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Abstract— The algorithms that minimize the complexity of 
multiplication in digital filters focus on reducing the number of 
adders needed to implement the coefficient multipliers. Previous 
works have not analyzed the complexity of each adder, which is 
significant in low-complexity implementation. A multiplication 
algorithm for low complexity implementation of digital filters 
with a minimum number of full adders and improved speed is 
proposed here. We exploit the fact that when multiplication is 
implemented using shifts and adds, the adder width can be 
minimized by limiting the shifts of the operands to shorter lengths. 
The coefficient-partitioning algorithm proposed here minimizes 
the shifts of the operands of the adders by partitioning each 
coefficient into two sub-components. We show that by combining 
three methods: the coefficient-partitioning algorithm, an efficient 
coefficient-coding scheme known as pseudo floating-point 
representation and the well-known common subexpression 
elimination (CSE), the number of full adders required in each 
adder of the multiplier can be reduced considerably. Design 
examples show that our method offers an average full adder 
reduction of 30% for finite impulse response (FIR) filters and 
20% for infinite impulse response (IIR) filters over CSE methods. 
 

Index Terms— Adder complexity, Common subexpression 
elimination, Pseudo floating-point representation, 
Coefficient-partitioning, FIR filters, IIR filters.  
 

I. INTRODUCTION 
IGITAL filtering finds extensive application in mobile 
communication systems to perform various functions such 
as channelization, channel equalization, matched filtering 

and pulse shaping. Low-complexity and high-speed digital 
filtering for mobile computing and communication applications 
generally require dedicated hardwired implementations of the 
filters. Although programmable filters based on digital signal 
processor cores offer the advantage of flexibility and high 
sampling rates, they are not suitable for mobile applications 
that demand high throughput and low-power consumption. 
Since flexibility of a multiplier is not necessary in such 
applications, application specific digital filters are frequently 
adopted to meet the constraints of performance and power 
consumption. However, these filters employ a large number of 
multipliers that lead to excessive area and power consumption. 
Therefore, the problem of designing digital filters with small 
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area and low-power consumption has received a great deal of 
attention in the last decade. 

A. Related Work 
The number of additions (subtractions) used to implement the 

coefficient multiplications determines the complexity of digital 
filters. Many approaches have been proposed in literature for 
reducing the number of adders (subtractors) in the multipliers 
of digital filters. These approaches include coefficient coding 
using efficient arithmetic schemes [1, 2], coefficient 
optimization techniques [3]-[5], distributed arithmetic 
techniques [6, 7], ROM based designs [8, 9] and common 
subexpression elimination (CSE) techniques [10]-[18]. Among 
these approaches, the CSE techniques in [10]-[18] produced the 
best hardware reduction since it deals with the multiplication of 
one variable (input signal) with several constants (coefficients). 
The CSE techniques focus on eliminating redundant 
computations in multiplier blocks by employing the most 
common subexpressions consisting of two-nonzero bits. In 
general, techniques [1]-[18] discuss the complexity of 
multipliers in terms of the reduction of the number of adders 
and the critical path. The methods in [1]-[18] have not 
addressed the issue of minimizing the complexity of each adder 
of the multiplier, which is significant in low-complexity and 
high-speed implementations. The differential coefficient 
method DCM [19] uses differential coefficients to multiply 
with inputs and compensates the effect of differential 
coefficients by adding the stored partial product of previous 
computation. Since differential coefficients have shorter word 
length, the resulting design and output can also use shorter 
word length, and thus can reduce power consumption. 
However, this method results in a lot of overheads, which is 
proportional to the product of the order of difference and filter 
tap number. The main idea in [20] is reordering computations 
and identifying common computations that maximize 
computation sharing between different multipliers. However 
the method in [20] offers only a slight improvement in 
reduction of adders (11%) over the CSE method [11]. 
Moreover, this method results in an increase in delay, 
corresponding to the delay of one adder-step on average.  

In our recent work [21], we have analyzed the complexity of 
implementation in terms of full adders (FAs) required for each 
multiplier of the filter. Two techniques for optimizing the CSE 
methods to implement low-complexity FIR filters have been 
proposed in [21]. These techniques are based on the extension 
of conventional two-nonzero bit (2-bit) common 
subexpressions (CS) in [10] - [18] to form three-nonzero bit 
and four-nonzero bit super-subexpressions (called 3-bit and 
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4-bit SS, respectively) by exploiting identical shifts between a 
2-bit bit CS and a third nonzero bit, or between two 2-bit CS. 
These super-subexpressions (SS) eliminate redundant 
computations of two-nonzero bit CS and hence reduce the 
number of adders. Since employing SS reduces the number of 
adders, the number of FAs is also reduced correspondingly – 
this is the basic approach adopted in [21]. However, it must be 
noted that the formation of 3-bit and 4-bit SS is based on the 
occurrence of 2-bit CS with identical shifts between them. 
Therefore, the main limitation of the method in [21] is its 
dependence on the statistical distribution of shifts between the 
2-bit CS in the CSD representations of LPFIR filter 
coefficients. It has been shown in [21] that the number of SS 
grows linearly with the wordlength and hence this technique is 
more advantageous only when the coefficient wordlength is 
relatively larger. Moreover, the routing complexity of the 
method in [21] is higher than that of the 2-bit CSE techniques in 
[10]-[18] as the former method has more number of 
subexpressions.  

In this paper, we propose an efficient coefficient-partitioning 
(CP) algorithm to implement the multipliers of digital filters 
with a minimum number of FAs. We combine three techniques: 
the CP algorithm, the pseudo floating-point representation and 
the CSE, to reduce the number of FAs. The FA reduction 
techniques proposed in this paper do not employ 
super-subexpressions and hence they do not have the 
dependence on statistical distribution of shifts between the 2-bit 
CS. Moreover, our method offers hardware reduction even in 
the case of filter coefficients with smaller wordlengths. The 
problem that we address here is how to minimize the number of 
FAs required in each adder of a minimum-adder filter structure.  

