
Paper No. 1386

1

On the Implementation of Efficient Channel
Filters for Wideband Receivers by Optimizing
Common Subexpression Elimination Methods

A. P. Vinod, Member, IEEE and Edmund M-K.Lai, Senior Member, IEEE

Abstract—The most computationally intensive part of a wideband
receiver is the channelizer, which extracts individual radio
channels from the output of the ADC. The computational
complexity of Linear Phase Finite Impulse Response (LPFIR)
filters employed in the channelizer is dominated by the number of
adders (subtractors) used in the implementation of the
multipliers. Common Subexpression Elimination (CSE) has been
proposed as an efficient method to minimize the number of adders
in LPFIR filters. In this paper, two methods are proposed to
efficiently implement the channel filters in a wideband receiver by
optimizing CSE. We exploit the fact that significant amount of
redundant multiplications exist in the filter bank channelizer as it
extracts multiple narrowband channels from the wideband signal.
By forming three and four nonzero-bit super-subexpression
utilizing redundant identical shifts that exist between a two-
nonzero-bit Common Subexpression (CS) and a third nonzero bit,
or between two nonzero-bit CS, we show that the number of
adders to implement the channel filters can be reduced
considerably. Furthermore, the complexity of adders is analyzed
and design examples of the channel filters employed in the Digital
Advanced Mobile Phone System (D-AMPS) and the Personal
Digital Cellular (PDC) channelizers show that the proposed
methods offer considerable reduction in full adders when
compared to conventional CSE methods.

Index Terms— Adder complexity, Channelizer, Common
subexpression elimination, Linear phase finite impulse response
filters.

I. INTRODUCTION
IGITAL filters employed in the channelizer of a wideband
receiver, which extracts several narrowband channels
from a wideband signal, present a hardware design

challenge [1]. LPFIR filters implemented with high-speed and
low-power are required in channelizers. Although
programmable filters based on digital signal processing cores
offer the advantage of flexibility, they are not suitable for
wideband receiver applications that demand high throughput
and low-power consumption. Therefore, application specific
digital filters are frequently adopted to meet the constraints of
performance and power consumption in such applications.

However, these filters employ a large number of multipliers
that lead to excessive area and power consumption even if they
are implemented in full custom integrated circuits. Therefore,
the problem of implementing digital filters with small area and
low-power consumption has received a great attention in the
last decade. Early works have focused on replacing
multiplications by decomposing them into simple operations
such as addition, subtraction and shifts. Hence, the algorithms
that minimize the complexity of multiplication in LPFIR filters
focus on reducing the number of adders needed to implement
the multipliers.

Manuscript received June 27, 2003.
The authors are with the School of Computer Engineering, Nanyang

Technological University, Singapore 639798 (phone: 65-67906258; fax:
65-67926559; e-mail: asvinod@ntu.edu.sg; asmklai@ntu.edu.sg).

The number of adders required to implement a multiplier is
proportional to the number of nonzero digits present in the filter
coefficients. To reduce the complexity, the coefficients can be
restricted to powers-of-two (binary) or expressed in Canonic
Signed Digit (CSD) representation. On the average, the CSD
representation offers a reduction of 33% of nonzero digits
compared with the binary representation. Multiple Constant
Multiplication (MCM) is a transformation closely related to the
widely used substitution of multiplications with constants by
shifts and additions. While the latter considers multiplication of
only one constant at a time, the MCM considers multiplication
of one variable with multiple constants. CSE tackles the MCM
problem by minimizing the number of additions through
extracting common parts among the constants represented in
CSD [2]-[10]. In general, these methods eliminate redundant
computations in multiplier blocks by employing the most
common subexpressions consisting of two nonzero-bits. In this
paper, we show that conventional HCSE and VCSE methods
using two nonzero-bit CS can be optimized to form three and
four nonzero-bit Super-Subexpression (SS) by exploiting
redundant identical shifts among them. The proposed
techniques offer considerable reduction in implementing
LPFIR filters employed in the channelizer of a wideband
receiver where SS among the coefficients of several filters are
utilized.

The rest of this paper is organized as follows. In section 2,
the HCSE algorithm used to implement MCM in LPFIR filters
is reviewed and its application in channelizers is discussed.
The complexity of implementation is analyzed in terms of full
adders required for each adder. A Horizontal
Super-Subexpression Elimination (HSSE) algorithm by
optimizing the HCSE method is presented in section 3. In
section 4, a Vertical Super-Subexpression Elimination (VSSE)
is presented by optimizing the VCSE algorithm. We relate our

D

Paper No. 1386

2

method to high level synthesis methods in section 5. The
implementation of channel filters for the D-AMPS and the PDC
cellular standards using proposed HSSE and VSSE techniques
are illustrated in section 6. We also provide comparison of
hardware reduction achieved employing the proposed methods
with that in conventional CSE methods. Section 7 provides our
conclusions.

II. COMMON SUBEXPRESSION ELIMINATION

A. The HCSE Approach
The idea of HCSE can be demonstrated on a LPFIR filter

design example shown in Fig. 1. The function of the Multiplier
Block (MB) shown in Fig. 1 is to compute the sum of partial
products obtained when the input signal is convolved with
the filter coefficients

)(x
).(ih

Definition 1 (Multiplier block adders): The adders used in the
MB to compute the sum of partial products formed when x is
multiplied with are called Multiplier Block Adders (MBA). ih

Definition 2 (Structural adders): The inter-tap adders used to
compute the sum of convolved signals (shown between each
delay stage) are called Structural Adders (SA). The number of
structural adders in a filter structure is same as that of the
number of distinct delay stages.

If and represent the numbers of MBA and SA
respectively, the total number of adders required to implement
the filter, is

mbaT saT

),(aT
 (1) sambaa TTT +=

The coefficients are represented using CSD. The number
 is said to be in CSD format if each is 0, +1,

or –1 and no two consecutive are nonzero [3]. In
conventional implementation using shifts and adds, the output
of the filter can be expressed as:

1210 −Nbbbb ib

ib

 and ,861 >>+>>=− xxyk
 (2) 8631 >>+>>+>>+>>= xxxxyk

where x is the input signal and ‘>>’ represents shift right
operation. (The output is obtained from i.e.,

 which is represented as). In
Fig. 1, the numbers adjacent to the data path represent the
number of bit-wise right shifts. It requires four adders (MBA)
to obtain the output expression (2) as shown in Fig. 1(b). The
goal of CSE is to identify multiple occurrences of identical bit
patterns that are present in the coefficient set. Since the
computation of multiple identical expressions needs to be
implemented only once, the resources necessary for these
operations can be shared. The pattern [1 0 1] in the example in
Fig. 1 is present thrice, which can be expressed as a Horizontal
Common Subexpression (HCS),

1−ky),.(1−khx

),22.(86 −− +x 86 >>+>> xx

 (3) 21 >>+= xxx
Using the HCS (3), the output of the filter can be expressed

as
 and (4) 611 >>=− xyk 61 11 >>+>>= xxyk

Hence, an optimized structure shown in Fig. 1(c) that requires
two adders less than the original structure can be implemented.

