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Option pricing formula and the binomial pricing model. These techniques, however, employ complex and rigid
PSECMAC statistical formulations that are not easily comprehensible to novice investors. More recently, non-
Cerebellum parametric and computational methods of option valuation that are able to construct a model of
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the pricing formula from historical data have been proposed in the literature. However, most of
these models functioned as black-boxes and may not be able to efficiently and accurately capture
the complex market dynamics and characteristics of the option data. This paper proposes a novel
brain-inspired cerebellar associative memory model for pricing American-style call options on
British pound vs. US dollar currency futures. The proposed model, named PSECMAC, constitutes a
local learning model that is inspired by the neurophysiological aspects of the human cerebellum.
The PSECMAC-based option-pricing model is subsequently applied in a mis-priced option arbitrage
trading system. Simulation results show an encouraging return on investment of 23.1% for some of the

traded options.
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1. Introduction

Options are financial instruments, which provide a means to
manage financial risks that arise from the uncertainty of factors
such as volatile interest rates, exchange rates, stock prices and
commodity prices in the course of running a business. They are
playing an increasingly important role in modern financial
markets [13]. The buyer of an option enters into a contract with
the right, but not the obligation, to purchase or sell an underlying
physical or financial asset at a later date at a price agreed upon
today. By using options, companies and individuals can transfer,
for a price known as the premium (i.e. price) of the option, any
undesirable financial risk to parties who either possessed the
capabilities to offset such a risk (through hedging) or want to
assume that risk as speculation for financial gains. Options belong
to a class of financial products generally referred to as derivative
securities whose returns are derived from those of other financial
instruments, in this case, the underlying physical or financial
assets for which the options are issued [12].
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In an efficient market [18], the prices of the options being
traded reflect or approximate their true economic (intrinsic)
values to the investors. Classical economic models such as the
rational expectations theory [41] and the efficient market hypothesis
[19] assumed a stationary world in which all option investors have
access to the same market data, behave rationally towards the
current and historical pricing information and subsequently
adopting the same trading decisions. Hence, an efficient market
is always at its equilibrium. Such a notion suggested that it is a
futile effort to devise a trading system to compute the fair
economic value of an option and to exploit any arbitrage
opportunities arising from a misalignment of the expected
theoretical fair value of the option and the bid-ask price spread
offered by the market. A trading market that is at equilibrium has
no arbitrage opportunities.

However, in a real world financial market, information
efficiency is generally far from perfect. Investors require time to
learn and comprehend the inflow of information to facilitate
decision-making that drives their trading actions. In addition,
traders may interpret the same information differently and thus
their expectations become indeterminate, unstable and possibly
self-fulfilling [9]. Such a notion is also supported by modern
economic models and theories such as the noisy expectations
model [22] and the rational beliefs theory [36,37]. The noisy
expectations model contemplated that the market learns while
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adapting to the incoming information, and allows for the
possibility of profitable trading by using and analyzing certain
information to take a position in anticipation of the price changes
that will occur as the rest of the market learns about that piece
of information [14]. The rational beliefs theory, on the other hand,
argued that competing theories and beliefs about the future risks
and the future movements of the market would result in different
responses by the investors and market participants [38]. Hence,
modern economic research has provided the necessary motivation
and support for the need of an accurate and computationally
efficient option-pricing model and the subsequent construction of
a mis-priced option trading system to exploit any arbitrage
opportunity to maximize trading profits.

Option pricing is defined as the process to obtain the theoretical
fair economic value of an option. The price of an option is
determined by a set of pricing factors such as time to expiry and
the intrinsic value of the option. The conventional approach to
option pricing is to construct parametric models that are based on
the assumptions of continuous-time finance theory [42]. The
pioneering models are the Black-Scholes (BS) formula [10] and
the binomial pricing model [46]. This line of research has focused
on the idea of creating risk-free portfolios for trading of options
through dynamic hedging strategies. However, these models
presumed complex and rigid statistical and probabilistic formula-
tions about the price processes of the underlying assets from
which the options prices are deduced [45]. A misspecification of
the stochastic processes for the price dynamics of the underlying
assets will lead to systematic pricing errors for the options linked
to the assets. In addition, the theory of continuous-time stochastic
processes is an essential prerequisite for continuous-time finance
[42]. Such convoluted mathematical formalization, however, is
not easily accessible to novice investors to develop a comprehen-
sive understanding of the rationale behind the computed price
valuations.

Non-parametric methods of option pricing based on neural
networks [5,6,44,25], genetic algorithms [29] and kernel regres-
sion [1], on the other hand, are model-free approaches that have
attracted significant interest in recent years. The pricing model,
which is usually represented as a non-linear functional mapping
between the input factors and the theoretical option price, is
derived from vast quantities of historical data. However, these
methods involve heuristics and therefore suffer from poor
interpretability. More recently, neuro-fuzzy approaches [51] are
introduced to overcome this problem. With these techniques, a set
of comprehensible semantic rules can be extracted from historical
trading data for rational pricing of the options.

Currently, non-parametric option-pricing methods are gener-
ally based on a global learning paradigm, in which the system
attempts to use a single formulated model to generalize or fit the
behaviors/characteristics of the entire set of historical pricing
data. Some researchers have argued that it is difficult, if not
impossible, to obtain a general and accurate global learning model
[23]. Historical option-pricing data may contain complex
dynamics and pricing patterns that make it hard for a global
learning model to accurately generalize the underlying pricing
function. In contrast, a local learning paradigm focuses on
capturing only useful local information from the observed data
[11]. Instead of having a single formulated model, a local learning
system can be considered as a collection of locally active models,
where each sub-model is learning to generalize a different subset
of the training data.

In option trading, the prices of the options are determined by a
set of pricing factors, such as time to expiry and the intrinsic
values of the options. The complex relationship between the
valuation of an option and its influencing factors may be modeled
as combinatorial associations to be extracted from the historical

pricing data. This motivates the use of a local associative model as
a non-parametric computational method to option pricing. In this
paper, a novel brain-inspired cerebellar associative memory
approach to the pricing of American-style call options on the
British Pound vs. US dollar currency futures is investigated.
The cerebellar associative memory model, named the Pseudo
Self-Evolving Cerebellar Model Arithmetic Computer (PSECMAC)
[48], is employed to approximate the functional mapping between
the option price and its influencing factors. The structure of the
PSECMAC network is inspired by the neurophysiological proper-
ties of the human cerebellum [26], and emulates the information
processing and knowledge acquisition of the cerebellar memory.

The rest of this paper is organized as follows. Section 2
describes the architecture of the PSECMAC network and outlines
the structural and parameter learning process of the network.
Section 3 presents an overview of the proposed cerebellar
associative memory-based option-pricing model and defines the
selected input factors for the pricing of the American-style
currency futures option. In Section 4, the autonomous option
trading system that employs the proposed option pricing model is
introduced and evaluated using real-life British Pound vs. US
dollar futures option trading data. Section 5 concludes this paper.

