division., 2000.

48

[52] T. Tyrrell and D. Willshaw, “Cerebellar cortex: Its simulation and the relevance of Marr’s theory,”Philosophical

Transactions: Biological Sciences, vol. 336, no. 1277, pp. 239–257, 1992.

[53] K. Doya, “What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?”Neural Networks,

vol. 12, pp. 961–974, 1999.

[54] J. Voogd and M. Glickstein, “The anatomy of the cerebellum,”Trends in Cognitive Sciences, vol. 2, no. 9, pp. 307–313,

1998.

[55] P. Strata and F. Rossi, “Plasticity of the olivocerebellar pathway,”Trends in Neuroscience, vol. 21, pp. 407–413, 1998.

[56] M. S. Salman, “The cerebellum: it’s about time! but timing is not everything–new insights into the role of the cerebellum

in timing motor and cognitive tasks.”Journal of Child Neurology, vol. 17, no. 1, pp. 1–9, 2002.

[57] M. Rapoport, R. van Reekum, and H. Mayberg, “The role of the cerebellum in cognition and behavior,”Journal of

Neuropsychiatry and Clinical Neurosciences, vol. 12, pp. 193–198, 2000.

[58] J. S. Albus, “A theory of cerebellar function,”Mathematical Biosciences, vol. 10, no. 1, pp. 25–61, 1971.

[59] D. Marr, “A theory of cerebellar cortex,”Journal of Physiology of London, vol. 202, pp. 437–470, 1969.

[60] M. Ito, The Cerebellum and Neural Control. New York, Raven Press, 1984.

[61] J. C. Houk, J. T. Buckingham, and A. G. Barto, “Models of the cerebellum and motor learning,”Behavioral and Brain

Sciences, vol. 19, no. 3, pp. 368–383, 1996.

[62] M. Ito, “Mechanisms of motor learning in the cerebellum,”Brain Research, vol. 886, pp. 237–245, 2000.

[63] E. D. Schutter, “A new functional tole for cerebellar long term depression,”Progress in Brain Research, vol. 114, pp.

529–542, 1997.

[64] J. A. Kleim, E. Lussnig, E. R. Schwars, T. A. Comery, and W. T. Greenough, “Synaptogenesis and FOS expression in

the motor cortex of the adult rat aftr motor skill learning,”The Journal of Neuroscience, vol. 16, no. 14, pp. 4529–4535,

1996.

[65] J. A. Kleim, R. A. Swain, K. A. Amstrong, R. M. A. Napper, T. A. Jones, and W. T. Greenough, “Selective synaptic

plasticity within the cerebellar cortex following complex motor skill learning,”Neurobiology of Learning and Memory,

vol. 69, pp. 274–289, 1998.

[66] J. S. Albus,Brains, Behavior and Robotics. BYTE Books, McGraw-Hill, 1981.

[67] S. D. Teddy, “State-of-the-art cmacs: A literature survey,” Center for Computational Intelligence, School of Computer

Engineering, Nanyang Technological University, Singapore, Tech. Rep. C2i-TR-06/009, 2006.

[68] K. Ang and C. Quek, “Stock trading using PSEC and RSPOP: A novel evolving rough set-based neuro-fuzzy approach,”

Proc. IEEE Congress on Evolutionary Computation, vol. 2, pp. 1032–1039, 2005.

[69] T. Kohonen,Self-Organization and Associative Memory (3rd ed.). Berlin, New York: Springer-Verlag, 1989.

[70] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases

with noise,” Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, 1996.

[71] S. D. Teddy, “The MPSEC density-based clustering algorithm for non-linear memory assignment in the PSECMAC

network,” Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University,

Singapore, Tech. Rep. C2i-TR-06/006, 2006.

[72] S. J. Orfanidis,Introduction to Signal Processing. Prentice Hall, 1995.

[73] B. Widrow and S. D. Stearns,Adaptive Signal Processing. New Jersey: Prentice-Hall inc., 1985.

[74] S. D. Teddy, “The PSECMAC neural correlates,” Center for Computational Intelligence, School of Computer Engineering,

Nanyang Technological University, Singapore, Tech. Rep. C2i-TR-06/007, 2006.