The rest of the paper is organized as follows. In section 2, we 
briefly review the complexity analysis of coefficient multipliers 
[21] and then present our coefficient-partitioning algorithm. 
The techniques for optimizing the horizontal and vertical CSE 
methods by employing the coefficient-partitioning algorithm 
are presented in section 3. In section 4, we analyze the 
complexity of implementation of our method. Several design 
examples of FIR and IIR filters are presented in section 5. 
Section 6 provides our conclusions. 

II. THE COEFFICIENT-PARTITIONING ALGORITHM 
For completeness, a review of the complexity of multiplier 

block (MB) implementation in terms of FAs required for each 
multiplier of the filter that we formulated in [21] is presented 
here. Further, we present our coefficient-partitioning 
algorithm, and show that the FA requirement can be reduced 
considerably using our method.  

A. Adder Complexity 
An adder that adds two n-bit numbers requires at the most 

)1( +n  FAs to compute the sum. We consider ripple carry 
adder (RCA) through out the paper on account of its low power 
consumption. Even if carry look-ahead adder (CLA) is 
considered on account of its improved speed, the full adder 
requirement of CLA is identical to that of RCA (the difference 
is that CLA will have an extra carry look-ahead logic to reduce 
the delay at the cost of more power consumption). The area, 

power, and speed of an adder depend on the adder width, 
).1( +n  Therefore, the number of FAs required to implement 

the multipliers must be minimized. Filter coefficients in CSD 
form with wordlengths up to 24-bits are considered for 
analyzing the adder complexity. Since no adjacent bits in CSD 
are one’s, a 24-bit CSD number can have a maximum of 12 
nonzero bits and hence at the most twelve nonzero operands 
could occur in multiplication.  
Case I: Odd number of operands: The number of FAs, ,0N  
required to compute the output corresponding to a coefficient 
with n operands can be determined using the expression [21]: 

++++++++++= )1()1()32()1()1( 6534312 rrarrarNo  
)32()1()1()63()32( 1191097875 +++++++++ rarrarra  (1) 

where nr  is the range (number of bits) of the nth operand and 
sia  are equal to zero except ,2−na  which is 1. 

Case II: Even number of operands: The number of FAs, ),( eN  
required to compute the output corresponding to a coefficient 
with n operands is given by [21]: 
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Note that (1) and (2) are same as in [21], except that we use the 
notation nr  here instead of ns  and range is same as span in 
[21]. Also, here we assume that addition of two n-bit numbers 
requires at the most )1( +n  FAs whereas the assumption in 
[21] was n FAs (overflow case was ignored in [21]. 

The computation of FAs using (1) and (2) can be illustrated 
through an example. Consider the CSE implementation of the 
filter tap, .0101010000101001.0=kh  The pattern [1 0 1] is 
present thrice, which can be expressed as a common 
subexpression (CS): 

                              2112 >>+= xxx                              (3) 
Using the CS given by (3), the output of the filter can be 
expressed as 

                 14105 222 >>+>>+>>= xxxyk                 (4) 
The numbers of operands )(n  in (3) and (4) are 2 and 3 
respectively. Therefore, it requires 11)1( 2 =+r  FAs for 
computing (3) and 482622)1()1( 32 =+=+++ rr  FAs for 
(4) as shown alongside the adders ,1A  2A  and 3A  in Fig. 1. 
The numerals in brackets alongside the adders indicate the 
number of FAs used in the adder. The number of FAs required 
for computing ky  in CSE implementation is the sum of FAs 
required for the adders ,1A  2A  and ,3A  which is 59. Using (1) 
and (2), it can be computed that the direct implementation (i.e., 
shift and add method without using CSE) requires 110 FAs. 
Thus, the CSE implementation offers 46% reduction of FAs in 
this case. 
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B. Coefficient-Partitioning Approach 
The key idea in our approach is to reduce the ranges of the 

operands so that the adder width can be reduced which in turn 
minimizes the number of FAs. In this section, we show that by 
encoding the filter coefficients using the pseudo floating-point 
arithmetic scheme, the ranges of the operands can be reduced 
considerably. Further, we present a novel 
coefficient-partitioning algorithm, which offers substantial 
reduction of FAs in implementing the pseudo floating 
point-coded coefficient multiplier when combined with the 
CSE method.  
The general representation of CSD for the ith filter coefficient 
that has a wordlength B  is [2]: 
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The Pseudo Floating-Point (PFP) representation [22] of (5) is: 
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where .0iijij aac −=  The term 0ia  is known as the shift and 

the upper limit value, )( 0)1( iBi aa −− , is known as the span. 

Instead of expressing the coefficients using B-bit CSD, it can be 
expressed as a (shift, span) pair using fewer bits. The 
coefficient, ,kh  in the above example can be represented in 

PFP as ).222222(2 11975205 −−−−−− +++++  In this 

expression, the term 52−  is the shift part (implying ‘right shift 
by 5’), and the bracketed term is the span part. The shifts are 
less complex since they can be hardwired. Therefore, only 3 
bits are needed for storing the shift value (CSD representation 
of 5 is 101) and 11 bits for the span value (bracketed term). 
Hence kh  can be represented in PFP using 14 bits, whereas its 
CSD representation requires 16 bits. (Note that further 
reduction of wordlength is possible by hard wiring the shifts in 
ASIC). Fig. 2 shows the implementation of the filter tap in 
using PFP coded coefficients. It requires 85 FAs to implement 
the multiplier block adders (MBAs), ( 1A  to 5A ), in Fig. 2. 
Though this FA requirement is less than that of direct 
implementation (110 FAs), note that the PFP implementation 
needs more FAs when compared with the CSE method in Fig. 
1. The span contributes significantly more to the wordlength 
requirement than the shift in PFP coding. Therefore, we 
propose to reduce the ranges of the span component using 
coefficient-partitioning.  