2. The PSECMAC network

The cerebellum constitutes a part of the human brain that is
important for motor control and a number of cognitive functions
[40], including motor learning and memory. It possesses the
capability to model highly non-linear physical dynamics, and it
is postulated to function as a movement calibrator [4] that is
involved in the detection of movement error and the subsequent
coordination of the appropriate skeletal responses to reduce the
error. The human cerebellum functions by performing associative
mappings between the input sensory information and the
cerebellar output required for the production of temporal-
dependent precise behaviors [26]. It has been computationally
modeled by the Cerebellar Model Articulation Controller (CMAC)
[3]. As a functional model of the human cerebellum, CMAC
manifests as an associative memory network [2], where the
memory cells are uniformly quantized to cover the entire input
space. The CMAC network operation is characterized by the table
lookup access of its memory cells. This allows for localized
generalization and rapid algorithmic computation, and subse-
quently motivates the prevalent use of CMAC for process control
and optimizations [56,35,39], modeling and control of robotic
manipulators [16,28], as well as various signal processing and
pattern-recognition tasks [53,24,30].

However, there are several major computational limitations
associated with the CMAC network that arise from the rigidness of
its computing structure. The CMAC network employs a highly
regularized grid-like computing structure (i.e. equally spaced
memory cells along each input dimension) that indirectly enforces
the uniform quantization of a problem’s input-output (I/O)
mapping space. On the other hand, meaningful real-life applica-
tions are generally heteroskedastic, where the problems are often
characterized by highly non-linear I/O trends and statistically
varying data patterns. Such observations implied that specific
regions of these problems’ I/O associative spaces are more
informative (and therefore demand a higher modeling resolution)
than others. For such an application, the simplistic approach of
adopting an uniformly quantized I/O mapping space for CMAC
to model the problem’s input-output data characteristics may not
be adequate and often leads to suboptimal memory utilization.

This paper presents a brain-inspired cerebellar-based learning
memory model named PSECMAC as a generic functional model of
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the human cerebellum and investigates its use as a non-
parametric option-pricing model. PSECMAC differs from the CMAC
network in two aspects. Firstly, the PSECMAC network employs
one layer of network cells, but maintained the computational
principles of the layered CMAC network by adopting a neighbor-
hood activation of its computing cells to facilitate: (1) smoothing
of the computed output; (2) distributed learning paradigm; and
(3) activation of highly correlated computing cells in the input
space. Secondly, instead of the conventional uniform partitioning
of the memory cells as seen in CMAC, the PSECMAC network
employs a data-driven adaptive memory quantization mechanism
of its network cells.

The structure of the proposed PSECMAC associative memory
network is inspired by neuroscience research as well as human
behavioral studies on the cerebellar learning process, where it has
been shown that significantly higher densities of the cerebellar
synaptic connections are located at the frequently accessed
regions of the cerebellum that are activated by repeated learning
episodes [20]. This cerebellar-based experience-driven synaptic
plasticity phenomenon is emulated in the PSECMAC network by
employing a data-driven adaptive memory quantization scheme
for the derivation of its computing structure. That is, more
memory cells are assigned to model regions of the data space that
contain higher densities of the training exemplars. Fig. 1
graphically illustrates the fundamental architectural difference
in the organization of the memory (computing) cells to define the
I/0 mapping space between the proposed PSECMAC network and
the CMAC model.

The proposed PSECMAC network employs a two-phased
learning process, namely: structural learning and parameter
tuning. See Appendix A for the technical details on the structural
learning and parameter tuning phases of the PSECMAC network.

2.1. Computational process of PSECMAC

The PSECMAC network employs a weighted Gaussian neighbor-
hood output (WGNO) computation process, where a set of
neighborhood-bounded computing cells is activated to derive
the network’s output response to the given input stimulus. In this
computation process, each of the neighborhood cells has a
weighted degree of activation that is inversely proportional to
the distance of the cell from the input stimulus point. The
objective of the WGNO scheme is to minimize the influences of
the input quantization errors on the computed network output. In

a

Neighborhood
Activation

Input
Stimulus

addition, it introduces a ‘“smoothing” effect on the PSECMAC
output and enhances the generalization capability of the PSEC-
MAC network.

Let Y denotes the computed PSECMAC network output for an
input stimulus Xg = [Xs1,Xs2,- .. Xs J]T to the PSECMAC network.
The WGNO computation process is defined as follows:

Step 1: Determine the region of activation. The size of the
activated PSECMAC neighborhood with respect to input X is
defined by N €[0---1], a user-specified parameter that governs
the relative size of the neighborhood of activated PSECMAC cells
to the overall memory space. The neighborhood activation
boundaries are defined on per-dimension basis such that N =
0.2 denotes an activation boundary of 20% relative to the ranges of
the respective input dimensions. A neighborhood constant of N =
0.2 therefore signifies a neighborhood activation of (0.2) x 100%
relative to the entire input space, where | denotes the total
number of input dimensions. For the input stimulus X, its
activation neighborhood is defined as

Ibsj = x;; — 0.5 - N - range; (1)
thgj = X,j+0.5-N-range;, je{1,2,....]} (2)

where Ibs; denotes the left activation boundary, rb,; denotes the
right activation boundary, and range; is the domain for the jth
input dimension. Subsequently, the memory cells encapsulated
within the neighborhood defined by the computed boundaries are
activated in response to the input stimulus X;. A PSECMAC
activation neighborhood is illustrated as Fig. 2.

Step 2: Compute the Gaussian weighting function. A Gaussian
weighting factor g, is associated with each activated PSECMAC
cell to determine its contribution towards the computation of the
network output. The Gaussian weighting factor is defined as

g = (1 — dpe&/2” (3)

where y is the Gaussian width constant and d, denotes the
normalized Euclidean distance from the kth activated cell to the
input stimulus X; (see Fig. 2). Let K; be the set of activated
PSECMAC cells in the computed neighborhood. Subsequently, d, is
defined as

_ 1Qx — Xl
maxy ., 1Qx — Xl

where Q; =[Q1x, Qux,...,Q ] denotes the quantization point of
cell k in the memory space.

(4)

dy

b

Neighborhood
Activation

Fig. 1. Comparison of CMAC and PSECMAC memory quantization for 2D input problem. (a) CMAC and (b) PSECMAC.
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PSECMAC Memory Cells

Fig. 2. An example of a 2D PSECMAC neighborhood.

Step 3: Retrieve the PSECMAC output. The PSECMAC network
output Y is computed as a weighted linear combination of the
memory contents of the activated cells such that

> ke, 8k - W(K))
Y, — Zokeks 8k O 5
Zkel(s 8k ( )

where K; denotes the set of neighborhood-activated PSECMAC
cells, and W(k) is the stored weight value(s) of the activated
PSECMAC cell with index k.

3. A PSECMAC-based option-pricing model

In this paper, the use of PSECMAC as a novel non-parametric
option pricing model is investigated. This section presents an
overview of the proposed PSECMAC-based option-pricing model,
starting with a brief discussion of the dataset used to construct
the pricing model and the definition of the selected input factors
considered to have an impact on the pricing of the option. In this
study, the PSECMAC network is used to construct a pricing model
to predict the correct valuations for American call options on the
British pound (GBP) and US dollar (USD) exchange rate futures
contract. The proposed pricing model is subsequently evaluated
on the accuracy of its pricing decisions and the results are
analyzed.