49

[75] C. W. Ting, “Learning convergence of tsk0-fcmac: A novel fuzzy cmac based on the zero-ordered tsk fuzzy inference

scheme,” Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University,

Singapore, Tech. Rep. C2i-TR-04/003, 2004.

[76] S. D. Teddy, “The PSECMAC learning convergence,” Center for Computational Intelligence, School of Computer

Engineering, Nanyang Technological University, Singapore, Tech. Rep. C2i-TR-06/008, 2006.

[77] W. L. Tung and C. Quek, “GenSoFNN: A generic self-organizing fuzzy neural network,”IEEE Transactions on Neural

Networks, vol. 13, no. 5, pp. 1075–1086, 2002.

[78] K. K. Ang and C. Quek, “RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm,”Neural

Computation, vol. 17, no. 1, pp. 205–243, 2005.

[79] R. Kohavi, “The power of decision tables,” inProceedings of the European Conference on Machine Learning, ser. Lecture

Notes in Artificial Intelligence 914, N. Lavrac and S. Wrobel, Eds. Berlin, Heidelberg, New York: Springer Verlag,

1995, pp. 174–189.

[80] The University of Waikato, “WEKA 3: Data mining software in java,”[Online] http://www.cs.waikato.ac.nz/ml/weka/.

[81] D. M. Chance,An Introduction to Derivatives & Risk Management, 6th ed. Thomson, 2004.

[82] L. T. Nielsen, Pricing and Hedging of Derivative Securities – Textbook in continuous-time finance theory. Oxford

University Press, 1999.

[83] F. Black and N. Scholes, “The pricing of options and corporate liabilities,”Journal of Political Economy, vol. 81, pp.

637–659, 1973.

[84] R. J. R. Jr. and B. J. Bartter, “Two-state option pricing,”Journal of Finance, vol. 34, pp. 1093–1110, 1979.

[85] P. Radzikowski, “Non-parametric methods of option pricing,”Proc. of Informs-Korms (Seoul 2000 conference), pp. 474–

480, 2000.

[86] H. Amilon, “A neural network versus black-scholes: A comparison of pricing and hedging performances,”Scandinavian

Working Papers in Economics, Lund University series, Department of economics, Lund, Sweden, 2001.

[87] U. Anders, O. Korn, and C. Schmitt, “Improving the pricing of options - a neural network approach,”Journal of

Forecasting, vol. 17, no. 5–6, pp. 369–388, 1998.

[88] M. Qi and G. S. Maddala, “Option-pricing using artificial neural networks: the case of s&p500 index call options,”Neural

Networks in Financial Engineering, pp. 78–92, 1995.

[89] C. Keber, “Option pricing with the genetic programming approach,”Journal of Computational Intelligence in Finance,

vol. 7, no. 6, pp. 26–36, 1999.

[90] Y. Ait-Sahalia and A. W. Lo, “Nonparametric estimation of state-price densities implicit in financial asset price,”LFE-

1024-95, MIT-Sloan School of Management, 1995.

[91] W. L. Tung and C. Quek, “GenSo-OPATS: A brain-inspired dynamically evolving option pricing model and arbitrage

trading system,”Proc. IEEE CEC 2005, Edinburgh, Scotland, vol. 3, pp. 2429–2436, 2005.

[92] U. Chicago Mercantile Exchange,[Online] http://www.cme.com.

[93] W. L. Tung and C. Quek, “GenSo-FDSS: a neural-fuzzy decision support system for pediatric all cancer subtype

identification using gene expression data,”Artificial Intelligence in Medicine, vol. 336, no. 1, pp. 61–88, 2005.

[94] J. Sinkey Jr., “A multivariate statistical analysis of the characteristics of problem banks,”Journal of Finance, vol. 1, pp.

21–36, 1975.

[95] D. Martin, “Early warning of bank failure: A logit regression approach,”Journal of Banking and Finance, vol. 1, no. 3,

pp. 249–276, 1977.

50

[96] R. Cole and J. Gunther, “Separating the likelihood and timing of bank failure,”Journal of Banking and Finance, vol. 19,

no. 6, pp. 1073–1089, 1995.

[97] P. Y. K. Cheng, “Predicting bank failures: A comparison of the cox proportional hazards model and the time varying

covariates model,” Ph.D. dissertation, Nanyang Business School, Nanyang Technological University, Singapore, 2002.

