
Paper No. 2032 1

Abstract— The algorithms that minimize the complexity of
multiplication in digital filters focus on reducing the number of
adders needed to implement the coefficient multipliers. Previous
works have not analyzed the complexity of each adder, which is
significant in low-complexity implementation. A multiplication
algorithm for low complexity implementation of digital filters
with a minimum number of full adders and improved speed is
proposed here. We exploit the fact that when multiplication is
implemented using shifts and adds, the adder width can be
minimized by limiting the shifts of the operands to shorter lengths.
The coefficient-partitioning algorithm proposed here minimizes
the shifts of the operands of the adders by partitioning each
coefficient into two sub-components. We show that by combining
three methods: the coefficient-partitioning algorithm, an efficient
coefficient-coding scheme known as pseudo floating-point
representation and the well-known common subexpression
elimination (CSE), the number of full adders required in each
adder of the multiplier can be reduced considerably. Design
examples show that our method offers an average full adder
reduction of 30% for finite impulse response (FIR) filters and
20% for infinite impulse response (IIR) filters over CSE methods.

Index Terms— Adder complexity, Common subexpression
elimination, Pseudo floating-point representation,
Coefficient-partitioning, FIR filters, IIR filters.

I. INTRODUCTION
IGITAL filtering finds extensive application in mobile
communication systems to perform various functions such
as channelization, channel equalization, matched filtering

and pulse shaping. Low-complexity and high-speed digital
filtering for mobile computing and communication applications
generally require dedicated hardwired implementations of the
filters. Although programmable filters based on digital signal
processor cores offer the advantage of flexibility and high
sampling rates, they are not suitable for mobile applications
that demand high throughput and low-power consumption.
Since flexibility of a multiplier is not necessary in such
applications, application specific digital filters are frequently
adopted to meet the constraints of performance and power
consumption. However, these filters employ a large number of
multipliers that lead to excessive area and power consumption.
Therefore, the problem of designing digital filters with small

Manuscript received March 1, 2004.
The authors are with the School of Computer Engineering, Nanyang

Technological University, Singapore 639798 (phone: 65-67906258; fax:
65-67926559; e-mail: asvinod@ntu.edu.sg; asmklai@ntu.edu.sg).

area and low-power consumption has received a great deal of
attention in the last decade.

A. Related Work
The number of additions (subtractions) used to implement the

coefficient multiplications determines the complexity of digital
filters. Many approaches have been proposed in literature for
reducing the number of adders (subtractors) in the multipliers
of digital filters. These approaches include coefficient coding
using efficient arithmetic schemes [1, 2], coefficient
optimization techniques [3]-[5], distributed arithmetic
techniques [6, 7], ROM based designs [8, 9] and common
subexpression elimination (CSE) techniques [10]-[18]. Among
these approaches, the CSE techniques in [10]-[18] produced the
best hardware reduction since it deals with the multiplication of
one variable (input signal) with several constants (coefficients).
The CSE techniques focus on eliminating redundant
computations in multiplier blocks by employing the most
common subexpressions consisting of two-nonzero bits. In
general, techniques [1]-[18] discuss the complexity of
multipliers in terms of the reduction of the number of adders
and the critical path. The methods in [1]-[18] have not
addressed the issue of minimizing the complexity of each adder
of the multiplier, which is significant in low-complexity and
high-speed implementations. The differential coefficient
method DCM [19] uses differential coefficients to multiply
with inputs and compensates the effect of differential
coefficients by adding the stored partial product of previous
computation. Since differential coefficients have shorter word
length, the resulting design and output can also use shorter
word length, and thus can reduce power consumption.
However, this method results in a lot of overheads, which is
proportional to the product of the order of difference and filter
tap number. The main idea in [20] is reordering computations
and identifying common computations that maximize
computation sharing between different multipliers. However
the method in [20] offers only a slight improvement in
reduction of adders (11%) over the CSE method [11].
Moreover, this method results in an increase in delay,
corresponding to the delay of one adder-step on average.