Thus, using HCSE, multiple occurrences of identical bit
patterns are eliminated by forming HCS, and the number of
adders required to implement the filter structure is minimized.

B. MCM in Filter Bank Channelizers
One of the objectives of this paper is to apply the CSE

algorithm to filter bank channelizers (FBC). Channelization in
wideband receivers involves the extraction of multiple
narrowband channels from a wideband signal using several
bandpass filters, called channel filters. As shown in Fig. 2, the
output of each bandpass filter is followed by a mixer, decimator
and a sample rate converter before the signal is fed to baseband
processing.

The complexity of the FBC is dominated by the complexity
of the channel filters since they operate at the highest sampling
rate in the system. The channel filters must meet the
high-speed/low-power requirements and need sufficiently large
number of taps to meet the adjacent channel interference
specifications. Efficient realization methods of channel filters
are hardly discussed in the literature. We extend the
conventional MCM problem proposed for individual LPFIR
filters to FBC for multiplication of one variable (wideband
signal) with multiple constants (coefficients) of a bank of
bandpass filters. The idea is illustrated using Fig. 3. The most
frequently occurring CS among the coefficients of M channel
filters are identified to form a multiplier block. Further
optimization of the multiplier block can be achieved using the
proposed HSSE and VSSE methods. Exploiting the fact that the
amount of CS grows linearly with the number of channels to be
extracted, the CSE optimization techniques presented in
sections 3 and 4 are applied to efficiently implement the
channel filters.

C. Analysis of the HCSE Method
In this section, we discuss the implementation of a LPFIR

filter using HCSE and provide an analysis of the issues related
to its complexity. An 8-tap LPFIR filter whose coefficients in
16-bit CSD form in Fig. 4 is used as an example to illustrate the
HCSE method.

It is well known that LPFIR filters are symmetric since its
impulse response (which resembles a sinc function) satisfies
the condition:

)1()(nNhnh −−= (5)
where N is the number of taps (filter length). Thus, only extra
⎣ ⎦2/N structural adders are required (floor value considered if
N is odd) to obtain the filter output corresponding to the
symmetric part. If is the number of nonzero bits in the
symmetric half coefficient set represented in CSD, it requires

bN

1−bN adders to obtain
⎣ ⎦

∑
−

=

12/

0
. .

N

i
ihx Therefore, the number of

adders required to implement the filter is given by (6):
 ⎣ 2/)1(NNb + ⎦− (6)

In this example, ,29=bN and Hence thirty-two
adders would be required to implement the filter without using
HCSE. The 2-bit HCS, [1 0 1] and [1 0 -1], shown inside the
rectangles in Fig. 4 are given by:

.8=N

Paper No. 1386

3

 and (7) 2112 >>+= xxx 2113 >>−= xxx
where is the input signal. If is the total number of 2-bit
HCS in the symmetric half coefficient set and is the
number of adders required for distinct HCS, the reduction of
adders achieved using HCSE is Hence the number
of adders required to implement the filter using HCSE can be
obtained by modifying (6):

1x hsN

asN

.ashs NN −

 (8) ⎣ ⎦)(2/)1(ashsb NNNN −−+−
In this case and According to (8),
twenty-one adders are required to implement the filter. This
offers a reduction of 34% over direct implementation without
HCSE.

,13=hsN .2=asN

D. Adder Complexity
All of the CSE techniques presented in literature discuss the

reduction of hardware at the adder level to show the efficiency
of those methods. However, the complexity of each adder is
significant in practical implementations with
high-speed/low-power requirements. In this section, we
analyze the complexity of the adders, since it determines the
actual cost of implementation. An adder that adds two n-bit
numbers would require n full adders (FA) to compute the sum.
We consider ripple carry adders (RCA) through out the paper
on account of its low power consumption. Even if carry
look-ahead adders (CLA) are considered on account of their
improved speed, the full adder requirement of CLA is identical
to that of RCA (the difference is that CLA will have an extra
carry look-ahead logic to reduce the delay at the cost of more
power consumption). The area, power, and speed of an adder
depend on the value of n, which is called the adder width.
Efforts to optimize these parameters should focus on
minimizing the adder width, i.e., the number of FA. Firstly, we
derive the expressions for analyzing the complexity of adders
in HCSE optimized filters and then compute the number of
FA’s required to implement them.

Definition 3 (Nonzero terms): The subexpressions and the
nonzero bits other than the subexpressions of a coefficient are
termed as its nonzero terms. For example, the two nonzero
terms of a coefficient represented in CSD, (0.1010001), are [1
0 1] (CS) and 1 (least significant bit).

Definition 4 (Operands): The input signal shifted
corresponding to the positional weights of the nonzero terms of
the coefficient form the operands of the adders. For instance, in
the case of the coefficient, (0.1010001), the operands are

 and where is the input and
 is the CS, [1 0 1]. Note that the number of

nonzero terms and operands are identical. The number of
adders required to compute the output for a coefficient is equal
to one less than the number of operands.

12 >>x ,71 >>x 1x
2112 >>+= xxx

Definition 5 (Span): The span is analogous to the wordlength,
which is equal to the number of bits of an operand. Considering
the above example, if is an 8-bit quantized signal, the span
of the operand, is eleven and that of is
fifteen.

1x
,12 >>x 71 >>x

Definition 6 (adder-step): One addition stage in a maximal
path of decomposed multiplications is called the adder-step. A

multiplication can have different adder-steps, depending on the
structure of multiplication.

We employ the high-speed tree structure shown in Fig. 5 to
implement the MB. Using the binary tree in Fig. 5, the number
of adder-steps, required to compute the sum of partial
products of n operands (nonzero bits of the coefficient) is
given by From this, we obtain

),(nA

.2 nn ≥A

 ⎥
⎥

⎤
⎢
⎢

⎡
=

)2(log
)(log

10

10 n
An (9)

The obtained in (9) is the lowest number of adder-steps
(lower bound) possible to achieve in an addition structure since
the tree structure considered in our method performs parallel
addition. Therefore, our method always results in a minimum
adder-step implementation and hence has the lowest delay.

nA

Case I - Odd number of operands:
Consider the coefficient If

represents the input signal, the output can be expressed as
).1001010101.0()(=nh 1x

 841)(221 >>+>>+>>= xxxny (10)
where 2112 >>+= xxx is the HCS corresponding to the bit
pattern [1 0 1]. In this case, the number of operands is three
(odd) and hence two adders are required to compute If

 is represented using 8 bits, the minimum span (neglecting
the carry part) of is 10 and those of the first, the second, and
the third operands of (10) are 9, 14, and 18 respectively. For an
adder whose operands have spans and such that

 the adder width is There are two possible ways to
implement (10) as shown in Fig. 6(a) and (b). In the
implementation shown in Fig. 6(a), both adders, and
have the maximum width of 18. In the case of Fig. 6(b), only

 has the maximum width, 18, while the width of is 14.
Hence the implementation of Fig. 6(b) requires fewer FA’s than
that in Fig. 6(a). Note that the number of adder-steps are
identical (two) in Fig. 6(a) and 6(b). Thus, using the minimum
FA scheme of Fig. 6(b), addition of three operands would
require