C. Full Adder Reduction by Coefficient-Partitioning 
The basic idea in this approach is to reduce the range of the 

span part of PFP by partitioning it into two sub-components, 
called sub-filters. We shall now show that the FA requirement 
can be drastically reduced by coding the sub-filters using PFP. 
Definition 1 (Order): The most significant bit of a filter 
coefficient represented in CSD form is defined as the order of 
the coefficient.  For instance, the order of a coefficient 

16141186 22222)( −−−−− ++++=nh  is .2 6−  
We first express each CSD coefficient using CS and the 
resulting expression is then coded using PFP representation. 

Let M  represents the span of the PFP representation. The span 
part is partitioned into two sub-components (sub-filters) of 
length 2/M  (or two sub-components of lengths  2/M  and 

 2/M  if M  is odd). The latter sub-component is then scaled 
by its order to reduce its span. The ‘partitioned and scaled’ 
versions of the PFP coefficients thus obtained can be added 
using fewer numbers of FAs since their ranges are reduced. 
Consider the same example of the filter tap shown in Fig. 1. 
Using PFP, the filter output obtained in CSE method (4) can be 
expressed as )22(2 2

9
2

5
2

5 xxx −−− ++ . In this case, the span 
)(M  is 9 and the shift is 5. Partitioning the span part into two 

sub-filters, )(1 nh  and ),(2 nh  we have  

                  21 )( xnh =  and 2
9

2
5

2 22)( xxnh −− +=               (7) 
where )(nh  is the sum of )(1 nh  (MSB half) and )(2 nh  (LSB 

half). The LSB sub-filter is further scaled by its order, ,2 5−  

and expressed as )2(2)( 2
4

2
5

2 xxnh −− += . Fig. 3 shows the 
implementation of the filter tap using our 
coefficient-partitioning (CP) method. If 1x  is an 8-bit 
quantized signal, the ranges of the operands corresponding to 
the span part of )(2 nh  are 11 and 15 and hence the adder 2A  
requires at the most 16 FAs. Similarly, the ranges of the 
operands of 3A  are 11 and 21. Hence 3A  require 22 FAs. 
Thus, when compared with the direct implementation, the 
adders 2A  and ,3A  have shorter widths since the ranges of 

their operands are shorter. The shift 52−  of )(2 nh  and that of 

the final expression, ),22(2 2
9

2
5

2
5 xxx −−− ++  are performed 

after the addition stages as shown alongside the data paths at 
the outputs of adders 2A  and 3A  respectively. The data along 
the signal paths sib  are shown in the table in Fig. 3. Our 
method requires only 49 FAs to implement the filter tap, which 
is a reduction of 17% compared with conventional CSE 
implementation [11]. The MB delay in our CP method and that 
of the CSE method are identical (3 adder-steps).  
 

III. OPTIMIZATION OF HORIZONTAL AND VERTICAL CSE BY 
COEFFICIENT-PARTITIONING 

    There are two classes of CSE methods proposed to tackle the 
MCM problem in digital filters. The Horizontal Common 
Subexpression Elimination (HCSE) utilizes the most common 
horizontal subexpressions that occur within each coefficient to 
eliminate redundant computations [11]-[15]. In general, these 
methods use Hartley’s [11] two most common horizontal 
subexpressions (HS), i.e., [1 0 1] and [1 0 –1] and their negated 
versions. The Vertical Common Subexpression Elimination 
(VCSE) [16] utilizes the vertical subexpressions (VS) that 
occur across the adjacent coefficients to tackle the MCM. The 
HCSE method offers better reduction of adders for filters 
whose coefficients are coded using relatively larger 
wordlengths ( ≥  16 bits) whereas in applications that require 
only shorter wordlengths, the VCSE method is found to be 
better. In this section, we show that our CP method can be 
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employed to optimize the HCSE (CP-HCSE technique) and 
VCSE (CP-VCSE technique) methods to achieve further 
reduction of FAs. We use Harley’s HS, [1 0 1] and [1 0 –1] in 
our CP-HCSE method and the VS, [1 1], [1 –1], [1 0 1] and [1 0 
–1] in CP-VCSE method. From the extensive examples we 
worked out on CSD representations of FIR and IIR filter 
coefficients, it has been observed that the above-mentioned 
subexpressions occur the most (around 70%). Note that other 
subexpressions such as [1 0 0 1] and [1 0 0 –1] also occur in 
CSD coefficients. However these subexpressions occur only 
fewer times. It has been shown in [11] that it is 
counter-productive to calculate and reuse such subexpressions, 
since it increases the complexity of the data-flow graph. On the 
other hand, using the most common subexpressions will have 
little adverse effect on routability. 

A. The CP-HCSE Technique 
In this section, we discuss the implementation of a LPFIR filter 
using the CP-HCSE technique and compare the number of FAs 
required with that of the HCSE method [11]. A 6-tap FIR filter 
designed using Parks-McClellan algorithm [23] is considered 
to illustrate our method. The pass-band and stop-band edges of 
the filter are π2.0  and π25.0  respectively. The 16-bit CSD 
form of the coefficients is shown in Fig. 4. The numbers in the 
first row of Fig. 4 represent the number of bitwise right shifts. 
The number of FAs required in direct method obtained using 
(1) and (2) is 317. The HS, [1 0 1] and [1 0 –1], shown inside 
the rectangles in Fig. 4 are given by: 

          2112 >>+= xxx  and 2113 >>−= xxx                  (8) 
With these HS, the output of the filter in HCSE method [11] can 
be represented as 
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The number of FAs required to implement the MBAs obtained 
using (1) and (2) is 227 using HCSE. Using CP-HCSE, the 
filter output (9) can be expressed as 
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The filter structure using the CP-HCSE method is shown in Fig. 
4. Only 184 FAs are required using this technique. Note that the 
HCSE method offers a FA reduction of 28% over direct method 
whereas the reduction achieved using our CP-HCSE method is 
42%. The critical path lengths are identical (3 adder-steps) in 
both methods.    