In our recent work [21], we have analyzed the complexity of
implementation in terms of full adders (FAs) required for each
multiplier of the filter. Two techniques for optimizing the CSE
methods to implement low-complexity FIR filters have been
proposed in [21]. These techniques are based on the extension
of conventional two-nonzero bit (2-bit) common
subexpressions (CS) in [10] - [18] to form three-nonzero bit
and four-nonzero bit super-subexpressions (called 3-bit and

An Efficient Coefficient-Partitioning Algorithm
for Realizing Low Complexity Digital Filters

A. P. Vinod, Member, IEEE and Edmund M-K.Lai, Senior Member, IEEE

D

Paper No. 2032 2

4-bit SS, respectively) by exploiting identical shifts between a
2-bit bit CS and a third nonzero bit, or between two 2-bit CS.
These super-subexpressions (SS) eliminate redundant
computations of two-nonzero bit CS and hence reduce the
number of adders. Since employing SS reduces the number of
adders, the number of FAs is also reduced correspondingly –
this is the basic approach adopted in [21]. However, it must be
noted that the formation of 3-bit and 4-bit SS is based on the
occurrence of 2-bit CS with identical shifts between them.
Therefore, the main limitation of the method in [21] is its
dependence on the statistical distribution of shifts between the
2-bit CS in the CSD representations of LPFIR filter
coefficients. It has been shown in [21] that the number of SS
grows linearly with the wordlength and hence this technique is
more advantageous only when the coefficient wordlength is
relatively larger. Moreover, the routing complexity of the
method in [21] is higher than that of the 2-bit CSE techniques in
[10]-[18] as the former method has more number of
subexpressions.

In this paper, we propose an efficient coefficient-partitioning
(CP) algorithm to implement the multipliers of digital filters
with a minimum number of FAs. We combine three techniques:
the CP algorithm, the pseudo floating-point representation and
the CSE, to reduce the number of FAs. The FA reduction
techniques proposed in this paper do not employ
super-subexpressions and hence they do not have the
dependence on statistical distribution of shifts between the 2-bit
CS. Moreover, our method offers hardware reduction even in
the case of filter coefficients with smaller wordlengths. The
problem that we address here is how to minimize the number of
FAs required in each adder of a minimum-adder filter structure.

The rest of the paper is organized as follows. In section 2, we
briefly review the complexity analysis of coefficient multipliers
[21] and then present our coefficient-partitioning algorithm.
The techniques for optimizing the horizontal and vertical CSE
methods by employing the coefficient-partitioning algorithm
are presented in section 3. In section 4, we analyze the
complexity of implementation of our method. Several design
examples of FIR and IIR filters are presented in section 5.
Section 6 provides our conclusions.

II. THE COEFFICIENT-PARTITIONING ALGORITHM
For completeness, a review of the complexity of multiplier

block (MB) implementation in terms of FAs required for each
multiplier of the filter that we formulated in [21] is presented
here. Further, we present our coefficient-partitioning
algorithm, and show that the FA requirement can be reduced
considerably using our method.

A. Adder Complexity
An adder that adds two n-bit numbers requires at the most

)1(+n FAs to compute the sum. We consider ripple carry
adder (RCA) through out the paper on account of its low power
consumption. Even if carry look-ahead adder (CLA) is
considered on account of its improved speed, the full adder
requirement of CLA is identical to that of RCA (the difference
is that CLA will have an extra carry look-ahead logic to reduce
the delay at the cost of more power consumption). The area,

power, and speed of an adder depend on the adder width,
).1(+n Therefore, the number of FAs required to implement

the multipliers must be minimized. Filter coefficients in CSD
form with wordlengths up to 24-bits are considered for
analyzing the adder complexity. Since no adjacent bits in CSD
are one’s, a 24-bit CSD number can have a maximum of 12
nonzero bits and hence at the most twelve nonzero operands
could occur in multiplication.
Case I: Odd number of operands: The number of FAs, ,0N
required to compute the output corresponding to a coefficient
with n operands can be determined using the expression [21]:

++++++++++=)1()1()32()1()1(6534312 rrarrarNo
)32()1()1()63()32(1191097875 +++++++++ rarrarra (1)

where nr is the range (number of bits) of the nth operand and
sia are equal to zero except ,2−na which is 1.

Case II: Even number of operands: The number of FAs,),(eN
required to compute the output corresponding to a coefficient
with n operands is given by [21]:

)()63()()32()1('
11018

'
06042 crcrcrcrrNe +++++++++=

)63(12 ++ r (2)

where




≠
=

≡
61

6for ,2
0 , n

n
c ,





≠
=

≡
61

6for ,5.1'
0 , n

n
c ,

101

10for ,2
1





≠
=

≡
, n

n
c and .