).(ny

1x

2x

1s 2s
,12 ss > .2s

1A ,2A

2A 1A

)(32 ss + FA’s, where and represent the
spans of the operands in (10) such that

 , , 21 ss 3s
.123 sss >>

Filter coefficients in CSD form with wordlengths up to
24-bits are considered here. Since no adjacent bits in CSD are
one’s, a 24-bit CSD number can have a maximum of 12
nonzero bits and hence at the most twelve nonzero operands
could occur in a multiplication. Consider the filter tap shown in
Fig. 7 that has an odd number of operands (nine), whose spans
are indicated as The shown adjacent to the adders
represent the adder widths. The total number of FA’s required
to implement this filter tap is given by the sum of the widths of
all adders, i.e.,

.is ssi '

.32 98642 sssss ++++
By extending this minimum adder-step structure to 24-bit

CSD coefficients, it can be shown that the number of FA’s,
 required to compute the output corresponding to a

coefficient with n operands can be determined using the
expression:

,0N

Paper No. 1386

4

 ++++++++= 978756534312 322 sassassassasNo
 1211910 22 ssas ++ (11)
where is the span of the nth operand and are equal to
zero except For instance, if 7 operands are present,
using (11) we get Expression (11)
can be represented in matrix form for easier computation of
FA’s for any coefficient with n operands since n is
odd) as

ns s'ia
.12 =−na

.22 76420 ssssN +++=

,11(≤n

 (12) ⎡ ⎤ SnUN
oH .) 2/ (0 =

where represents the elements of the ⎡ ⎤) (kU
oH ⎡ ⎤k -th row

of the matrix and is the span vector, S

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2 1 0 3 0 1 0 2 0 1
1 3 0 1 0 2 0 1

2 1 0 2 0 1
1 2 0 1

1 1
1

oHU and .

.

.

.
3

2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ns

s
s

S

Case II - Even number of operands:
Consider the coefficient, The

output can be expressed as
).011001010101.0()(=nh

 (13) 12841)(1221 >>+>>+>>+>>= xxxxny
In this case, the number of operands is four (even) and hence
three adders are required to compute The possible
addition sequences to obtain (13) are shown in Fig. 8(a) and
(b). If the spans of the operands of (13) are and
respectively, the implementation in Fig. 8(a) would require

 FA’s. On the other hand, it
would require FA’s to realize the
scheme in Fig. 8(b), which is larger than the former. However,
it should be noted that implementation in Fig. 8(b) requires one
less adder-step than that of Fig. 8(a) and hence its critical path
is shorter. On account of its minimum critical path, we use the
structure in Fig. 8 (b) in our method, though its costs a few
additional FA’s. The addition scheme in Fig. 8(b) can be
extended to 24-bit CSD to show that the number of FA’s,
required to compute the output corresponding to a coefficient
with n operands is given by:

).(ny

321 ,, sss 4s

52201814432 =++=++ sss
54)20(2142 42 =+=+ ss

,eN

)12(≤n
 (14) 1210186042 332 sscsscssNe +++++=

where and
⎩
⎨
⎧

≠
=

≡
6for ,1
6for ,2

0 n
n

c .
10for ,1
10for ,2

1
⎩
⎨
⎧

≠
=

≡
n
n

c

For example, if six operands are present (i.e., 6=n), it
would require FA’s. Using the matrix form,
the number of FA’s for computing the output of any given
coefficient with n operands is given by:

)22(642 sss ++

 (15) SnUN
eHe .) 2/ (=

where S is the span vector as in (12), and represents

the elements of the -th row of the matrix,

) (kU
eH

k

 =
eHU .

3 0 1 0 3 0 1 0 2 0 1
2 0 3 0 1 0 2 0 1

 3 0 1 0 2 0 1
2 0 2 0 1

 2 0 1
 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

E. Full Adder Requirements in HCSE Method
The number of full adders (MBA) required to compute the

partial products for the filter in Fig. 4 can be determined using
(12) and (15) for odd and even number of operands
respectively. We consider the first two coefficients in Fig. 4 for
illustration of FA estimation.

1) Even number of operands: Consider the coefficient,
The expression of the output, is

).0(h
),0(.)0(1 hxy =

 13851)0(3212 >>+>>+>>−>>= xxxxy (16)
where and are given by (7) and is 16-bit input
signal. Note that the spans of and are same, i.e., 18. In
(16), there are four (even) operands and spans of second
and fourth operands () are 21 and 31 respectively. The
number of FA’s for computing can be determined using
(15):

2x 3x 1x

2x 3x
)(2s

4s
)0(y

 == SnUN
eHe .)2/ (SU

eH .) 2/4 (

 (17) [] 832 . 2 0 1 42

4

3

2
=+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ss

s
s
s

2) Odd number of operands: Consider where output),1(h
)1(.)1(1 hxy = is computed by ([-k] represents a delay of k):

 +>>−+>>−−>>− 8]1[4]1[2]1[231 xxx
 16]1[12]1[12 >>−−>>− xx (18)
In this case, there is an odd number of operands (five) and

 are 22, 30, and 32 respectively. Using (12), the
number of FA’s for computing is given by

5,42 and , sss
)1(y

 ⎡ ⎤ == SnUN
oHo .) 2/ (⎡ ⎤ SU

oH .) 2/5 (

 (19) [] 1142 . 1 2 0 1 542

5

4

3

2

=++=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= sss

s
s
s
s

Using this method, the total number of FA’s required to
compute the partial products of the MBAs of the LPFIR filter in
Fig. 4 is 376. In the next section, we present an optimization
technique that minimizes the number of FA’s.

III. OPTIMIZATION OF HCSE METHOD
We observe that several 3-bit and 4-bit Horizontal

Super-Subexpressions (HSS) can be formed by exploiting
identical shifts between an HCS and a nonzero bit or between
two HCS, which will eliminate redundant computations of

Paper No. 1386

5

HCS. While implementing multiplication using shifts and adds,
if we could perform addition prior to shift, the adder width can
be minimized. Note that in CSE implementations, the adders
employed for CS have shorter widths since the shift operations
for obtaining the final partial products are performed after the
addition at the CS stage. In the proposed horizontal
super-subexpression elimination (HSSE) method, shift
operations are performed after additions at two stages - first at
the HCS stage and then at the HSS stage. Therefore the adders
at these two stages have shorter adder widths. Utilizing this
fact, we shall now show that considerable reduction of FA’s is
possible by forming HSS from HCS using the HSSE method.