3.1. The option dataset

The data used in this study consists of the daily closing quotes
of the GBP vs. USD currency futures and the daily closing bid and
ask prices of American-style call options on such futures in the
Chicago Mercantile Exchange (CME) [15] during the period of
October 2002 to June 2003. The GBP vs. USD currency futures
option in the CME have at least three unique expiration dates:
current month, following month, and two months ahead. On the
fourth Friday of each month, some contracts expire (as some
others may be exercised earlier since they are American style
options), and new ones are introduced. For any new contracts,
they often have eight strike prices around the current GBP vs. USD
currency futures value. If the index moves outside the current
strike price range, another strike price is added for all expiration
dates to bracket that index value. Thus, the strike prices reflect the
path of the index during the time-to-maturity period.

3.2. Selected inputs to the option-pricing model

A study to determine the most influential factors affecting the
prices of European style Swedish OMX index options [5] has
identified five attributes to be very important. They are: (1)
current underlying asset price (denoted as Sp); (2) time to
maturity of the option (expressed in years and denoted as T);
(3) the exercise price of the option, X; (4) the risk-free interest rate
(generally taken as the compounded return rate on one-year
Treasury Bill and denoted as r); and (5) the historical price
volatility of the last 30 days (denoted as g39).

In the proposed PSECMAC-based option-pricing model, all of
the above factors except the risk-free interest rate r are selected as
inputs to the non-parametric pricing model. This is because the
risk-free interest rate r can be assumed to be constant without
change and therefore have no effect on the price of the options
[54]. Thus, the American call option-pricing formula can be
represented as a function of the following inputs: Sy, X, T, and ag3¢;
where Sy is the current GBP vs. USD exchange rate futures value; X
is the strike price of the option on the GBP vs. USD exchange rate
futures; T is time to maturity of the option in years; and g3 is the
historical price volatility for the last 30 trading days. In addition,
we introduce the notion of moneyness (or intrinsic value) of the
futures option, which is computed as the difference between the
current futures value Sy and the option strike price X (i.e. Sop — X),
as a combined input to the PSECMAC-based option-pricing model.
Thus, the pricing function f to be approximated by the PSECMAC
network is

Co =f(So — X, T,030) (6)

where Cy is current option price; and (So—X) reflects the
moneyness of the option.

3.3. Option-pricing results and analysis

In total, 792 data samples are available in the selected futures
option dataset, which contains the historic pricing data for
options with five different strike prices: $158, $160, $162, $166
and $168, with 159, 158, 173, 137 and 165 data samples,
respectively. The 792 data samples are subsequently partitioned
into three evenly distributed sub-groups denoted as A, B and C,
each containing 264 data tuples. A total of six different cross-
validation sets are constructed based on the permutations of the
sub-groups, as outlined in Table 1. The six CV sets are organized
into two different evaluation models, namely Models 1 and 2. In
Model 1, the training set is constructed using data samples from



S.D. Teddy et al. / Neurocomputing 71 (2008) 3303-3315 3307

Table 1

Simulation set-ups based on permutations of the three sub-groups A, B and C to define the training and testing sets of the proposed PSECMAC option-pricing model

Evaluation model Configuration Simulation Training set Testing set
Model 1 1 training and % testing I Sub-group A Sub-groups B and C
Il Sub-group B Sub-groups A and C
11 Sub-group C Sub-groups A and B
Model 2 2 training and } testing vV Sub-groups A and B Sub-group C
\'% Sub-groups A and C Sub-group B
VI Sub-groups B and C Sub-group A
Table 2
Performances of the proposed PSECMAC option-pricing model
Evaluation model Simulation Recall Generalization
RMSE NRMSE (%) Correlation RMSE NRMSE (%) Correlation
Model 1 [ 0.1299 8.3 0.9956 0.2386 15.2 0.9858
1l 0.1376 8.8 0.9954 0.2727 174 0.9816
11 0.1178 7.5 0.9964 0.2638 16.8 0.9847
Average 0.1284 8.2 0.9958 0.2584 16.5 0.9840
Model 2 \Y% 0.1382 8.8 0.9952 0.2103 134 0.9889
\Y 0.1404 9.0 0.9949 0.2210 14.1 0.9885
VI 0.1353 8.4 0.9954 0.2007 12.8 0.9902
Average 0.1380 8.8 0.9952 0.2107 13.5 0.9892

only one sub-group while the data from the remaining two sub-
groups constitute the testing set. The objective of this evaluation
model is to assess the generalization ability of the trained pricing
system. In contrast, Model 2 employs the data samples from two
sub-groups for training and aims to investigate the performances
of the option-pricing system as more training samples are
provided.

A PSECMAC network with a memory size of 12 cells per
dimension is constructed for the option-pricing problem. A
neighborhood size (N) of 0.2 and a Gaussian width constant ()
of 0.5 have been empirically determined. Table 2 lists the recall
(in-sample testing) and generalization (out-of-sample testing)
performances of the PSECMAC option-pricing model for the
various CV sets. RMSE denotes the root-mean-square-error
between the set of computed and actual option prices; NRMSE
is the normalized RMSE with reference to the average option price
(in %); and PearCorr is the Pearson correlation coefficient, a
statistical measure reflecting the goodness-of-fit between the
approximated and actual implicit pricing functions. The average
price of the GBP vs. USD currency futures option during the period
of study is computed as $1.5652. The performances of the
proposed PSECMAC option-pricing model are encouraging, with
an average RMSE (ARMSE) of approximately 0.13 (8.2% NRMSE)
and 0.26 (16.5% NRMSE) for the recall and generalization
assessments of Model 1, respectively. An average correlation of
0.98 is achieved by the PSECMAC model for the generalization
evaluation (as compared to 0.99 for recall), indicating a less than
1% performance degradation as the evaluation emphasis shifts
from the in-sample testing (recall) to the out-of-sample evalua-
tion (generalization) capability of the PSECMAC pricing system.

From Table 2, one can also observe that a larger training
dataset improves the generalization performance of the PSECMAC
option-pricing model. The experimental results of Model 2
showed a 18% improvement ((0.2584 —0.2107)/0.2584) in the
RMSE value over that of Model 1 for generalization (out-of-sample

testing). This increase in the accuracy of the PSECMAC option-
pricing model can be attributed to the improvement in
the network’s ability to efficiently capture the price dynamics
and the valuation principles of the futures option with respect to
the underlying pricing factors as the number of training instances
increases. A larger training dataset results in a more comprehen-
sive training of the entire PSECMAC associative memory surface
and this increases the generalization ability of the network
towards the hold-out test samples.