101
10for ,5.1'

1




≠
=

≡
, n

n
c

Note that (1) and (2) are same as in [21], except that we use the
notation nr here instead of ns and range is same as span in
[21]. Also, here we assume that addition of two n-bit numbers
requires at the most)1(+n FAs whereas the assumption in
[21] was n FAs (overflow case was ignored in [21].

The computation of FAs using (1) and (2) can be illustrated
through an example. Consider the CSE implementation of the
filter tap, .0101010000101001.0=kh The pattern [1 0 1] is
present thrice, which can be expressed as a common
subexpression (CS):

 2112 >>+= xxx (3)
Using the CS given by (3), the output of the filter can be
expressed as

 14105 222 >>+>>+>>= xxxyk (4)
The numbers of operands)(n in (3) and (4) are 2 and 3
respectively. Therefore, it requires 11)1(2 =+r FAs for
computing (3) and 482622)1()1(32 =+=+++ rr FAs for
(4) as shown alongside the adders ,1A 2A and 3A in Fig. 1.
The numerals in brackets alongside the adders indicate the
number of FAs used in the adder. The number of FAs required
for computing ky in CSE implementation is the sum of FAs
required for the adders ,1A 2A and ,3A which is 59. Using (1)
and (2), it can be computed that the direct implementation (i.e.,
shift and add method without using CSE) requires 110 FAs.
Thus, the CSE implementation offers 46% reduction of FAs in
this case.

Paper No. 2032 3

B. Coefficient-Partitioning Approach
The key idea in our approach is to reduce the ranges of the

operands so that the adder width can be reduced which in turn
minimizes the number of FAs. In this section, we show that by
encoding the filter coefficients using the pseudo floating-point
arithmetic scheme, the ranges of the operands can be reduced
considerably. Further, we present a novel
coefficient-partitioning algorithm, which offers substantial
reduction of FAs in implementing the pseudo floating
point-coded coefficient multiplier when combined with the
CSE method.
The general representation of CSD for the ith filter coefficient
that has a wordlength B is [2]:

 ∑=
−

=

1

0
2

B

j

a
i

ijh (5)

The Pseudo Floating-Point (PFP) representation [22] of (5) is:












∑=∑=
−

=

−

=

− 1

0

1

0
2.2 2.2 000

B

j

caB

j

aaa
i

ijiiijih (6)

where .0iijij aac −= The term 0ia is known as the shift and

the upper limit value,)(0)1(iBi aa −− , is known as the span.

Instead of expressing the coefficients using B-bit CSD, it can be
expressed as a (shift, span) pair using fewer bits. The
coefficient, ,kh in the above example can be represented in

PFP as).222222(2 11975205 −−−−−− +++++ In this

expression, the term 52− is the shift part (implying ‘right shift
by 5’), and the bracketed term is the span part. The shifts are
less complex since they can be hardwired. Therefore, only 3
bits are needed for storing the shift value (CSD representation
of 5 is 101) and 11 bits for the span value (bracketed term).
Hence kh can be represented in PFP using 14 bits, whereas its
CSD representation requires 16 bits. (Note that further
reduction of wordlength is possible by hard wiring the shifts in
ASIC). Fig. 2 shows the implementation of the filter tap in
using PFP coded coefficients. It requires 85 FAs to implement
the multiplier block adders (MBAs), (1A to 5A), in Fig. 2.
Though this FA requirement is less than that of direct
implementation (110 FAs), note that the PFP implementation
needs more FAs when compared with the CSE method in Fig.
1. The span contributes significantly more to the wordlength
requirement than the shift in PFP coding. Therefore, we
propose to reduce the ranges of the span component using
coefficient-partitioning.

C. Full Adder Reduction by Coefficient-Partitioning
The basic idea in this approach is to reduce the range of the

span part of PFP by partitioning it into two sub-components,
called sub-filters. We shall now show that the FA requirement
can be drastically reduced by coding the sub-filters using PFP.
Definition 1 (Order): The most significant bit of a filter
coefficient represented in CSD form is defined as the order of
the coefficient. For instance, the order of a coefficient

16141186 22222)(−−−−− ++++=nh is .2 6−
We first express each CSD coefficient using CS and the
resulting expression is then coded using PFP representation.