A. The HSSE Method
The HSSE procedure is as follows. First, the 2-bit HCS are

extracted from the coefficient set represented in CSD. These
HCS are then examined for multiple occurrences of identical
shifts with a nonzero bit or with another HCS within the same
coefficient to form 3-bit and 4-bit HSS respectively. Consider
the example in Fig. 4, where HCS are given by (7). Note that
following multiple bit patterns can be formed:

1) The HCS [101] and –1 with a shift of one unit between
them (indicated by the connecting line, ‘a’) that occur within
the coefficient to form a 3-bit HSS, [1 0 1 0 -1]:)0(h
 (20) 4124 >>−= xxx

2) The HCS [101] and [10-1] with two shift units between

them (indicated by the connecting line, ‘b’) that occur within
the coefficient to form a 4-bit HSS, [1 0 1 0 0 1 0 -1]:)0(h

 (21)
3) The HCS [–101] and [101] with one shift unit between

5325 >>+= xxx

them (indicated by the connecting line, ‘c’) that occur within
the coefficient to form a 4-bit HSS, [-1 0 1 0 1 0 1]:)1(h
 (22) 4236 >>+−= xxx

It may be noted that several HSS in ‘shifted and delayed’
forms of (20), (21), and (22) occur in the coefficient set. For
instance, consider the HSS, [1 0 1 0 0 1 0 -1], given by (21).
The outputs corresponding to that occur in the coefficients,

 and are given by and
 respectively. Thus the output expression can be

obtained from by simple shift and delay operations. Note
that no extra adders are required to compute this expression.
However the HCSE method would require an extra adder for
each subexpression.

5x

5x
),2(),0(hh)3(h ,2]2[,8 55 >>−>> xx

9]3[5 >>−x

5x

We observe that several HSS exist in LPFIR filters,
especially in the case where the number of taps is large and the
bit precision of implementation is higher (16-bit and higher).
We have investigated several examples of LPFIR filters with
taps ranging from 100 to 1200 corresponding to different
stop-band attenuation specifications. The infinite-precision
filter coefficients were generated by the Parks-McClellan FIR
filter design program provided by the MATLAB® “remez”
function. Filter coefficients represented in CSD form for
different wordlengths of 16-bits, 20-bits and 24-bits were
considered. From the extensive examples we worked out, it has
been observed that among the possible HSS, the 3-bit

expressions [1 0 1 0 1], [1 0 1 0 –1], [-1 0 1 0 1], [-1 0 1 0 –1]
and their negated versions are the most common HSS.
Statistically, these 3-bit expressions form around 70% of all the
possible HSS. Hence they account for the major reduction of
adders in the proposed method. Employing the HSS (20), (21),
and (22), the output of the filter whose coefficients given in
Fig. 4 can be expressed as

+>>−+>>−+>>−+>>+>> 12]1[4]1[2]1[81 46154 xxxxx
+>>−+>>−+>>−+>>− 9]3[1]3[13]2[2]2[5635 xxxx
+>>−+>>−+>>−+>>− 13]5[2]5[9]4[1]4[3556 xxxx
+>>−+>>−+>>−+>>− 1]7[12]6[4]6[2]6[4461 xxxx

8]7[5 >>−x (23)
Fig. 9 shows the filter structure using the HSSE method.

Note that only seventeen adders (10 MBA and 7 SA) are
required to implement the filter, two for HCS (7), three for HSS
(20-22), and twelve for the filter output (23). It may be noted
that though seventeen additions are present in (23), using
symmetry of LPFIR filters, only twelve adders are sufficient to
compute the sum as shown in Fig. 9. This is because, the
outputs of adders, A and can be shared by
respective symmetric filter tap pairs as shown in Fig. 9. Note
that the sharing of symmetric parts is shown in Fig. 9 using the
symbol ‘@’. Thus, by sharing, we can save one adder each
corresponding to and two adders corresponding to

 and (sharing the output of results saving of two
adders, and Thus the total saving due to sharing is
five adders. Hence only twelve adders are required to obtain
(23). Therefore, the HSSE implementation requires four adders
less than the HCSE implementation. The adder-steps required
to compute the partial products in the proposed method is four,
which is the same as that of the HCSE method. Thus, both
methods have identical critical paths of four adder-steps.

,,, 986 AA

,, 1096 A

10A

, AA

7A 8A 8A
7A).8A

B. Full Adder Requirements
The number of full adders required to compute the partial

products of the filter in Fig. 9 can be determined using (12) and
(15) for odd and even number of operands respectively. Ten
adders (to) are required to compute the partial
products. Note that the adders and that compute
the HSS part have relatively short adder-width when compared
to other adders in subsequent stages. This is because the use of
HSS adders allows us to perform most of the ‘right shift’
operations after addition, which is more efficient than the usual
‘shift and add’ method. As a result, fewer FA’s are required to
compute the partial products. Thus, using the HSSE method,
only 253 FA’s are required to compute the partial products of
the MBAs of the LPFIR filter in Fig. 4. This is a reduction of
32.7% over the HCSE method. Design examples of
implementing channel filters of a wideband receiver using the
HSSE method is discussed in section 6.

1A 10A
,, 43 AA ,5A

IV. OPTIMIZATION OF VCSE METHOD
In the VCSE method [8], the fact that many vertical common

Paper No. 1386

6

subexpressions (VCS) exist in an LPFIR filter since the
adjacent coefficients have similar patterns in the MSB part is
utilized for reducing adders. In this section, we show that the
SS technique used for optimizing the HCSE method can also be
applied to the VCSE method.

Consider an 8-tap LPFIR filter whose coefficients in 16-bit
CSD form are shown in Fig. 10. In this case,

(considering symmetric half coefficients) and .22=bN 8=N
Using (6), twenty-five adders would be required to implement
the filter if VCSE is not used. The VCS, [1 -1] and [1 1],
encircled in Fig. 10 are given by:
 and (24)]1[112 −−= xxx]1[113 −+= xxx
Using these VCS, eighteen adders (12 MBA and 6 SA) are
required to implement the filter, two for the VCS (24) and
sixteen for the output. This offers a reduction of 28% over the
direct implementation without VCSE.

A. Proposed VSSE Method
The 2-bit VCS used in VCSE method can be extended to

obtain several 3-bit and 4-bit Vertical Super-Subexpressions
(VSS) by exploiting identical shifts between a VCS and a
nonzero bit or between two VCS. Consider the example in Fig.
10, where VCS are given by (24). The following multiple bit
patterns can be combined:

1) The VCS [1 –1] and [-1 1], with a shift between them
(indicated by connecting line ‘a’) that occur across the

coefficients, [,] to form a 4-bit VSS,)0(h)1(h :
1 0 1
1- 0 1
⎥
⎦

⎤
⎢
⎣

⎡
−

 (25) 2224 >>−= xxx
 2) The two VCS [1 1], with a shift between them (indicated

by connecting line ‘b’) that occur across the coefficients,

[,] to form a 4-bit VSS, :)0(h)1(h
1 0 1
1 0 1
⎥
⎦

⎤
⎢
⎣

⎡

 (26) 2335 >>+= xxx
Note that several VSS in ‘shifted and delayed’ forms of (25)

and (26) occur in the coefficient set. Employing the VSS, the
output of the filter in Fig. 10 can be expressed as

13]2[4]2[9]1[145 44554 >>−+>>−+>>−+>>+>> xxxxx
+>>−−>>−+>>−+>>− 4]4[1]4[11]3[1]3[4111 xxxx

+>>−−>>−+>>−−>>− 5]6[9]5[13]4[11]4[4541 xxxx
14]6[5 >>−x (27)

The filter structure using the VSSE method is shown in Fig.
11. Only fifteen adders are required to implement this filter,
two for VCS (24), one each for VSS (25) and (26), and eleven
for the filter output (27) after using the symmetry of
coefficients. Thus the VSSE method offers better reduction
than the VCSE method. The adder-steps in both methods are
identical (four) and hence their critical paths are the same. The
reduction of FA’s, offered by the VSSE method over the
VCSE method can be determined using the formula:

,RFA

 (28))()(
1

)(
1

iSSDiSCSFA
n

j
j

m

i
R −∑∑=

==

where is the span of a VSS, is the span of the shift
differential between the VCS of a VSS, m is the number of
distinct VSS in the symmetric half coefficient set, and is the
total number of VSS for each distinct VSS set.