As benchmarks, the set of option-pricing simulations is
repeated using various well-established non-parametric approx-
imators. The benchmarking models studied in this paper are: the
basic CMAC network [3]; three neuro-fuzzy systems, namely: (1)
the Fuzzy CMAC with Yager Inference Scheme (FCMAC-Yager)
[47]; (2) the Generic Self-Organizing Fuzzy Neural Network
(GensoFNN) [50]; and (3) the Rough Set-Based Pseudo-Outer-
Product Fuzzy Neural Network (RSPOP) [7]; as well as the classical
machine learning models such as the radial basis function (RBF)
network [49] and the multi-layered perceptron (MLP). The
parameters for the FCMAC-Yager, RSPOP and GenSoFNN [51]
systems have all been empirically optimized for best perfor-
mances. The network structure of the MLP, which consists of three
input, eight hidden and one output nodes, respectively, has been
empirically determined. The RBF network is initialized to contain
100 hidden layer nodes. In addition, the size of the CMAC network
has been defined as 12 cells per dimension for a fair comparison
with the proposed PSECMAC network. Table 3 summarizes the
ARMSE, average NRMSE (ANRMSE) and average Pearson correla-
tion (APC) results for the evaluation Models 1 and 2 across the
different benchmarking architectures. A Performance Index (PI) is
employed to combine the AvgRMSE and AvgPearCorr measures as
described in

AvgPearCorr
Pl = {1+ AVgRMSE) x 100 (7)
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Evaluation model System Recall Generalization
ARMSE ANRMSE (%) APC PI ARMSE ANRMSE (%) APC Pl
Model 1 CMAC 0.0531 34 0.9992 94.88 0.2896 18.5 0.9792 75.93
PSECMAC 0.1284 8.2 0.9958 88.24 0.2584 16.5 0.9840 78.19
FCMAC-Yager 0.1924 12.3 0.9911 83.12 0.5221 33.4 0.9236 60.68
GenSoFNN 0.1759 1.2 0.9943 84.56 0.2764 17.7 0.9839 77.08
RSPOP 0.2562 16.4 0.9849 78.40 0.4204 26.9 0.9578 67.43
RBF 0.1767 1.3 0.9920 84.30 0.3438 22.0 0.9701 72.19
MLP(3-8-1) 0.1558 10.0 0.9938 85.98 0.1979 12.6 0.9903 82.67
Model 2 CMAC 0.0678 4.3 0.9988 93.54 0.2579 16.5 0.9834 78.18
PSECMAC 0.1380 8.8 0.9952 87.45 0.2107 13.5 0.9892 81.70
FCMAC-Yager 0.2365 15.1 0.9879 79.89 0.2829 18 0.9831 76.63
GenSoFNN 0.1857 11.9 0.9948 83.90 0.2387 15.3 0.9908 79.99
RSPOP 0.2938 18.8 0.9787 75.65 0.3461 221 0.9695 72.02
RBF 0.2389 15.3 0.9854 79.54 0.3076 19.7 0.9758 74.63
MLP(3-8-1) 0.1937 124 0.9905 82.98 0.2087 13.3 0.9891 81.83
Table 4
Performances of the Black-Scholes option-pricing model
Evaluation model Simulation Recall Generalization
RMSE NRMSE (%) Correlation RMSE NRMSE (%) Correlation
Model 1 I 1.3670 87.3 0.8289 12777 81.6 0.8341
1l 13070 83.5 0.8327 1.3087 83.6 0.8314
111 1.2477 79.7 0.8360 1.3374 85.4 0.8302
Average 13072 83.5 0.8325 13079 83.6 0.8319
Model 2 v 13374 85.4 0.8302 1.2477 79.7 0.8360
\'% 1.2777 81.6 0.8341 1.3670 87.3 0.8289
VI 1.3087 83.6 0.8314 13070 83.5 0.8327
Average 13079 83.6 0.8319 13072 83.5 0.8325

All parameters are derived directly from the spot market.

such that a higher PI value corresponds to a better pricing
performance.

From Table 3, one can observe that the MLP network possesses
the most accurate generalization pricing decisions as compared to
the other benchmarked systems. However, it is a black-box model
as its complex synaptic weight structure is hardly human
interpretable. There is no mechanism to explain the pricing
decisions of the MLP network. Moreover, the network structure of
the MLP network has to be empirically determined. In contrast,
the neuro-fuzzy systems (i.e. the GenSoFNN, RSPOP and FCMAC-
Yager networks) offer interpretable semantic rules that explain
the pricing decisions of the futures option but at the expense of
lower pricing accuracy. The proposed PSECMAC network, on the
other hand, managed to achieve comparable generalization
pricing performances to those of the MLP network. The pricing
decisions of the proposed PSECMAC option-pricing model out-
performed the benchmarked RBF network and the neuro-fuzzy
systems for both recall and generalization evaluation. Table 3 also
demonstrated that the PSECMAC network outperforms its CMAC
counterpart for the generalization evaluation. Specifically, the
multi-resolution structure of the PSECMAC network yields
(on average) a 3.7% improvement in the generalization PI value
over the uniformly quantized CMAC of the same network size.

The recall performances of the PSECMAC network, however,
were slightly inferior to the CMAC network. This is possibly due to
the static uniform memory quantization of the CMAC network
that produces a computing structure that is highly optimized for

the training set. The PSECMAC non-uniform quantization proce-
dure, on the other hand, sought to obtain an efficient character-
ization of a given problem’s input-output mappings. This is
achieved by allocating the predefined number of available
memory cells in a non-linear manner based on the distribution
of the training data. The effective non-linear memory quantization
of PSECMAC allows for a better description of a given problem’s
characteristic surface to address new/unseen test data. Thus, the
PSECMAC network is able to achieve a much improved general-
ization performance over the CMAC pricing model despite a small
degradation in the recall performance. The associative structure of
the PSECMAC model also facilitates the extraction of discrete
pricing rules. For instance, “IF time-to-maturity is between 0 and
0.04 years, volatility is between 5.08 and 5.28 and moneyness is
between $5.03 and $7.98 THEN the Option-Price (on average) is
$9.4” is a representative discrete rule extracted from the PSECMAC
option-pricing model that expresses the knowledge acquired from
the training data. Such rules also enhance human comprehension
of the pricing dynamics of the traded options.

Subsequently, the accuracy of the non-parametric PSECMAC
option-pricing model is also benchmarked against the pricing
performance of the parametric BS option-pricing formula [10].
Table 4 tabulates the pricing performances of the BS option-
pricing model based on the RMSE, NRMSE and the Pearson
correlation coefficient values for the six CV groups. All of the
parameters required by the BS pricing formula are derived from
the spot market. Note that since there is no training for the BS
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model, the simulation results of Models 1 and 2 in Table 4 are
mirrored of each other. From Table 4, one can observe that the BS
pricing performances are inferior to those of the non-parametric
models outlined in Table 3. Parametric option-pricing model such
as the BS formula are generally derived via the continuous-time
finance theory framework [42], and they often presumed complex
and rigid statistical and probabilistic models about the price
processes of the underlying assets to deduce the option prices.
A misspecification of the price dynamics of the underlying assets
will lead to systematic pricing errors that will be detrimental to
the pricing performances of the parametric model. Table 4 has
clearly demonstrated that the BS option-pricing model suffers
from systematic pricing errors for the option dataset used in this
study.

4. A cerebellar associative memory approach to arbitrage trading

This section introduces a mis-priced option arbitrage trading
system, where the PSECMAC option-pricing model is employed to
detect any misalignments between the market spot value and the
theoretical valuation of an American call option on the GBP vs.
USD currency futures. When such mis-pricing occur, potential
arbitrage trading opportunities on the options are created and
investors can exploit these opportunities to derive risk-free
profits.