Let M represents the span of the PFP representation. The span
part is partitioned into two sub-components (sub-filters) of
length 2/M (or two sub-components of lengths  2/M and

 2/M if M is odd). The latter sub-component is then scaled
by its order to reduce its span. The ‘partitioned and scaled’
versions of the PFP coefficients thus obtained can be added
using fewer numbers of FAs since their ranges are reduced.
Consider the same example of the filter tap shown in Fig. 1.
Using PFP, the filter output obtained in CSE method (4) can be
expressed as)22(2 2

9
2

5
2

5 xxx −−− ++ . In this case, the span
)(M is 9 and the shift is 5. Partitioning the span part into two

sub-filters,)(1 nh and),(2 nh we have

 21)(xnh = and 2
9

2
5

2 22)(xxnh −− += (7)
where)(nh is the sum of)(1 nh (MSB half) and)(2 nh (LSB

half). The LSB sub-filter is further scaled by its order, ,2 5−

and expressed as)2(2)(2
4

2
5

2 xxnh −− += . Fig. 3 shows the
implementation of the filter tap using our
coefficient-partitioning (CP) method. If 1x is an 8-bit
quantized signal, the ranges of the operands corresponding to
the span part of)(2 nh are 11 and 15 and hence the adder 2A
requires at the most 16 FAs. Similarly, the ranges of the
operands of 3A are 11 and 21. Hence 3A require 22 FAs.
Thus, when compared with the direct implementation, the
adders 2A and ,3A have shorter widths since the ranges of

their operands are shorter. The shift 52− of)(2 nh and that of

the final expression,),22(2 2
9

2
5

2
5 xxx −−− ++ are performed

after the addition stages as shown alongside the data paths at
the outputs of adders 2A and 3A respectively. The data along
the signal paths sib are shown in the table in Fig. 3. Our
method requires only 49 FAs to implement the filter tap, which
is a reduction of 17% compared with conventional CSE
implementation [11]. The MB delay in our CP method and that
of the CSE method are identical (3 adder-steps).

III. OPTIMIZATION OF HORIZONTAL AND VERTICAL CSE BY
COEFFICIENT-PARTITIONING

 There are two classes of CSE methods proposed to tackle the
MCM problem in digital filters. The Horizontal Common
Subexpression Elimination (HCSE) utilizes the most common
horizontal subexpressions that occur within each coefficient to
eliminate redundant computations [11]-[15]. In general, these
methods use Hartley’s [11] two most common horizontal
subexpressions (HS), i.e., [1 0 1] and [1 0 –1] and their negated
versions. The Vertical Common Subexpression Elimination
(VCSE) [16] utilizes the vertical subexpressions (VS) that
occur across the adjacent coefficients to tackle the MCM. The
HCSE method offers better reduction of adders for filters
whose coefficients are coded using relatively larger
wordlengths (≥ 16 bits) whereas in applications that require
only shorter wordlengths, the VCSE method is found to be
better. In this section, we show that our CP method can be

Paper No. 2032 4

employed to optimize the HCSE (CP-HCSE technique) and
VCSE (CP-VCSE technique) methods to achieve further
reduction of FAs. We use Harley’s HS, [1 0 1] and [1 0 –1] in
our CP-HCSE method and the VS, [1 1], [1 –1], [1 0 1] and [1 0
–1] in CP-VCSE method. From the extensive examples we
worked out on CSD representations of FIR and IIR filter
coefficients, it has been observed that the above-mentioned
subexpressions occur the most (around 70%). Note that other
subexpressions such as [1 0 0 1] and [1 0 0 –1] also occur in
CSD coefficients. However these subexpressions occur only
fewer times. It has been shown in [11] that it is
counter-productive to calculate and reuse such subexpressions,
since it increases the complexity of the data-flow graph. On the
other hand, using the most common subexpressions will have
little adverse effect on routability.