The CP-HCSE procedure is as follows. 
Step 1) Design the filter of length N  according to the desired 
specification. 
Step 2) Obtain the CSD representation of the 

infinite-precision coefficients for a desired 
wordlength. Set .0=k  

Step 3) Identify the HS [1 0 1] and [1 0 –1] and their negated 
versions in ).(kh  Express the filter output 
corresponding to the coefficient )(kh  using HCSE. 

Step 4) Express the HCSE output corresponding to )(kh  in 
PFP. Set .spanM =  

Step 5) Partition the span part into two sub-filters of length 
2/M  (or two sub-components of lengths  2/M  

and  2/M  if M  is odd). Scale the latter subfilter by 
its order. 

Step 6)  Increment k. If ,Nk ≠  go to Step 3. Otherwise,  
terminate the program. 

B. The CP-VCSE Technique 
In this section, we apply our CP technique to VCSE method 

[16]. The filter coefficients in previous example (Fig. 3) are 
used here to illustrate the CP-VCSE technique. Fig. 5 shows the 
VS present in the coefficient set. The VS, [1 1] and [1 –1], 
shown inside the rectangles in Fig. 5 are given by: 

         ]1[114 −+= xxx  and ]1[115 −−= xxx                  (11) 
An inherent drawback of the VCSE method is its inability to 

completely exploit the symmetry of FIR filter coefficients for 
efficient implementation of the filter. In the case of HCSE 
method, since all the bits forming an HS exist within the 
coefficient, its symmetric counter- part can be easily 
implemented using delays and structural adders. However, the 
bits that form VS in VCSE method occur across the 
coefficients and hence the symmetry is destroyed when the bits 
are of opposite sign [12].  Hence in VCSE implementations, 
extra adders are required to obtain the symmetric part of the 
coefficients when more than one VS with bits of opposite sign 
exist. Due to this constraint, the VCSE implementation requires 
more adders (thirteen in this case) than the HCSE method 
(eleven), which will in turn increases the number of FAs and 
the MB delay. Using (1) and (2), it can be computed that 291 
FAs are needed for VCSE implementation. Fig. 6 shows the 
filter structure using our CP-VCSE method. Our CP-VCSE 
method needs 254 FAs, which is a reduction of 20% over the 
direct method (317 FAs are required in direct method) whereas 
the reduction achieved using the VCSE method is only 8%. The 
critical path lengths are identical (5 adder steps) in above 
methods. The reduction of FAs as well as speed performance in 
vertical subexpression methods (both VCSE and our 
CP-VCSE) is less than that of the horizontal subexpression 
methods (HCSE and CP-HCSE). Therefore, the vertical 
subexpression methods offer better reduction over the 
horizontal subexpression methods in implementing FIR filters 
only when the coefficient wordlength is relatively smaller. 
However, in the case of IIR filters, the requirement of adders in 
horizontal subexpression methods are also higher since the 
filter coefficients are not symmetric. Hence, the reductions 



Paper No. 2032 5

offered by vertical subexpression methods are improved in 
implementing IIR filters than their FIR counterparts.        

The CP-VCSE procedure is as follows. 
Step 1) Design the filter of length N  according to the desired 
specification. 
Step 2) Obtain the CSD representation (in matrix form) of the 

N infinite-precision coefficients, )0(h  to 
),1( −Nh for a desired wordlength. For example, let us 

consider two cases, i.e., case-1: N  is 10 (even 
number of coefficients, )0(h  to )9(h ) and case 2: N  
is 9 (odd number of coefficients, )0(h  to )8(h ). Set 

.0=k  
Step 3) Identify the VS [1 1], [1 –1], [1 0 1] and [1 0 –1] and 

their negated versions that exist across the 
coefficients, )1( ),( +khkh  and )2( +kh . (Note that 
the algorithm will identify the VS across the 
coefficients, )1( ),0( hh  and )2(h  in the first iteration. 
In the second iteration, i.e., when k is incremented by 
one in Step 4, it will examine for the VS occur across 
the coefficients, )2( ),1( hh  and ),3(h  after excluding 
the VS already identified in )1(h  and )2(h ).  Express 
the filter output corresponding to these coefficients 
using VCSE. 

Step 4) Set .1+= kk  If ( )32/ −≤ Nk  for even N and 

 ( ) 32/ −≤ Nk  for odd N, go to Step 3. Otherwise, 
go to Step 5. Thus, at the completion of this iteration, 
the algorithm will identify all the VS present in the 
first half of the symmetric coefficient set. Considering 
the example, this first symmetric half set includes 

)0(h  to )4(h  for 10=N (case-1) and )0(h  to )3(h  
for 9=N (case-2).  

Step 5) Set .1−= Nk  Identify the VS that exist across the 
coefficients, )1(  ),( −khkh  and ).2( −kh  
(Considering case-1, the algorithm will identify the 
VS across the coefficients, )8(  ),9( hh  and )7(h  in 
the first iteration. In the second iteration, i.e., when k 
is decremented by one in Step 6, it will examine for 
the VS occur across the coefficients, )7(  ),8( hh  and 

),6(h  after excluding the VS already identified in 
)9(h  and )8(h ).  Express the filter output 

corresponding to these coefficients using VCSE. 
Step 6) Set .1−= kk  If ( )2)2/( +≥ Nk  for even N and 

 ( ) 3)2/( +≥ Nk  for odd N, go to Step 5. 
Otherwise, go to Step 7. Thus, the algorithm will 
identify all the VS present in the second half of the 
symmetric coefficient set. Considering the example, 
this second symmetric half set includes )5(h  to )9(h  
for 10=N (case-1) and )5(h  to )8(h  for 

9=N (case-2). Note that the central coefficient 
 ( )2/Nh  (i.e., )4(h in case-2) is excluded when the 

number of coefficients is odd since it does not have a 
symmetric counter part. 