4.1. Arbitrage

An arbitrage opportunity arises when the Law of One Price [13]
is violated, making it possible for an investor to make a risk-free
profit. In this paper, an arbitrage trading strategy known as the
delta hedge trading strategy (DHTS) [13] is employed in the
proposed PSECMAC-based option trading system. In the DHTS, a
delta hedge ratio h is computed to determine the quantity of the
underlying asset (e.g. stock) required to cover the risk of taking a
naked position on the futures call option. Hence, the selling of one
call option is hedged by the buying of h quantity of the underlying
asset and vice versa. The hedge ratio h is computed as

AC _ (éu,t+1 - éd,t-H)

he = € _ Cuerr = Car)
"7 AS T (Sues1 — Sars1)

€[0,1] (8)
where h; is the hedge ratio at current time t (i.e. this trading
opportunity) employed to build up a risk-free portfolio with
proper ratio of call options and the underlying asset; S, .1 is the
price of the underlying asset at time t + 1 (i.e. the next trading
opportunity) if the price goes up; Sy is the price of the
underlying asset at time t + 1 (i.e. the next trading opportunity) if

INPUT
Money-ness
Time to maturity

the price goes down; AS is the change in value of the underlying
asset due to the projected change in price S; at time t + 1; AC is
the change in value of the call options due to the projected change
in price of the underlying asset at time t+1; C,,m is the
predicted price of the call option if the value of the underlying
asset is S, .1 at time £+ 1; and de] is the predicted price of the
call option if the value of the underlying asset is Sq¢,; at time
t+1.

For simplicity, the price of the underlying asset (i.e. the
currency futures) in this study is assumed to either go up by 0.5
unit price or go down by 0.5 unit price (i.e. Sy¢y1 =S¢+ 0.5 and
Sdat+1 = St — 0.5) such that the variable AS in Eq. (8) evaluates to
unity. That is, there is only a unit change in the price of the
underlying asset from time t to time t + 1. Hence, Eq. (8) can be
reduced to

_ (Cuesr — Carin) _ (Cuesr — Caein)
Suer1 —Saee1)  Se+0.5— (S —0.5))
= (Curs1 — Cae1) = AC (9)

hy

Thus, the hedge ratio of the portfolio at current time t is computed
as the difference in the predicted prices of the call option at time
t + 1. Note that Eq. (9) also gives the expected change in the prices
of the call option for every unit change in the spot price of the
underlying currency futures. This is regarded as a measure of the
sensitivity of the option price to the valuation of the underlying
asset.

4.2. Trading strategy

Based on the DHTS discussed in the last section, the PSECMAC-
based option trading system is implemented. The general frame-
work of the trading system proposed in this paper is a modified
version of the generic trading decision model found in [21], and is
illustrated in Fig. 3. With respect to Fig. 3, the PSECMAC option
pricing model is first constructed via supervised learning using
historic pricing information derived from the option and currency
futures markets. That is, PSECMAC is employed to approximate
the implicit pricing function (see Eq. (6)) from the observed
market valuations. The inputs and output to the PSECMAC option-
pricing model during the training phase are moneyness (So — X),
time to maturity T (in calendar year), past 30 days price volatility
of the GBP vs. USD currency futures 739, and the known closing
prices of the American call options Cgcpseq, respectively. The
performance evaluation of this option-pricing model has been
presented in Section 3. During the simulation period to evaluate
the trading performance of the PSECMAC option trading system,
only the required inputs (i.e. moneyness (Sp — X), time T and
volatility t3¢) are presented to the PSECMAC pricing model to

Volatility
Intra-day bid price
Intra-day ask price

OUTPUT

Daily close trade price

(8p-X, T, a30)

CC/osed

Option Pricing System
CT/ZE()V(’IiCa[

Intra-day bid, Intra-day bid, i
ask price ask price Transactl‘on
Costs
A
. Profit/Loses
Trading System Trade F R

Fig. 3. General framework of the proposed mis-priced option arbitrage trading system.
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compute the theoretical fair valuations (i.e. Crheoreticai) Of the
American call options. The computed Crpeoreticai and the spot
bid-ask price spread provided by the option market are subse-
quently fed into the trading system to detect any occurrence of
arbitrage opportunity and to generate the required trading
decision F. After the trades have been executed, the profits or
losses (i.e. returns R) are computed and reported at the end of the
simulation period.

The format of the training set is as described in Section 3.
Historic options data with strike prices of $158, $160, $162, $166
and $168, respectively, from October 2002 to February 2003 is
used to train the PSECMAC-based option-pricing model. The
test set contains out-of-sample data consisting of the intra-day
bid and ask prices of the American options with strike prices
of $158, $159, $160, $164 and $170, respectively, from January
2003 to June 2003. The trading algorithm is summarized as
follows:

1. The proposed trading system takes in the theoretical option
value Crpeoreticai cOmputed by the PSECMAC-based option-
pricing model and subsequently compares it to the spot bid-
ask prices of the option.

2. If the predicted theoretical option value Crperetical falls out of
the bid-ask spread range, the trading system assumes a mis-
priced arbitrage opportunity as being detected.

3. The trading system would take up trading positions according
to the following trading strategy:

(a) Evaluate if the call option is over-priced or under-priced
using Eq. (10).

Over-priced

if Crheoretical <Option bid-price at time t
Under-priced

if Crheoretical >OPtion ask-price at time t

(10)

If the call option is over-priced, short sell the call option

and hedge the risk by buying in h; quantity of the

underlying asset, i.e. the GBP vs. USD currency futures.

The hedge ratio h; is computed using Eq. (9). Else, if the

call option is under-priced, buy in the call option and

short sell h; quantity of the GBP vs. USD futures to hedge
the risk.

4. If the trading system already possessed a portfolio (i.e. has
either a long or short open position on the call option with the
appropriate ratio of hedged futures), it would continuously
check whether the mis-priced option has pulled back into the
option bid-ask spread range. If it is the case, the trading
system closes all the outstanding position immediately; else,
it continues to hedge the portfolio by computing a new hedge
ratio hy; and adjusting the portfolio composition.

Call option =

G

Table 5
Arbitrage performances of the proposed PSECMAC-based option trading system

4.3. Trading results and analysis

The proposed PSECMAC-based trading system is evaluated by
observing its arbitrage performances using real-life GBP vs. USD
currency futures option with various strike prices. To simplify the
simulation setup, transaction costs are omitted here. The results
are tabulated in Table 5. The “total capital outlay” column denotes
the overall amount of investment made on the sales and
purchases of the respective options and futures in the hedging
exercises, while “return on investment” (ROI) denotes the profit
earned from the trading endeavors. Table 5 is analyzed as follows.
For the trading of options with a strike price of $158, there are 26
under-priced (UO) and 19 over-priced (OO0) arbitrage opportu-
nities, respectively, detected by the PSECMAC-based arbitrage
trading system. The total capital outlay is $143,300 on performing
the arbitrage trading activities (i.e. short-sell (buy-in) options and
buy-in (short-sell) futures and the closing of the trading positions
when the mis-aligned option price pulls back within the bid-ask
price spread). Eventual absolute ROI is $7964.80, thus giving an
effective rate of return of 5.56%.

As shown in Table 5, the PSECMAC-based trading system has
demonstrated fairly high returns for investment, with an average
ROI of around 12.8% across all the five options. The simulation
results have also demonstrated that the PSECMAC trading system
performed well and returned a high effective rate of return of
23.15% and 21.14% for the traded options with strike prices of $164
and $170, respectively. Such an observation can be explained by a
price plot of the GBP vs. USD futures as shown in Fig. 4. Fig. 4
depicts a plot of the trading prices of the GBP vs. USD currency
futures during the period of the simulation, together with two
straight lines illustrating the options with strike prices of $158

170 -

165{ Strike price $164 N

1601 Strike price $15

155 -

150 Training set

Testing set

Price of GBP vs. USD futures

145

g & & &
S & & S
S

F ¥ ¥ I &
NN N

Time (Calender days)

Fig. 4. Price plot of the GBP vs. USD futures for the period of the study.