SCS SSD

n

We illustrate this using the coefficients of the filter in Fig.

10. Consider the VSS, and across the

coefficients, and If the wordlength of is 16 bits,
then these VSS have spans and

,
1 0 1
1- 0 1
⎥
⎦

⎤
⎢
⎣

⎡
−

,
1 0 1
1 0 1
⎥
⎦

⎤
⎢
⎣

⎡

)0(h).1(h 1x
23716 =+ 321616 =+

respectively. The spans of the VSS, across and
is

,5x)1(h)2(h
271116 =+ and that of across and are 4x)2(h)3(h

22616 =+ and .311516 =+ Thus, the sum of spans is 135.
The spans of the shift differentials (SSD) of the VSS, and

 are 18 each. Using (28), it can be found that the proposed
VSSE method requires 99 FA’s fewer than the VCSE method,
which is a reduction of 31%.

4x
,5x

B. Compatibility Issue in Vertical Subexpression Methods
An inherent drawback of the VCSE method is that the

symmetry of LPFIR filter coefficients cannot be completely
exploited for efficient implementation of the filter. In the case
of HCSE method, since all the bits forming an HCS exist within
the coefficient, its symmetric counter- part can be easily
implemented using delays and structural adders. Thus extra
adders (MBA) are not required to compute the symmetric half
coefficients when HCSE method is used. However, the bits that
form a VCS in VCSE method occur across the coefficients and
hence the symmetry is destroyed when the bits are of opposite
sign [4]. Hence in VCSE implementations, extra adders are
required to obtain the symmetric part of the coefficients when
more than one VCS with bits of opposite sign exist. Since the
basic ideas of VCSE and VSSE methods are the same, the
limitation inherent in the former exists in the latter also.
Therefore, compatible VCS patterns have to be identified to
form a VSS. Two VCS (4-bit VSS) or a VCS and a nonzero bit
(3-bit VSS) are said to be compatible to form a VSS if its
symmetry is not affected, i.e., no extra adders are required to
compute the symmetrical part of the LPFIR filter. The signs of
the bits in VCS determine the compatibility. We use the
notation, to represent ‘sign of bit ‘b’ in defining
compatibility.

),(bs

Definition 7 (Compatible 4-bit VSS): Let and

represent the VCS that form a VSS. These VCS are compatible
if one of the following conditions is satisfied:

⎥
⎦

⎤
⎢
⎣

⎡

1

0
b
b

⎥
⎦

⎤
⎢
⎣

⎡

3

2
b
b

 (a))()(20 bsbs = and).()(31 bsbs =
 (b))()(20 bsbs ≠ and).()(31 bsbs ≠

Fig. 12(a) and Fig. 12(b) illustrate compatible 4-bit VSS
corresponding to conditions (a) and (b) respectively. The
negated versions of these bit patterns are also compatible. Note
that VCS, whose bits are related with delays up to two units,
i.e.,],2[11 −± xx are considered to form VCS in this proposed
method.

Paper No. 1386

7

Definition 8 (Compatible 3-bit VSS): Consider the VCS,

 A 3-bit VSS can be formed by combining this VCS and a

third bit, In this case, the necessary conditions for
compatibility are:

.0

1

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

b

b

.2b

(a) must have a unity delay relation with respect to
and and

2b 0b
,1b

(b)).()(10 bsbs =
Fig. 12(c) illustrates 3-bit compatible VSS patterns. Note that
the bit ‘1’ which is combined with the VCS 101 can be
anywhere in the second row. The notation ‘x’ denotes “don’t
cares” since the bits in these locations will not affect the
compatibility of VSS. Any VSS that does not satisfy the
conditions mentioned above is incompatible.

We investigated the same examples of LPFIR filters
designed using Parks-McClellan method discussed in previous
section. CSD coefficients of wordlengths 8-bits, 12-bits,
14-bits and 16-bits were considered. It has been observed that
the most common VSS are the 3-bit VSS that form around 60%
of all the VSS and hence they account for the major reduction
of adders in the VSSE method. Design examples of the HSSE
and VSSE methods are provided in section 6.

V. EXTENSION OF CSE TO HIGH LEVEL SYHTHESIS

A. High Level Synthesis Transformation
In high level synthesis, the primary goal of transformations

has been to optimize the ASIC design to reduce cost metrics
(area and power) while meeting throughput constraints [11].
The high level synthesis literature has an extensive coverage of
CSE as a powerful transformation to reduce power
consumption and area [2], [12]-[14]. Iqbal et al. [12] used CSE
within their algebraic speed-up procedure for throughput
improvement. The objective function in [12] was to reduce the
critical path. The approaches in [2], [13] and [14] focused on a
more apparent goal of reducing the number of operations, and
therefore, area and power of designs. The significant
advancement for the transformation using CSE was achieved
by Potkonjak et al. in [13], [14]. They first formulated the
MCM problem in high level synthesis by considering the
multiplications of one variable with several constants at a time
and also reduced the number of shifts and additions based on an
iterative pairwise matching. Mehendale et al. [2] considered the
CSE problem by examining the filter coefficient matrix and the
iterative elimination of the most frequently occurring common
subexpressions.

In general, the high level synthesis tasks of the methods in
[2], [13] and [14] are based on elimination of 2 nonzero-bit
common subexpressions as shown in Fig. 13 (a). The operands,
a, b, c, and d in Fig. 13 (a) represent the input signal of the filter
and its shifted versions. The sums, e and f, are the common
subexpressions that are shared for minimizing adders and

 represent the shifts. Note that four adders are
required to obtain the final expressions, h and i. Fig. 13 (b)

illustrates our super-subexpression method, where the
super-subexpression g is shared for further reduction of adders
to obtain h and i using appropriate shifts. Note that only three
adders are required using our method. Thus, by employing the
new transformation (super-subexpression), our method
improves the efficiency of CSE in high level synthesis and
offers a more power efficient solution by reducing the number
of operations (additions).