Step 7) Examine the VCSE expressions obtained in Step 4 
(former symmetric half) and Step 6 (latter symmetric 
half) for terms that have identical shifts and delays. 
Obtain the VCSE expressions of the latter part from 
the former part by using appropriate delay operations. 
Finally, add those terms that are left out (terms that do 
not have any common shift and delay).    

Step 8) Obtain the PFP of each of the expressions obtained in 
Step 7. Set spanM = . Partition the span part into two 
sub-filters of length 2/M  (or two sub-components of 
lengths  2/M  and  2/M  if M  is odd). Scale the 
latter subfilter by its order. Terminate the program 
when all the VCSE expressions are coded using 
CP-VCSE.   

IV. ADDER COMPLEXITY IN COEFFICIENT-PARTITIONING 
The number of FAs required in CP method can be 

obtained 
by modifying (1) and (2) as follows. If 2x  and 3x  are the CS 
obtained from the input ,1x  and 

jkx  represents the data from 

the set { }321 ,, xxx  that has to be shifted corresponding to the 
position of the j-th CSD bit, the general expression for filter 
output corresponding to a coefficient )(nh of wordlength B  is 

                             ∑=
=

−z

j
k

p
j j

j xsny
1

))(2()(                    (12) 

where { }, 1 0, ,1−∈js   { }, ........B 1, ,0∈jp  and z  is the 

number of nonzero digits. If 
1sp  is the shift, (12) can be 

expressed in PFP form as 

                       ∑=
=

−−− z

j
k

pp
j

p
j

sjs xsny
1

)( ))(2(2)( 11             (13) 

Partitioning the coefficient into two sub-components of lengths 
 2/)( 11 pspM z −=  and  ,2/)( 12 pspM z −=  and scaling 

the later part by its order, ,2 2sp−  (13) can be written as 
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where  { }2/)(,......1,0)(
111 szsj pppp −∈−  and 

   { }.),...(12/)(,2/)()(
111212 szszszssj ppppppppp −+−−∈−−  

    Let ∑
=

1

1 1 1

M

j
ja  and ∑

=

2

2
21

M

j
jb  represent the number of FAs 

required to compute the terms, ,2 
1

11
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1
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1 j
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j
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=
∑  and 

2
212

2

2
2

)(

1
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j
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k
pppM

j
j xs −−−

=
∑  respectively, obtained using (1) 

and (2). The total number of FAs required to compute (14) is 
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j
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1 1 21 1                         (15) 
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where nF  is the range of the last term of (14), i.e., 

.2 )( 1
z

sz
k

pp
j xs −−   

     We have also examined the adder complexity reduction 
achieved by partitioning the coefficient into more than two 
sub-components. When the filter output expression (14) 
(corresponding to partitioning into two halves) is implemented 
using the parallel tree-structured addition, the inner shift 

operation ,2 2sp−  is performed just before the final-stage adder 
of the tree. Therefore, the widths of the adders in the preceding 

stages that compute the sum of the bracketed term of 22 sp−  are 
less and only the final-stage adder requires the highest width. 
Assume that the coefficient is partitioned into n  
sub-components, instead of two. The output expression (14) 
can be written as 

..............
22

2

2)(

2

2

2

212
2

2

1

1
1

11
1

1

1

)(

1

)(

+





















∑

+∑

=

=

−−−−

=

−−

−

jk

ssjs

j
sj

s

x

M

j

ppp
j

p

M

j
k

pp
j

p

s

xs

ny

 

                     















∑+

=

−−−− n

n
nj

nssnj
n

ns
M

j
k

ppp
j

p xs
1

)( 122          (16) 

  In this case, the widths of the adders in the 
intermediate-stages of the tree-structure are larger since the 

multiple inner shifts, ),2 ......., ,2 ,2( 32 nsss ppp −−−  in (16) need 
to be performed prior to the intermediate additions. Hence, 
each of these intermediate-stage adders would require more 
FAs. Therefore, partitioning a coefficient into two halves offers 
the best FA reduction than partitioning into multiple parts.     
 The number of times each subexpression occurs is counted 
by an exhaustive search. In HCSE method, this requires a time 
complexity of )( 2nO  where n is the total number of nonzero 
terms in the coefficient set [11]. Assume that there are N 
coefficients and each coefficient has at the most B nonzero bits. 
Thus, the total number of nonzero bits is )( BN ×  and time 

complexity of HCSE algorithm is ).)(( 2BNO ×  When 
compared with HCSE, our method has an additional 
complexity of coefficient-partitioning. Assume that W  is the 
coefficient wordlength, aW  is the span of the PFP 
representation and X  is the position of the first nonzero bit 
from the MSB. The maximum value of aW  (i.e., )max,aW  is 
W  and the minimum value of X  (i.e., )minX  is 1 (this is the 
case when the MSB is a nonzero bit). In the case of a CSD 
number, since no adjacent bits are ones, if a nonzero bit occurs 
at ),2( −W  then the only possibility of occurrence of the next 
nonzero bit is in the LSB position, i.e., at .W  Note that if 

,WX =  it means that there is only one nonzero bit in the 
coefficient and hence no adders are needed to compute the 
output for that tap. Therefore, the maximum value of X  (i.e., 

)maxX for any coefficient that has more than one nonzero bit is 

).2( −W  The additional complexity in our method is mainly on 
the computation of shift differences of the LSB half of the PFP 
coefficient. This is linearly related to the number of nonzero 
terms in the LSB half. A PFP coefficient can have a maximum 
of   2/)1(2/)minmax, −=− WXWa  nonzero terms in its LSB 
half after partitioning. Thus, the additional complexity of our 
method for N coefficients is the search time to determine X  as 
well as to compute the shift differences of the LSB half, which 
is given by  [ ][ ].2/)1()2( NWWO ×−+−  The total time 
complexity is  
             +× 2)(( BNO  [ ][ ]NWWO ×−+− 2/)1()2(         (17) 
A comparison of the time complexity of our algorithm with that 
of the HCSE [11] can be made through an example. Consider 
the CSD coefficients in Fig. 3. In this case, N is 6, total number 
of nonzero bits (i.e., )BN ×  is 36 and W is 16. The complexity 

of HCSE algorithm is .1296)36( 2 =O  Using (27), the 
complexity of our method is 1428, which is only 10% more 
than the HCSE method.   