Option strike Sim period Num of UO Num of 00 Total capital Absolute ROI ($) Percentage ROI
price X ($) (days) transaction transaction outlay ($) (%)

158 156 26 19 143300 7964.80 5.56

159 61 7 15 50940 4228.60 8.3

160 65 0 17 30820 1809.30 5.87

164 97 17 10 20560 4759.60 23.15

170 94 10 12 5560 1175.20 21.14

Average ROI (%) 12.80

Note: UO is option under-priced arbitrage opportunity; OO is option over-priced arbitrage opportunity; and ROI denotes the return on investment.
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and $164, respectively. As one may observe, during the testing
(evaluation) phase of the PSECMAC trading system, the currency
futures are trading at a price generally (for a majority of the
evaluation period) above the support price of $158 and below
$164. Hence, the options with an exercise price of $158, $159 and
$160 are having high moneyness value (i.e. the options are in-the-
money). The high moneyness of these options, in turn, reduce the
profitability of the arbitrage opportunities on these options. On
the other hand, more profitable arbitrage opportunities exist for
the options with an exercise price of $164 and $170. This is due to
the fluctuations and the continued upward trend of the futures
price, which would likely diversify the market opinions and the
trading decisions of the option investors. This leads to the
execution of many profitable arbitrage trading by the PSECMAC
option trading system as shown by the results in Table 5.

The trading performance of the proposed PSECMAC-based
arbitrage trading system was subsequently benchmarked against
a baseline BS-based option trading system as well as two trading
strategies based on a simple buy-and-hold trading scenario. The
BS-based option trading system is constructed by replacing the
PSECMAC option-pricing model in the trading framework of Fig. 3.
A buy-and-hold trading system, on the other hand, tries to
emulate the behavior of a buy-and-hold option trader, who simply
buys in the options at the start of the simulation and squares-off
his position at the end of the simulation period. Two buy-and-
hold trading strategies are examined in this study: (1) buy-and-
hold strategy (BHS); and (2) buy-and-hold strategy with hedging
(BHSH). The only difference between these two strategies is the
use of hedging in BHSH to offset the risks involved in buying and
adopting an open position on the options. The benchmarking
results are tabulated in Table 6. All the benchmarked trading
systems square-off their position at the end of the simulation
period.

From Table 6, one can observe that the BS arbitrage trading
system reported the poorest trading performances as compared to
the rest of the benchmarked systems. The inaccuracy of the
computed fair valuations of the traded options by the BS arbitrage
trading system resulted in a negative overall ROI of —14.13%. This
further demonstrated the significant impact of the systematic
pricing errors on the performance of the BS parametric option-
pricing model. The BHS trading system, on the other hand,
achieved the best trading performances with an overall ROI of
207.36%. However, BHS employs a risky trading strategy due to the
fact that the trader does not hedge his trading positions and
therefore stands to lose all his capital if the market is not in his
favor. In this study, the high ROI of the BHS trading system may be
attributed to the continued upward trend of the futures price

Table 6

during the trading period (see Fig. 4). This leads to a major
appreciation in the values of the options with lower strike prices
(e.g. options with a strike price of $158, $159 and $160), as
reflected in the high ROI values of these traded options.
Conversely, options with higher strike prices result in a lower or
even negative ROI, as in the case of the options with a strike price
of $170. This clearly demonstrated the speculative and hazardous
nature of this trading strategy. The BHSH trading system, on the
other hand, is explored in this study to provide a fairer
comparison to the PSECMAC and BS-based trading systems that
perform hedging. The BHSH trading system buys options at the
start of the simulation and hedge its trading position by short-
selling the currency futures, and finally squares-off its trading
position at the end of the simulation period with no further
trading performed in-between the two trades. Although BHSH
hedges its trading position at the start of the simulation, this
trading strategy is almost as risky as the BHS trading strategy. This
is due to the fact that BSHS does not perform dynamic hedging of
the traded options. Therefore, any big fluctuations of the futures
price in between the trading period may lead to a substantial
financial loss. Similar to the BHS system, the high ROI values
achieved by the BHSH trading system (ROI =37.62%) in this
study is because of the general up-trend of the futures price.
However, in the real world trading market, this scenario cannot be
assumed to be true as the general market is festered with random
fluctuations.

Meanwhile, the PSECMAC-based option trading system out-
performed its BS-based counterpart by generating an overall ROI
of 7.94%. Although this ROI value is less than those of the BHS
and BHSH systems, the PSECMAC-based option trading system
produces this return via a relatively risk-free investment portfolio.
This is demonstrated by the results in Table 6, where the
PSECMAC-based option trading system achieved a positive return
of investment on all the five traded options. This performance is in
stark contrast to the two buy-and-hold trading strategies, which
obtained negative returns on some of the traded options even in a
favorable market condition such as in this study. In addition, the
rate of return achieved by the PSECMAC option trading system is
deemed to be highly encouraging given the risk-free nature of the
investment portfolio constructed and when compared against
other risk-free investments available during the same time period.
For example, according to the US Federal Reserve Board, the
3-months compounding interest rate of the US Treasury Bill is
0.93% on 30th September 2003, while the 3-month fixed deposit
interest rate in Singapore is only 0.25% on 3rd October 2003
according to the financial data provided by the Development Bank
of Singapore (DBS).

Comparison of arbitrage performances by the proposed PSECMAC-based arbitrage trading system (PSECMAC), the BS-based arbitrage trading system (Black-Scholes),
simple buy-and-hold strategy (BHS) and buy-and-hold strategy with hedging (BHSH)

Option strike PSECMAC Black-Scholes BHS BHSH
price ($)
Total capital Absolute Total capital Absolute Total capital Absolute Total capital Absolute
outlay ($) ROI ($) outlay ($) ROI ($) outlay ($) ROI ($) outlay ($) ROI ($)
158 143300 7964.80 5900 —4820 1740 6400 1740 4169.70
159 50940 4228.60 8300 —3300 1840 5300 1840 974.26
160 30820 1809.30 4100 1620 1760 3380 1760 -2213
164 20560 4759.60 7300 3100 1600 540 1600 —1286
170 5560 1175.20 1720 —460 400 —400 400 —1074.30
Total 251180 19937.5 27320 —3860 7340 15220 7340 2761.53
ROI (%) 7.94 -14.13 207.36 37.62
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5. Conclusions

This paper proposes the use of a brain-inspired cerebellar
associative learning memory structure named PSECMAC to
perform non-parametric option pricing of American style call
options on the British pound (GBP) vs. US dollar (USD) currency
futures. The PSECMAC-based option-pricing system constitutes a
local learning approach to the approximation of the associative
characteristics between the option price and its influencing
factors. Evaluation results have demonstrated that the modeling
capabilities of the proposed pricing system exceed those of the
neural fuzzy system-based models, as well as the well established
CMAC network. The associative structure of the PSECMAC network
also enables discrete pricing rules to be extracted from the pricing
system. Subsequently, the PSECMAC-based option-pricing model
is employed in a mis-priced option arbitrage trading system. In
this study, the performance of the PSECMAC option trading
system is benchmarked against the Black-Scholes option trading
system as well as two other systems based on the simple buy-
and-hold trading strategy. Simulation results on the various
options with different strike prices demonstrated that the
PSECMAC-based mis-priced arbitrage trading system is able to
construct risk-free investment portfolios with an encouraging rate
of return on investment. Future studies will attempt to incorpo-
rate other external factors such as transaction costs, as well as to
extend the PSECMAC-based arbitrage trading system to support
the dynamic generation of trading rules.