4321 ,,, ssss

B. Area and Power Reduction
In CMOS technology, there are three sources of power

dissipation arising from: switching (dynamic) currents,
short-circuit currents, and leakage currents. Among these
parameters, the switching component, which is a function of
the effective capacitance, plays the most significant role [15]. It
is possible to reduce power by employing transformations such
as reductions in critical path, number of operations and average
transition activity. These transformations result in architectures
that minimize the effective capacitance of the circuit [15]. The
basic motivation behind critical path reduction is that the
supply voltage can be lowered while keeping the throughput
fixed. It can be noted from the design examples of previous
sections that the tree-structured (parallel) addition (shown in
Fig. 5) adopted in our method results in considerable reduction
of critical path. Moreover, when compared with a chain (serial)
implementation, the signal paths are more balanced in a tree
implementation and the amount of extra transitions is reduced.
For example, the capacitance switched for a chained
implementation is a factor of 1.5 larger than the tree
implementation for a four input addition [15]. Thus, the filter
structure used in our method is efficient in terms of critical path
length and transition activity. Having optimized these two
parameters, the most obvious approach for capacitance
reduction is to reduce the number of operations (and hence the
number of switching events) in the data control flow graph. The
super-subexpression elimination methods proposed in this
paper is an efficient transformation that directly reduces the
number of operations through the reduction of FA’s required
for each adder.

We illustrate the area reduction achieved in our method using
the example of the 8-tap filter coefficients in Fig. 4. The area is
computed in terms of full adder area, based on Synopsys
0.35-micron library. In terms of gate equivalents, 1 full adder =
7 gates (Note that the basic gate is NAND gate). Note that 376
FA’s are required to implement the MB using HCSE method.
As 1 full adder area = 14.46 units, it requires

96.543646.14376 =× units (area) to implement the MB of the
filter coefficients in Fig. 4 using HCSE. On the other hand, our
HSSE method needs only 253 FA’s, which is equivalent to
3658.38 units for the MB. The higher reduction of FA’s
achieved using our method in the case of channel filters (that
possess large number of taps) employed in wideband receivers
significantly reduces the cost metrics, area and power.

Paper No. 1386

8

VI. DESIGN EXAMPLES
The channel filters of a wideband receiver that operate in the

intermediate frequency (IF) have large number of taps due to
their narrow transition band and high sampling frequency
requirements. Therefore, the CSE optimization methods
proposed in this paper offers considerable complexity
reduction when used to implement the channel filters. We
present examples of implementing channel filters for the
D-AMPS and the PDC cellular standards using the HSSE and
VSSE methods. The proposed optimization methods are
compared with conventional 2-bit CSE techniques and
reductions of FA’s are determined. Based on the simulation
results obtained for filters with different wordlengths, certain
guidelines on the choice of HSSE and VSSE methods are also
drawn.

Example 1: We consider the LPFIR filters employed in the
filter bank channelizer of the Digital Advanced Mobile Phone
System (D-AMPS) in [16]. The filter bank structure in Fig. 2 is
used. Note that decimation by N is moved to the left of the
bandpass filters using the noble identity and the sampling rate
chosen is 34.02 MHz as in [16]. The channel filters extract 30
kHz D-AMPS channels from the input signal after
downsampling by a factor of 350. The pass-band and stop-band
edges are 30 kHz and 30.5 kHz respectively. The peak
pass-band ripple specification is chosen as 0.1 dB. The filter
stop-band specifications at different frequencies are chosen as
in the D-AMPS standard [17]. The lengths of the LPFIR filters
required to meet these specifications are determined using [18]

 1
6.14

13log10 2110 +
∆

−−
=

f
N δδ (29)

where 1δ and 2δ represent the passband and stopband ripples,
and is the normalized width of the transition region. We
applied the proposed HSSE and VSSE methods to implement
the filters using 12-bit and 16-bit CSD coefficients. The 3-bit
and the 4-bit SS formed from the 2-bit CS are utilized for
optimization. Table I shows a comparison of the number of
adders for computing the Partial Products (PP adders) required
for implementing the filters using conventional HCSE and
VCSE methods and the proposed methods.

f∆

We compare the reduction rates of HCSE, VCSE, HSSE, and
VSSE methods with respect to conventional CSD
implementation without using any CS methods. The
comparison of reduction rates of adders achieved using
proposed methods and that of CSE methods for 12-bit and
16-bit wordlengths are shown in Tables II and III respectively.

It can be observed that the VSSE method offers a better
reduction rate over the HSSE method when the bit precision of
implementation is lower (12-bit). The VSSE technique offers
an average reduction of 39.9% for the 12-bit implementation
whereas an average reduction of 43.7% is achieved using the
HSSE technique for the 16-bit implementation. Note that both
methods require fewer PP adders than the 2-nonzero-bit CSE
methods. The number of FA’s required for implementation is
shown in Table IV. The reduction rates of FA’s achieved using
VSSE and HSSE methods over 12-bit and 16-bit CSD
implementations without using subexpressions are shown in
Tables V and VI respectively. Both HSSE and VSSE methods

results in significant reduction of FA’s when compared to
HCSE and VCSE methods. In the case of implementation using
12-bit, the VSSE method offers the best reduction (47.2%),
whereas the reduction offered by the HSSE method is the best
(54.2%) for the 16-bit case.

The reduction achieved when the proposed methods are used
to employ the D-AMPS channelizer where extraction of each
channel requires a separate narrowband filter is examined. The
wideband signal considered for channelization consists of 1134
D-AMPS channels, each of 30 kHz spacing. We analyzed the
requirement of PP adders to implement the filters for extracting
70, 141, 283, 567, and 1134 channels. The number of filter taps
chosen is 1180 and the coefficient wordlength considered is 16
bits to meet the requirement of attenuating blockers that can be
potentially 96 dB stronger than the wanted signal. Simulation
results shown in Fig. 14 depict the adder reductions achieved
using our proposed methods as a function of the number of
extracted channels. The percent reductions are shown with
respect to conventional implementation without using any CSE
methods. Both the HSSE and VSSE methods offer considerable
hardware reduction and also result in better rate of change in
hardware reduction as the number of channels increases
compared to the CSE methods.

Example 2: In this example, we consider the channel filters
employed in receivers for the PDC standard. The sampling rate
of the wideband signal is 25.6 MHz, which covers 1024
channels of 25 kHz spacing. We fix the filter length as 1000 to
meet the maximum attenuation requirement of –90 dB and
24-bit coefficients are considered. The number of PP adders
required to implement the filter is shown in Table VII. The
requirement of FA’s are also shown in Table VII, which shows
that the proposed HSSE and VSSE methods offer a minimum
reduction of 20% over the CSE methods.

Based on the simulation results, the following guidelines for
choosing the best implementation method can be formulated:

1) As in the case of VCSE method, the coefficient symmetry
of LPFIR filters cannot be completely exploited in VSSE
method. Hence the proposed VSSE method offers better
hardware reduction over the HSSE method only when the bit
precision of implementation is lower. For larger wordlength
implementations, the spans of the operands are also larger and
hence the HSSE method results in better reduction of adders.

2) For the 12-bit implementation, the VSSE method results
in an average FA reduction of 20% over the VCSE method,
whereas for wordlengths of 16-bit and higher, the HSSE
method offers an average reduction of 25% over the HCSE
method.