V.  EXPERIMENTAL RESULTS 
In this section, we present examples of implementing several 

FIR and IIR filters using our algorithm. The proposed 
CP-HCSE and CP-VCSE techniques are compared with HCSE 
[11] and VCSE [16] methods and reductions of FAs are 
determined.  

A. FIR Filters 
The FIR filters are designed using Parks-McClellan 

algorithm. The normalized pass-band and the stop-band edges 
of the filter are π2.0  and π25.0  respectively. The CSD 
representation of the coefficients using 8, 12, 16, 20 and 24 bits 
are considered. Direct method means the CSD implementation 
without employing any CSE technique. Table I shows the 
number of FAs required to implement the multipliers of the 
filters of different lengths (N) using the direct method. 
Comparison of the number of FAs required in HCSE method 
[11] and our CP-HCSE method is shown in Table II. The FA 
requirement in VCSE [16] and our CP-VCSE methods are 
listed in Table III. Fig. 7 shows the percent reduction of FAs 
achieved using various methods over the direct method in 
designing the FIR filter of length 50, for different wordlengths. 
Note that the VCSE [16] and the proposed CP-VCSE methods 
offer better reduction than their horizontal counterparts (HCSE 
[11] and our CP-HCSE respectively) only when the coefficient 
wordlength is smaller (8 bits). For wordlengths larger than 8 
bits, both the horizontal subexpression techniques result in 
higher reduction than the vertical subexpression techniques. 
The average reductions of VCSE and CP-VCSE are 26.5% and 
42% respectively whereas these figures are 34.8% and 51.7% 
for HCSE and CP-HCSE methods. This shows that our 
methods offer a significant reduction of FAs in MB 
implementations. 

The reduction of FAs over the direct method in designing the 
FIR filter whose coefficients are coded using 16-bit CSD, for 
different number of filter taps are shown in Fig. 8. The average 
reduction offered by the CP-HCSE method is 54%, which is the 



Paper No. 2032 7

highest among all the techniques. The average reduction 
achieved using the CP-VCSE method is 44.2% where as that of 
the HCSE and the VCSE methods are 36.4% and 22.4% 
respectively. Furthermore, Fig. 8 shows that our methods offer 
higher reduction of FAs for higher-order filters. For example, 
in the case of the filter with 10 taps, the reduction achieved 
using our CP-HCSE technique (46.5%) is higher than that of 
the HCSE method (35.2%) by 11.3%. On the other hand, for 
the filter with 400 taps, these reductions are 60.6% and 38.7% 
respectively.  Thus, in the case of 400-tap filter, our CP-HCSE 
method offers a reduction of 21.9% over the HCSE method. 
This reduction is almost twice that for the filter with 10 taps. 
 The reductions of FAs achieved using our CP-HCSE 
technique over the HCSE method for different numbers of filter 
taps are shown in Fig. 9. For wordlengths of 12 bits and above, 
our method results in higher reduction as the filter order 
increases. This illustrates that the use of shorter shifts by 
partitioning the coefficient results in significant reduction of 
FAs required to implement the low-magnitude end-coefficients 
(end-coefficient here being defined as the first 4/N  
coefficients, )0(h to  ( ),14/ −Nh  of an FIR filter) of higher 
order filters. Our CP-HCSE technique offers average FA 
reductions of 26.5% and 32.8% over the HCSE method for the 
16-bit and 24-bit cases respectively. 
 We have examined the reduction of FAs for FIR filters of 
various specifications. Our simulation results show that 
reductions are identical to the above-mentioned design 
example for filters of different pass-band and stop-band edges. 
Furthermore, it has been observed that slightly better FA 
reductions are achieved for filters with relatively wider 
transition bands. As the transition band of the filter becomes 
wider, the side-lobes of the impulse response decrease and 
hence the magnitudes of the end-coefficients of )(nh  will also 
decrease. Hence, most of the nonzero bits of the CSD 
representations of end-coefficients occur in the LSB part and 
the use of shorter shifts in our method results in considerable 
reduction of FAs. We illustrate this using an example of an FIR 
filter whose transition band is wider than that in the previous 
design example. The normalized pass-band and the stop-band 
edges of the filter are π2.0  and π35.0  respectively. The 
reduction of FAs over the direct method in designing the filter 
whose coefficients are coded using 16-bit CSD, for different 
number of filter taps are shown in Fig. 10. The average 
reductions offered by the CP-HCSE and the CP-VCSE 
methods are 58% and 47.2% respectively, whereas these 
reductions were 54% and 44.2% for the filter in the previous 
example. The reductions achieved using HCSE and VCSE 
methods are almost identical in both cases. Thus, our 
coefficient-partitioning methods offer improved FA reductions 
when employed to implement filters with relatively wider 
transition bands. It may also be noted that the critical path 
lengths of filter structures obtained using our CP methods are 
same as that of the CSE methods. 