Appendix A. The PSECMAC network learning process

The proposed PSECMAC network employs a two-phased
learning process, namely: structural learning and parameter
tuning. The objective of the structural learning phase is to create
the PSECMAC network’s associative structure by computing the
quantization decision functions for each input dimension. Subse-
quently, the input to output associative information of the
training data samples are learnt by adapting the memory contents
of the PSECMAC network in the parameter tuning phase. This
appendix describes the operations involved in the structural
learning and parameter tuning process of the PSECMAC network.

A.1. Structural learning of PSECMAC

The initial step in the PSECMAC structural learning phase is to
identify the regions of the I/O space with high data densities.
Subsequently, more memory cells (i.e. a finer network output
granularity) are assigned to these regions to emulate the
experience-driven dendritic aborization phenomenon observed
in the cerebellar learning process during skill acquisition
[31-33,20]. Analogical to the repeated exposures of the learning
episodes during skill acquisition, these identified regions of the
I/0 space contain a large amount of training data points that
coexisted in close proximity. The PSECMAC memory allocation
and non-uniform quantization process is performed individually
for each input dimension and consisted of several steps: (1) the
identification of the data density clusters; (2) the allocation of the
PSECMAC memory cells based on the computed density profile;
and (3) the derivation of the respective PSECMAC quantization
decision functions.

A.1.1. The computation of data density clusters

In the proposed PSECMAC network, significant data clusters
supporting the inherent organization of the training dataset are
first identified via the Pseudo Self-Evolving Cerebellar (PSEC) [8]

clustering algorithm through an analysis of the density distribu-
tion of the training data points along each input dimension. The
PSEC algorithm is a density-based clustering algorithm which
synergizes the merits of the incremental learning procedure of
the learning vector quantization (LVQ) [34] technique with the
effectiveness of the density-based partitioning method of the
DBSCAN algorithm [17]. This clustering algorithm is inspired by
the biological development of the human brain where neural cell
death plays an integral part in the refinement process of the
brain’s neuronal organization [8]. Neurophysiological studies have
established that there are two overlapping stages in the develop-
ment of the human brain [27]. The first stage of this development
process encompasses the formation of the basic architecture of
the brain system, in which coarse connection patterns emerge as a
result of the genesis of the brain cells during prenatal develop-
ment. Subsequently, in the second stage of the brain’s develop-
ment, the initial architecture is refined and extraneous synaptic
connections are pruned throughout an individual’s life-span via
exposures to various activity-dependent experiences. These two
stages of the human brain adaptation process are functionally
emulated by the PSEC clustering algorithm.

The proposed PSECMAC network employs a modified PSEC
(MPSEC) clustering algorithm to identify the centers of the density
clusters along each input dimension of the training data space. A
density cluster is defined as a cluster identified from the data
density profile computed with the MPSEC algorithm. Each density
cluster is associated with a cluster center, which denotes the point
of highest data density in the cluster. The MPSEC algorithm
commences with an initial set of regularly spaced density clusters,
with the mid points of these initial density clusters defined as the
respective cluster centers. This initial set of clusters is incremen-
tally evolved to capture the data density profile along each input
dimension to derive a final set of density clusters. The LVQ
iterative algorithm is subsequently employed to refine the
positions of the cluster centers in this final set of density clusters.

Let J and L denotes the total number of input and output
dimensions for a given dataset, respectively. Assume that a

training dataset of U = {(Xy,Y1), X2, Y2),....,(Xs, Ys), ..., (Xs, Ys)}
is used to train the PSECMAC network, where X=
[Xs1 Xs2 --- Xs]" denotes the sth input training vector, and Y, =
Ws1 V52 -+ Js.0" denotes the corresponding expected output
target vector of the PSECMAC network. Let t denotes the

clustering iteration in MPSEC and C(” {C(?,C](TZ),...,CJ(’,;,...,

C(T)m} denotes the set of density clusters along the jth input

M

dimension at the tth iteration, where n(”ls the corresponding
total number of density clusters. Let C(. D denotes the initial set of

density clusters for the MPSEC algorithm and n( D be the number

of these regularly spaced density clusters along the jth input
dimension. For each input dimension je {1--.J}, the MPSEC
clustering algorithm is briefly outlined as follows:

Step 1: Initialize the clustering parameters. An initial number of
density clusters n‘c J‘), together with a pseudo-potential threshold
B, a clustering termination criterion ¢ and the LVQ learning
constant o, are predefined prior to the start of MPSEC clustering
iteration.

Step 2: Construct the initial set of density clusters. The initial set

of density clusters C( D is subsequently constructed with ne; D
regularly spaced clusters such that ;- b {C‘]“,Cj‘z”,...,cj‘n”,

C( '1),)} Each density cluster Cf;) is associated with a cluster
center Pj“n) and a density value V};. In the initial set of density

clusters €~V the cluster center P{," is assigned to be the
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. . . . (-1
mid-point of the corresponding density cluster Cj,n) and the

density value V{," is initialized to zero. This step emulates the
formation of the initial brain system, in which extraneous
connection patterns emerge as a result of the overproduction of
neurons during the prenatal brain development phase.

Step 3: Compute the initial cluster density values. MPSEC
performs structural learning by executing a one-pass learning of
the density values V;;” to obtain a density distribution of the
training data along the jth input dimension.

Step 4: Evolve the initial set of density cluster. For each input
dimension, the initial set of density clusters C](.’” is evolved to
capture the inherent data density profile by identifying all the local
maxima in the set of computed density values Vj(.;]l’. This step
emulates the competitive neuronal selection process in human brain
development, whereby neurons with high tropic factors are
identified as the winning neurons and the remaining extraneous
neurons are pruned to create a more refined structure of synaptic
connections. The clusters in the initial set of density clusters C{™"
whose density values form prominent convex density peaks in the
computed density distribution of Step 3 are included in the new set
of density clusters C;O). The rest of the density clusters are removed
(pruned). The clusters in the new set of density clusters C}O) are
therefore analogous to the surviving neurons with high tropic factors
in the brain neuronal selection process.

Step 5: Incremental learning of cluster centers. The cluster
centers P}f:f of the new set of density clusters C}O’ are subse-
quently refined to derive the accurate positioning of the density-
induced cluster centers. The incremental learning of the cluster
centers is performed iteratively using the LVQ algorithm (i.e.
T ={1---Tmax}), resulting in the final set of density clusters C](.Te"d),

where 7t.,q denotes the last LVQ iteration performed and
1< Tend < Tmax-

Step 6: Compute the resultant density profile. A one-pass learning
of the density values V{ in the final set of density clusters C{%’
is performed to derive the density values at the final cluster
centers P}f;““). Finally, for each density cluster Cj(.f;"“) in C;TE““), the

i (Tena) (Tend)
left and right cluster boundary Ljfn 4) and ijn ) are defined as the

mid-point between the cluster center Pj‘.f;"d’ and the cluster centers
of its corresponding left and right neighbors.