VII. CONCLUSIONS
In this paper, we have proposed two techniques for

optimizing the CSE methods to efficiently implement
low-complexity LPFIR filters. They are based on the extension
of conventional 2-nonzero-bit HCS to form 3-nonzero-bit and
4-nonzero-bit HSS by exploiting identical shifts between an
HCS and a nonzero bit, or between two HCS. These HSS
eliminate redundant computations of HCS and hence reduce the
number of adders. We have also applied the optimization

Paper No. 1386

9

technique to the VCSE method and formulated the VSSE
algorithm. Furthermore, the complexities of adders are
analyzed and expressions for determining the number of FA’s
required for each adder in a filter are derived. The experimental
results show that considerable reduction of FA’s can be
achieved using proposed methods. Certain guidelines on the
choice of HSSE and VSSE methods are also provided. We have
applied the proposed methods to filter bank channelizers,
where common CS that occur among a bank of filters are
utilized. The design examples of channelizers based on
D-AMPS and PDC cellular standards show that the
optimization techniques presented in this paper offers an
average reduction rate of 50% over conventional channel filter
implementations.

ACKNOWLEDGMENT
The authors would like to thank Dr.A.B.Premkumar, School

of Computer Engineering, Nanyang Technological University,
Singapore, for the valuable discussions throughout the work.

REFERENCES
[1] J. Mitola, Software Radio Architecture. New York: Wiley, 2000.
[2] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, “Synthesis of

multiplierless FIR filters with minimum number of additions,” in
Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design, Los Alamitos, CA: IEEE Computer Society
Press, 1995, pp. 668-671.

[3] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677-688, Oct.
1996.

[4] M. Yagyu, A. Nishihara, and N. Fujii, “Fast FIR digital filter structures
using minimal number of adders and its application to filter design,”
ICICE Trans. Fundam. Electron. Commun. Comput. Sci., no. 8, pp.
1120-1129, E79-A, 1996.

[5] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, “A
new algorithm for elimination of common subexpressions,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Syst.,
vol. 18, no. 1, pp. 58-68, January 1999.

[6] R. Pasko, P. Schaumont, V. Derudder, and D. Durackova, “Optimization
method for broadband modem FIR filter design using common
subexpression elimination,” in Proceedings on the 10th International
Symposium on System Synthesis, pp. 100-106, 1997.

[7] M. M. Peiro, E. I. Boemo, and L. Wanhammar, “Design of high-speed
multiplierless filters using a nonrecursive signed common subexpression
algorithm,” IEEE Trans. Circuits Syst. II, vol. 49, no. 3, pp. 196-203,
March 2002.

[8] Y. Jang and S. Yang, “Low-power CSD linear phase FIR filter structure
using vertical common sub-expression,” Electronics Letters, vol. 38, no.
15, pp. 777-779, July 2002.

[9] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,” IEE
Proceedings – G, vol. 138, no. 3, pp. 401-412, June 1991.

[10] [10] A. G. Dempster and M. D. Mcleod, “Use of minimum adder
multiplier blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol.
42, pp. 569-577, Sept. 1995.

[11] [11] R. A. Walker and D. E. Thomas, A Survey of High-Level Synthesis
Systems. Boston, MA:Kluwer Academic 1991.

[12] [12] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker, “Critical path
minimization using retiming and algebraic speed-up,” in ACM/IEEE
Design Automation Conf., pp. 573-577, 1993.

[13] [13] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Efficient
substitution of multiple common multiplications by shifts and additions
using iterative pairwise matching,” in ACM/IEEE Design Automation
conf., pp. 189-194, 1994.

[14] [14] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple
constant multiplications: Efficient and versatile framework and

algorithms for exploring common subexpression elimination,” IEEE
Trans. On CAD, vol. 15, no. 2, pp. 151-165, Feb. 1996.

[15] [15] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W.
Brodersen, “Optimizing power using transformations,” IEEE Trans. On
CAD, vol. 14, no. 1, pp. 12-31, Jan. 1995.

[16] [16] K. C. Zangi and R. D. Koilpillai, “Software radio issues in cellular
base stations,” IEEE Journal on Selected Areas in Communication, vol.
17, no. 4, pp. 561-573, April 1999.

[17] [17] N. Spencer, “An overview of digital telephony standards,” IEE
Colloquium on the Design of Digital Cellular Handsets, pp. 1/1-1/7,
March 1998.

[18] [18] J. G. Proakis and D. G. Manolakis, Digital Signal Processing
Principles, Algorithms, and Applications. Prentice Hall, 1998.

Paper No. 1386

10

Multiplier
block

⊕

⊕D

1−kh kh

x

8631

86
1

222210100101.0

2200000101.0
−−−−

−−
−

+++==

+==

k

k

h

h

(a)
x

⊕

86

1−ky

⊕

31

⊕
86

⊕
ky

(b)

 CSE ⊕

2

1−ky
⊕

ky

6
1

6

x

(c)

D
1−ky ky

⊕ ⊕ ⊕ ⊕ DD
Multiplier

blockD

Structural adders

D

Fig. 1. FIR filter implementation using HCSE.

)(1 zH

)(0 nx

N↓
Sample Rate
Conversion

)(1 nx

N↓ Sample Rate
Conversion

 •
 •

 •
 •

 •
 •

B b d

Baseband
Processing

Baseband
Processing

 •
 •

)(0 zH

)(nx

)(1 nxM

Paper No. 1386

11

Fig. 2. Filter bank channelizer of an SDR receiver.

a b

c a

a

a

b

b

b

b

c

c

c

b

Fig. 3. CSE implementation of channel filters in a filter bank channelizer.

)(1 nxM −

⊕ ⊕

 •

D D D

⊕ ⊕ D D D

)(0 nx

)(1 nx

⊕ ⊕ D D D

 • •

2x

Multiplier block

⊕
⊕

⊕

⊕
⊕

⊕

x

1x

 -1

-2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16

)0(h 1

0 1 -1 1 0 1 1 0 -1

)1(h

1 -1 0 1 1 0 1 1 0 1 -1

)2(h

1 0 1 1 0 -1 1 0 -1

)3(h -1

0 1

1 0 1 1 0 1 1 0 -1

)4(h -1

0 1 1 0 1 1 0 1 1 0 -1

)5(h

1 0 1 1 0 -1 1 0 -1

)6(h

1 -1 0 1 1 0 1 1 0 1 -1

)7(h 1

0 1 -1 1 0 1 1 0 -1

Fig. 4. HCS and HSS in an 8-tap linear phase FIR filter coefficients.

⊕ ⊕ ⊕ ⊕
⊕ ⊕

⊕

1 2 3 4 5 6

⊕

7 8

• • •

n-1 n

⊕
⊕

⊕
⊕

• • • • •

adder-step # nA

adder-step # 1−nA

adder-step # 2

 adder-step #1

Paper No. 1386

12

Fig. 5. Tree structure used for addition of partial products in the multiplier block.

1x 1x

 (a) Implementation without full adder optimization. (b) Minimum full adder implementation.

Fig. 6. Optimization of addition sequences (Odd number of operands).

 Fig. 7. Implementation of filter tap for odd number of operands.