Though we use the CSE techniques for comparison 
throughout the paper, it must be noted that our CP algorithm 
can also be applied to minimum-adder multipliers designed 
using other methods. Basically, the CP algorithm can optimize 
the coefficient multipliers designed using any other complexity 

reduction techniques to further minimize the number of FAs. 
We have examined the reduction of FAs achieved when the CP 
method is applied to the nonrecursive signed common 
subexpression (SCSE) method [15]. The filters, FIR2 (order 16, 
wordlength 16), FIR4 (order 25, wordlength 9) and FIR6 (order 
60, wordlength 14), used in [15] are used here for comparison. 
Table IV shows the comparison of the number of FAs (NFA) 
and critical path lengths (CPL). Note that the SCSE method 
optimized using our CP algorithm (CP-SCSE method) offers an 
average FA reduction of 15% over the SCSE method. The 
critical path lengths of these two methods are identical. These 
examples illustrate that our approach offers a more general 
solution for multiplier complexity reduction. 

B. IIR Filters 
We consider the implementation of elliptic IIR filters since 

for a given set of specifications, it has a lower order than any 
other IIR filter type. The normalized cutoff frequency ( nω ) of 
the filter is 0.2, the pass-band ripple is 0.1dB and the stop-band 
ripple is 50dB. The order of an IIR filter required to meet a 
given frequency response specification is considerably less 
than its FIR counterpart. However, IIR filters are more 
sensitive to coefficient quantization as it may result in change 
in pole locations that eventually causes higher quantization 
error and limit cycle effect [23]. Therefore, more number of bits 
are required in the representation of the coefficients of IIR 
filters as compared to their FIR counterparts. Hence, the CSD 
representation of the coefficients using 12, 16, 20, 24 and 32 
bits are considered in this example. Table V shows the number 
of FAs required to implement the multipliers of the filters of 
different orders (N) using direct method. Comparison of the 
number of FAs required in HCSE method and our CP-HCSE 
method is shown in Table VI. The FA requirement in VCSE 
and our CP-VCSE methods are listed in Table VII. Fig. 11 
shows the reduction of FAs achieved using various methods 
over the direct method in designing the elliptic IIR filter of 
order 13, for different wordlengths. 

Since the IIR filter coefficients are not symmetric, the 
horizontal subexpression techniques do not have the advantage 
of exploiting the coefficient symmetry as in FIR filter designs. 
Hence, both the vertical subexpression methods (VCSE [16] 
and our CP-VCSE) offer higher reduction than the horizontal 
subexpression techniques for wordlengths of 12 and 16 bits. 
However, for larger wordlengths (20, 24 and 32 bits), the 
horizontal subexpression techniques (HCSE [11] and our 
CP-HCSE) results in better reduction than their vertical 
counterparts. It can be seen that the reduction of FAs achieved 
using the HCSE method decreases for larger wordlengths, 
whereas our CP-HCSE technique results in a better reduction in 
such cases. In the case of VCSE method, the FA reduction 
decreases considerably for larger wordlengths (from 44% for 
12 bits to 19% for 32 bits). Though our CP-VCSE also shows a 
similar behavior for larger wordlengths, note that the reduction 
of FAs is only minimal (from 49.2% for 12 bits to 43% for 32 
bits). Our CP-VCSE technique offers the best reduction of FAs 
among all other methods for 12 and 16 bit implementations. In 
the case of wordlengths larger than 16 bits, our CP-HCSE 
technique offers the best reduction. From Fig. 11, it can be seen 
that the HCSE and VCSE method offer identical average FA 
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reductions (31%) for different wordlengths, over the direct 
method.  The average FA reductions offered by our CP-HCSE 
and CP-VCSE techniques are almost identical (44.4% and 
44.8% respectively). 

We have examined the reduction of FAs for IIR filters with 
different pass-band and pass-band edges as well as various 
stop-band ripples. In addition to elliptic filters, Butterworth and 
Chebyshev IIR filters were also examined. It has been noted 
that our CP methods result in considerable reduction of FAs in 
all these cases irrespective of the filter specifications. Thus, the 
simulation results of FIR and IIR filters clearly illustrate that 
our coefficient-partitioning techniques (CP-HCSE and 
CP-VCSE) offer the best reduction of FAs than 
minimum-adder implementation methods using HCSE [11] and 
VCSE [16]. Based on the simulation results, the following 
guidelines for choosing the best implementation method from 
our CP-HCSE and CP-VCSE methods can be formulated. 
1. The CP-HCSE technique offers the best FA reduction for 
designing FIR filters than the CP-VCSE method except in the 
case where the coefficient wordlength is smaller (8 bits). In 
most practical filter applications, the frequency response of the 
filter will deteriorate if the coefficient is coded using a 
wordlength of 8 bits. This deterioration is minimal only for 
filters with fewer taps (typically, less than 15 taps). Therefore, 
in such cases the CP-VCSE technique can be adopted since it 
offers better reduction than the CP-HCSE method when the 
coefficient wordlength is 8 bits. For filters with taps more than 
fifteen, larger wordlengths (12, 16 and 24 bits) are required to 
meet the desired magnitude response. Hence, the CP-HCSE 
method would be the best choice in such cases.     
2. In the case of IIR filters, the CP-VCSE method offers the 
best reduction for coefficient wordlengths of 12 and 16 bits. 
For larger wordlengths, the CP-HCSE method offers a slightly 
better reduction than the CP-VCSE method.   