[98] Federal Reserve Bank of Chicago, “Repository for bank data,”[Online] http://www.chicagofed.org.

[99] W. L. Tung, C. Quek, and P. Y. K. Cheng, “GenSo-EWS: A novel neural-fuzzy based early warning system for predicting

bank failures,”Neural Networks, vol. 17, no. 4, pp. 567–587, 2004.

[100] F. M. Ashcroft and S. J. H. Ashcroft,Insulin: Molecular Biology to Pathology. Oxford University Press, 1992.

[101] Illinois Institute of Technology, “Glucosim: A web-based educational simulation package for glucose-insulin levels in the

human body,”[Online] http://216.47.139.198/glucosim/gsimul.html.

[102] Health Promotion Board Singapore,[Online] http://www.hpb.gov.sg.

[103] C2iWeb, “Centre for Computational Intelligence, School of Computer Engineering, Nanyang Technological University,

Singapore,”[Online] http://www.c2i.ntu.edu.sg.

[104] S. D. Teddy, E. M.-K. Lai, and C. Quek, “Hierarchically clustered adaptive quantization CMAC and its learning

convergence,”IEEE Trans. Neural Networks, to appear, 2007.

[105] W. L. Tung and C. Quek, “Falcon: Neuro fuzzy control and decision systems using FKP and PFKP clustering algorithms,”

IEEE Trans. Syst., Man, Cybern. Part B, Cybern., vol. 34, no. 1, pp. 686–695, 2004.

[106] R. W. Zhou and C. Quek, “Antiforgery: A novel pseudo-outer product based fuzzy neural network driven signature

verification system,”Pattern Recognition Letters, vol. 230, no. 14, pp. 1795–1816, 2002.

[107] C. Quek, B. Tan, and V. Sagar, “POPFNN-based fingerprint verification system,”Neural Networks, vol. 14, pp. 305–323,

2001.

[108] K. Quah and C. Quek, “Maximum reward reinforcement learning: A non-cumulative reward criterion,”Expert Systems

with Applications, vol. 31, no. 2, pp. 351–359, 2006.

[109] K. K. Ang and C. Quek, “Stock trading using RSPOP: A novel rough set based neuro-fuzzy approach,”IEEE Trans.

Neural Networks, vol. 17, no. 5, pp. 1301–1315, 2006.

S. D. Teddy received the B.Eng. degree (First Class Honors) in computer engineering from Nanyang

Technological University, Singapore, in 2003, where she subsequently pursued her doctorate degree at

the Centre for Computational Intelligence, School of Computer Engineering. She is currently a research

engineer with the Data Mining Department of the Institute for Infocomm Research, Singapore. Her current

research interests include the cerebellum and its computational model, artificial neural networks, the

study of brain-inspired learning memory systems, computational finance, and autonomous control of bio-

physiological processes.

51

C. Quek received the B.Sc. degree in electrical and electronics engineering and the Ph.D. degree in

intelligent control from Heriot-Watt University, Edinburgh, Scotland, UK, in 1986 and 1990 respectively.

He is an associate professor and a member of the Centre for Computational Intelligence, formerly the

Intelligent Systems Laboratory, School of Computer Engineering, Nanyang Technological University.

His research interests include intelligent control, neuro-cognitive architectures, AI in education, neural

networks, fuzzy systems, fuzzy rule-based systems, and genetic algorithms and brain-inspired neuro-

cognitive applications in Computational Finance and Biomedical Engineering.

E. M.-K. Lai (M’82-SM’95) received the B.E.(Hons) and PhD degrees in 1982 and 1991 respectively

from the University of Western Australia, both in electrical engineering. He is currently a faculty member

of the Institute of Information Sciences and Technology, Massey University at Wellington, New Zealand.

Previously he has been a faculty member of the Department of Electrical and Electronic Engineering,

The University of Western Australia from 1985 to 1990, the Department of Information Engineering, the

Chinese University of Hong Kong from 1990 to 1995, Edith Cowan University in Perth from 1995 to

1998 and the School of Computer Engineering, Nanyang Technological University in Singapore from 1999 to 2006. His current

research interests include artificial neural networks, digital signal processing and information theory.