 (a) Minimum full adder implementation (b) Minimum adder-step implementation
 resulting in maximum adder-step. requiring additional full adders.

 Fig. 8. Optimization of addition sequences (Even number of operands).

⊕

41 8

2x

⊕

⊕

4 8 1

2x

⊕
1A 2A 1A 2A

⊕ ⊕ ⊕ ⊕

⊕ ⊕

⊕

⊕

1s 2s 3s 4s 5s 6s 7s 8s 9s

2s 4s 6s 8s

4s 8s 8s

9s

1x

⊕

1x

⊕
41 8

2x

⊕
12

⊕
1A 2A

3A

4 1 8
2x

⊕

12

1A 2A

3A
⊕

2x

3x

⊕
2

⊕
2

-1A 2A

4x

⊕ -
3A ⊕

5
4A ⊕

4
5A-

4

Critical path =
4 adder-steps

Paper No. 1386

13

Fig. 9. Proposed filter structure using horizontal super-subexpressions of Fig. 4.

a b

b
a a

a a

b

a b

 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16
)0(h

 1 0 -1 1 0 1

)1(h

 -1 0 1 1 0 1 1 0 1

)2(h

 1 0 -1 1 0 1 1 0 -1

)3(h 1

 -1 0 1 1 -1 0 1

)4(h 1

 -1 0 1 1 -1 0 1

)5(h

 1 0 -1 1 0 1 1 0 -1

)6(h

 -1 0 1 1 0 1 1 0 1

)7(h

 1 0 -1 1 0 1

Fig. 10. VCS and VSS in an 8-tap linear phase FIR filter coefficients.

1x

2x

3x

⊕ - 1A 2A

D

⊕

D

4x

⊕
2

- ⊕

2

3A 4A

Critical path =
4 adder-steps

Paper No. 1386

14

Fig. 11. Proposed filter structure using vertical super-subexpressions of Fig. 10.

1

1

1

1

0

0

1

0

1

1

0

1

0

x

0

 1

-1

 1

-1

0

0

 1

-1

-1

 1

0

0

 (a) 4-bit VSS: case a (b) 4-bit VSS: case b

x 1

0

1

0

0

0 x

1

x 1

0

1

0

0

0 x

-1

(c) 3-bit VSS

Fig. 12. Compatible vertical super-subexpressions.

⊕

⊕

h

a b

e

⊕

c d

⊕

f 3s

4s

i

2s

1s
⊕

a b

e

1s

⊕
f

h

⊕
g

4s 2s

3s

i

c d

Paper No. 1386

15

 (a) Conventional 2-bit CSE. (b) Proposed 3-bit/4-bit SSE.

 Fig. 13. Subexpression sharing as a high level synthesis transformation.

Table I Number of PP adders required to implement the filter in example 1

PSR
(dB)

Filter length
(N)

CSD

VCSE [8] Proposed
VSSE

HCSE [3] Proposed
HSSE

 12 bit 16 bit 12 bit 16 bit 12 bit 16
bit

12
bit

16
bit

12
bit

16
bit

-48 260 318 404 226 310 204 267 240 290 220 258
-65 610 740 856 520 640 466 556 560 586 507 512
-85 940 1010 1280 675 910 590 772 745 818 664 679
-96 1180 1138 1480 736 1040 622 847 820 896 712 714

Table II Reduction of PP adders in example 1 over 12-bit CSD implementation.

Filter

length (N)
Reduction of adders over conventional 12-bit CSD implementation (%)

 VCSE [8] Proposed VSSE HCSE [3] Proposed HSSE
260 28.9 35.8 24.5 30.8
610 29.7 37 25 31.5
940 33.2 41.6 26.2 34.3

1180 35.3 45.3 27.9 37.4
Average
reduction

31.8

39.9

25.9

33.5

Table III Reduction of PP adders in example 1 over 16-bit CSD implementation.

Filter
length (N)

Reduction of adders over conventional 16-bit CSD implementation (%)

 VCSE [8] Proposed VSSE HCSE [3] Proposed HSSE
260 23.3 33.9 28.2 36.1
610 25.2 35 31.5 40
940 28.9 39.6 36.1 46.9

1180 29.7 42.8 39.4 51.8
Average reduction

26.8

37.8

33.8

43.7

Table IV Number of full adders required to implement the filter in example 1.

PSR
(dB)

Filter
length

(N)

VCSE [8] Proposed VSSE HCSE [3]

Proposed
HSSE

Paper No. 1386

16

 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit 12 bit 16 bit
-48 260 3729 6200 3170 5140 3840 5560 3380 4710

-65 610 8730 12928 7250 10600 9072 11376 7892 8600
-85 940 10125 18746 8106 14809 12218 16121 10385 12090
-96 1180 11040 21632 8680 16660 13776 17740 11298 13042

Table V Reduction of FA’s in example 1 achieved using vertical subexpression techniques

Reduction of full adders using vertical subexpression techniques over CSD
implementation (%)

Filter length (N)

12-bit 16-bit
 VCSE [8] Proposed VSSE VCSE [8] Proposed VSSE

260 26.1 41.1 27.7 44.8
610 28 44.9 29.2 47.2
940 30.1 50 31.1 52.1

1180 31.4 52.8 33.8 56.7
Average reduction

28.9

47.2

30.45

50.2

Table VI Reduction of FA’s in example 1 achieved using horizontal subexpression techniques

Reduction of full adders using horizontal subexpression techniques over CSD
implementation (%)

Filter length (N)

12-bit 16-bit
 HCSE [3] Proposed HSSE HCSE [3] Proposed HSSE

260 22.8 34.7 26.9 42.2
610 24.9 37.8 29.8 54.2
940 26.2 41.2 33.2 58.2

1180 28.1 46 35.6 62.1
Average reduction

25.5

39.9

31.4

54.2

35ed
uc

tio
n

of
 a

dd
er

s Proposed HSSE

HCSE [3]

Proposed VSSE

50

45

40

Paper No. 1386

17

Fig. 14. Reduction of adders to implement the D-AMPS channel filters
in design example 1 for different number of channels extracted.

Table VII Number of PP adders required to implement the channel filter for the
PDC standard in example 2

 Vertical subexpression (12-bit) Horizontal subexpression (16-bit)

 VCSE [8] Proposed VSSE HCSE [3] Proposed HSSE
Adders 696 610 852 746
Adder reduction
(%)

30.6 39.1 33.8 42

Full adders 10600 7488 17260 11180
Full adder
reduction (%)

30.7 50.9 35.2 58

	INTRODUCTION
	Common Subexpression Elimination
	The HCSE Approach
	MCM in Filter Bank Channelizers
	Analysis of the HCSE Method
	Adder Complexity
	Full Adder Requirements in HCSE Method

	Optimization of HCSE Method
	The HSSE Method
	Full Adder Requirements

	Optimization of VCSE Method
	Proposed VSSE Method
	Compatibility Issue in Vertical Subexpression Methods

	Extension of CSE to High Level Syhthesis
	High Level Synthesis Transformation
	Area and Power Reduction

	Design Examples
	Conclusions