Fig. 5 illustrates the mechanism of the MPSEC clustering
algorithm. Essentially, MPSEC computes a set of density-induced
clusters, whose centers denote the highest density points in the
respective clusters. The boundary between any two neighboring
clusters is assumed to be at the mid-point of the two respective
cluster centers.

A.1.2. The PSECMAC memory allocation process

In the proposed PSECMAC network, the number of memory
cells allocated to a density cluster is proportional to the normal-
ized density value of the corresponding cluster center. Let Mj
denotes the total number of user predefined memory cells in the
jth input dimension. Then for each density cluster Cj;¢" in Cj™,
the number of memory cells M;, allocated to this cluster is
computed as

VY Tena)

R Jn VI

Mia = [ )
n’e(l---ng’?“”)) Jn

where M;, is the number of memory cells allocated to cluster

(Tend) P : : (Tend) ; ()
ijn ) in the jth input dimension, ijn ) js the density value of ijn,
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Fig. 5. A sample output of the MPSEC clustering technique.
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and n?j"‘” denotes the total number of computed density clusters
in the jth input dimension.

A.1.3. The PSECMAC quantization decision functions

For the proposed PSECMAC network, a non-linear assignment
scheme is introduced for the computation of the quantization
decision functions to vary the quantization step sizes of the
memory cells of the identified density clusters. In PSECMAC, the
memory cells allocated to an arbitrary cluster C](.f;“d) is equally
distributed to the left and right side of the cluster center (i.e. the
left and right subregions). In each of the two subregions, the
quantization point of each memory cell is logarithmically assigned
with respect to the cluster center. The quantization point of a
memory cell is defined as the midpoint of the memory cell. The
result of this computation is illustrated in Fig. 6, which depicts the
adaptively quantized memory cells inside a cluster. Computation-
ally, the center of each density-induced cluster constitutes the
finest data granularity. As a memory cell moves away from the
cluster center, its quantization step size increases in response to a
lower density of the observed training data.

In this work, a logarithmic quantization technique (commonly
referred to as p-law quantization [43]) is employed to manage the
distribution of the memory cells in a surviving cluster. The degree
of non-linearity in the quantization step sizes of the memory cells
is governed by a parameter pu Subsequently, a quantization
mapping function Q-] — {Qj,lst,Zw--an,Mj} is constructed to
define the quantization of the memory cells in the jth input
dimension of the PSECMAC network, where Q;; 1 € {1 ---Mj},
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denotes the nith quantization point. The derivation of the
quantization function Q,[-] is described as follows:

(a) Initialize =1 (i.e. first quantization point) and define the
parameter u for the non-linear distribution of the memory cells.
(b) Forn=1- n“e“‘“ Let M;, (computed from Eq. (11)) denotes
the number of] memory cells allocated to a density cluster
C(T*“‘” in the jth input dimension and k be the index to the
memory cells in the density cluster C{. Fork =1---M;p,
compute the quantization point for the kth memory cell in

Cj(frf"d’ such that:
e IF the kth memory cell is in the left subregion (i.e.

k< [Mj,/2]) THEN:

P(Tend) _ L(Tend)
step=-2"__ I (12)

kz

pt = L% + (k — 0.5) - step (13)
Qj,ﬁ — L;:Erfnd)
u- IL(Tend) pt|
(Tend) __ ] (Fend)
Py = L)) -log | 1+ = —
" C Zhn D7) (14)
log(1 + 1)

where P and L=¥ are the center and the left
boundary of the den51ty cluster C(Tﬂ"d’, respectively.
Update the index 1 =71 + 1.

e ELSE IF M;, is odd and the kth memory cell is assigned to
the cluster center (i.e. |[M;, /2| <k<[M;,/2]+ 1) THEN:

Qj = Pien (15)

Update the index of the current decision point 1 =7+ 1.
o ELSE IF the kth memory cell is in the right subregion (i.e.
k>|M;,/2]) THEN:

R(Tend) P(Tend)
step=-21 U 16
p \\Mj,nJ (16)
2
M
pt= Pj(.f;“d) + (k - { ZJHJ - O.5> - step (17)
Qj o R(Tend)
- |pt _ R(_Tend)l
(Tend) (Tend) J.n
(Rj,n d) _ Pj,n a7y . log <] + (R<Te"d) — P(re“d))
REL R (18)
log(1 + )

where R(TE““) is the right boundary of the density cluster
C(Te"d) Update the index i =7+ 1.

Note that the second condition (Eq. (15)) is met only when
M;, is odd. Otherwise, the number of allocated memory cells
to the left and right subregions of cluster C]‘f;"d) is equal to
M;jn/2].

After the completion of this placement process, the quantiza-
tion mapping function Q;[ ] is defined for the jth input dimension.
The computed quantization decision points of each input dimen-
sion subsequently form the memory axes of the proposed
PSECMAC network and are used to define its overall computing
structure. The intersections of these memory axes denote the

computing cells of the PSECMAC network and define the I/O
associative space. The training of this PSECMAC computing
structure is described in the following subsection.

A.2. Parameter tuning of PSECMAC

This section describes the parameter tuning phase of the
proposed PSECMAC network. Parameter tuning is performed for
the PSECMAC network to learn the mapping of the input-output
associative patterns from the training data tuples. To emulate the
neighborhood learning phenomenon of the human cerebellum
[52,27], the PSECMAC network adopts a weighted Gaussian
neighborhood update (WGNU) process. WGNU combines the
Widrow-Hoff training algorithm [55] with the Gaussian weight-
ing function defined in Eq. (3). The objective of this neighborhood
update scheme is to distribute the effect of learning to increase
the generalization capability of the PSECMAC network.

For an arbitrary input-output training data tuple (X, Y;), the
PSECMAC learning process is mathematically described as
follows:

1. Compute the PSECMAC output Y? at the ith training iteration:

> ke, (8 - WO(K))
Zkel(sgk

where K; is the set of activated computing cells corresponding
to the input X, g is the Gaussian weighting factor of the kth
activated memory (computing) cell, W®k) denotes the
memory content of the kth activated memory cell at the ith
training iteration, and Y? is the output of the PSECMAC
network to the input X; at the ith iteration.

2. Compute the network output error at the ith iteration:

YO = (19)

Errd = Y, — YO 20
S S

where Errl’ denotes the output error of the PSECMAC network

to the input X; at the ith iteration, and Y; is the desired (target)

output of the PSECMAC network in response to the input X;.
3. Update the stored network weights:

WHD (k) = WOk) + AW (k),  k e K (21)

A\N“)(k)zoczkgl( — 8k g keK, (22)

local error for cell k

where o is the learning constant, and W®() denotes the
content (weight) of the kth activated cell in the neighborhood
K in PSECMAC in response to the input stimulus X; at the ith
training iteration.

The PSECMAC memory learning phase commences with the
computation of the network output corresponding to the input
stimulus X;. A learning error is computed based on the derived
PSECMAC output and the target response. This error is subse-
quently distributed to all the activated computing (memory) cells
based on the Gaussian weighting factors. The local errors are then
used to update the memory contents of the activated cells.
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