VI. CONCLUSIONS 
We have presented a coefficient-partitioning method to 

implement low-complexity digital filters with a minimum 
number of FAs. While the optimization criterion in 
conventional low-complexity filter implementation methods is 
the number of adders, the focus of our method is to minimize 
the number of FAs required for each adder. Our 
coefficient-partitioning algorithm is combined with the pseudo 
floating-point coefficient-coding scheme and applied to 
optimize the common subexpression elimination methods.  
Design examples show that our methods offer considerable 
reduction of FAs when compared with HCSE [11] and VCSE 
[16] methods. The FA reduction achieved using our methods is 
substantially higher for higher order filters. 
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Fig. 3. Horizontal Subexpressions in 6-tap FIR filter. 
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Fig. 1. FIR filter implementation using CSE. 
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Fig. 5. Vertical Subexpressions in 6-tap FIR filter. 
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1x

2x

3x

⊕
2 

⊕
2

-

⊕ ⊕
⊕

)11(  )11(

)16( )16( ⊕
⊕

)18(
⊕
)15(

2 

4 4 6

2

- -
7

6

)25(

)13( ⊕)12(

2

3

⊕)23(

⊕D D ⊕

⊕ ⊕D D ⊕ D y

Critical path = 3 adder-steps 

)0(y  )1(y

@ 

@ @
Sharing of 
symmetric parts 
indicated as @ Multiplier 

Block 

⊕

4

-
)24(

8 10



Paper No. 2032 11

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Filter length 
(N) 

Number of FAs in Direct Method 

 8-bit 12-bit 16-bit 20-bit 24-bit 
10 162 341 550 648 972 
30 222 588 1141 1662 2260 
50 303 940 1690 2774 3832 
80 327 1429 2617 4022 5820 

120 414 1581 3462 5766 8205 
250 663 2189 5294 9810 14948 
400 947 2672 6414 11936 19717 

 
N 

Number of FAs in HCSE Method [11] Number of FAs in CP-HCSE Method 

 8-bit 12-bit 16-bit 20-bit 24-bit 8 -bit 12-bit 16-bit 20-bit 24-bit 
10 122 217 357 421 618 114 181 292 335 468 
30 213 372 775 1197 1557 182 311 597 856 1128 
50 182 615 1097 1778 2444 162 473 831 1243 1671 
80 237 839 1586 2482 3719 211 612 1154 1725 2468 
120 297 746 2181 3748 5506 255 560 1499 2444 3495 
250 467 1294 3319 6004 9627 399 930 2118 3767 5740 
400 827 1510 3919 7413 12402 706 1050 2540 4607 7256 

Fig. 6. Proposed filter structure using CP-VCSE of Fig. 5. 
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Table I Number of FAs required to implement the FIR filters using direct method 

Table II Number of FAs required to implement the FIR filters using HCSE and proposed CP-HCSE methods
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N 

Number of FAs in VCSE Method [16] Number of FAs in CP-VCSE Method 

 8-bit 12-bit 16-bit 20-bit 24-bit 8 -bit 12-bit 16-bit 20-bit 24-bit 
10 104 233 467 566 804 95 225 356 411 539 
30 177 389 950 1419 2000 149 375 679 979 1546 
50 154 624 1306 2272 3119 137 491 990 1731 2521 
80 203 885 2007 3097 4732 174 870 1395 2156 3329 
120 247 787 2597 4612 6531 217 764 1818 3096 4726 
250 391 1357 3865 6916 11839 334 1353 2753 4827 7967 
400 653 1598 4662 8689 15773 495 1601 3188 6159 10588 

Table III Number of FAs required to implement the FIR filters using VCSE and proposed CP-VCSE methods

Fig. 8. Reduction of full adders over the direct method in designing the FIR filter with 
coefficient wordlength of 16 bits, for different number of filter taps. 

Fig. 7. Reduction of full adders achieved using various methods over the direct method in 
designing the FIR filter of length 50, for different wordlengths. 
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 FIR2 FIR4 FIR6 
Method [11] [15] CP-SCS

E 
[11] [15] CP-SCS

E 
[11] [15] CP-SCS

E 
NFA 460 390 300 660 620 570 1234 1042 904 
CPL 4 3 3 3 2 2 4 4 4 

Fig. 9. Reduction of full adders achieved using proposed CP-HCSE technique over the HCSE 
method [11] for different number of FIR filter taps. 

Fig. 10. Reduction of full adders over the direct method in designing the FIR filter of wider transition 
band with coefficient wordlength of 16 bits, for different number of filter taps. 

 

Table IV Comparison of the reduction of FAs and critical path lengths in realizing the FIR filters in [15]
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Filter order (N) Number of FAs in Direct Method 
 12-bit 16-bit 20-bit 24-bit 32-bit 

5 320 589 858 1222 2007 
7 437 805 1043 1589 2636 
9 716 1117 1657 2295 3596 

11 1075 1635 2331 3001 4485 
13 1462 1956 2796 3514 5218 
15 1826 2543 3339 4283 6624 

N Number of FAs in HCSE Method [11] Number of FAs in CP-HCSE Method 
 12-bit 16-bit 20-bit 24-bit 32-bit 12-bit 16-bit 20-bit 24-bit 32-bit 
5 261 475 637 875 1423 227 375 484 650 1022 
7 314 588 798 1119 1866 278 498 615 820 1312 
9 516 751 1067 1487 2402 455 623 837 1106 1722 

11 789 1115 1559 2017 3104 706 943 1259 1558 2292 
13 917 1297 1907 2425 3872 845 1112 1552 1912 2849 
15 1200 1752 2324 2827 4769 1076 1647 1867 2214 3524 

N Number of FAs in VCSE Method [16] Number of FAs in CP-VCSE Method 
 12-bit 16-bit 20-bit 24-bit 32-bit 12-bit 16-bit 20-bit 24-bit 32-bit 
5 212 417 722 1078 1722 163 327 489 725 1158 
7 267 525 883 1302 2206 213 423 664 906 1429 
9 430 658 1276 1866 3035 365 593 901 1265 2000 

11 659 956 1655 2278 3821 547 842 1366 1615 2565 
13 823 1082 2170 2681 4206 737 972 1613 1954 2953 
15 1057 1460 2468 3349 5571 887 1246 1990 2377 3796 

Table V Number of FAs required to implement the  Elliptic IIR filters using direct method

Table VI Number of FAs required to implement the Elliptic IIR filters using HCSE and proposed CP-HCSE 

Table VII Number of FAs required to implement the Elliptic IIR filters using VCSE and proposed CP-VCSE 
th d

Fig. 11. Reduction of full adders achieved using various methods over the direct method in 
designing the elliptic IIR filter of order 13, for different wordlengths. 