A. The CP-HCSE Technique
In this section, we discuss the implementation of a LPFIR filter
using the CP-HCSE technique and compare the number of FAs
required with that of the HCSE method [11]. A 6-tap FIR filter
designed using Parks-McClellan algorithm [23] is considered
to illustrate our method. The pass-band and stop-band edges of
the filter are π2.0 and π25.0 respectively. The 16-bit CSD
form of the coefficients is shown in Fig. 4. The numbers in the
first row of Fig. 4 represent the number of bitwise right shifts.
The number of FAs required in direct method obtained using
(1) and (2) is 317. The HS, [1 0 1] and [1 0 –1], shown inside
the rectangles in Fig. 4 are given by:

 2112 >>+= xxx and 2113 >>−= xxx (8)
With these HS, the output of the filter in HCSE method [11] can
be represented as

+−+−++++ −−−−−−]1[2]1[22222 2
8

3
2

3
14

2
10

3
6

1
2 xxxxxx

+−−−+ −−]1[2]1[2 1
16

3
12 xx +−−− −−]2[2]2[2 1

5
1

2 xx

+−−−+−−− −−−−]3[2]3[2]2[2]2[2 1
5

1
2

1
15

1
9 xxxx]3[2 1

9 −− x

]4[2]4[2]4[2]3[2 3
12

2
8

3
2

1
15 −+−+−+−− −−−− xxxx

+−+−+−− −−−]5[2]5[2]4[2 3
6

1
2

1
16 xxx

]5[2]5[2 3
14

2
10 −+− −− xx (9)

The number of FAs required to implement the MBAs obtained
using (1) and (2) is 227 using HCSE. Using CP-HCSE, the
filter output (9) can be expressed as

()++++ −−−−)2(222 3
4

2
8

3
4

1
2 xxxx

()+−−−+−+− −−−−])1[2]1[(2]1[2]1[2 1
4

3
10

2
6

3
2 xxxx

()+−−−+−−− −−−−])2[2]2[(2]2[2]2[2 1
6

1
7

1
3

1
2 xxxx

()+−−−+−−− −−−−])3[2]3[(2]3[2]3[2 1
6

1
7

1
3

1
2 xxxx

()+−−−+−+− −−−−])4[2]4[(2]4[2]4[2 1
4

3
10

2
6

3
2 xxxx

()])5[2]5[(2]5[2]5[2 3
4

2
8

3
4

1
2 −+−+−+− −−−− xxxx (10)

The filter structure using the CP-HCSE method is shown in Fig.
4. Only 184 FAs are required using this technique. Note that the
HCSE method offers a FA reduction of 28% over direct method
whereas the reduction achieved using our CP-HCSE method is
42%. The critical path lengths are identical (3 adder-steps) in
both methods.

The CP-HCSE procedure is as follows.
Step 1) Design the filter of length N according to the desired
specification.
Step 2) Obtain the CSD representation of the

infinite-precision coefficients for a desired
wordlength. Set .0=k

Step 3) Identify the HS [1 0 1] and [1 0 –1] and their negated
versions in).(kh Express the filter output
corresponding to the coefficient)(kh using HCSE.

Step 4) Express the HCSE output corresponding to)(kh in
PFP. Set .spanM =

Step 5) Partition the span part into two sub-filters of length
2/M (or two sub-components of lengths  2/M

and  2/M if M is odd). Scale the latter subfilter by
its order.

Step 6) Increment k. If ,Nk ≠ go to Step 3. Otherwise,
terminate the program.

B. The CP-VCSE Technique
In this section, we apply our CP technique to VCSE method

[16]. The filter coefficients in previous example (Fig. 3) are
used here to illustrate the CP-VCSE technique. Fig. 5 shows the
VS present in the coefficient set. The VS, [1 1] and [1 –1],
shown inside the rectangles in Fig. 5 are given by:

]1[114 −+= xxx and]1[115 −−= xxx (11)
An inherent drawback of the VCSE method is its inability to

completely exploit the symmetry of FIR filter coefficients for
efficient implementation of the filter. In the case of HCSE
method, since all the bits forming an HS exist within the
coefficient, its symmetric counter- part can be easily
implemented using delays and structural adders. However, the
bits that form VS in VCSE method occur across the
coefficients and hence the symmetry is destroyed when the bits
are of opposite sign [12]. Hence in VCSE implementations,
extra adders are required to obtain the symmetric part of the
coefficients when more than one VS with bits of opposite sign
exist. Due to this constraint, the VCSE implementation requires
more adders (thirteen in this case) than the HCSE method
(eleven), which will in turn increases the number of FAs and
the MB delay. Using (1) and (2), it can be computed that 291
FAs are needed for VCSE implementation. Fig. 6 shows the
filter structure using our CP-VCSE method. Our CP-VCSE
method needs 254 FAs, which is a reduction of 20% over the
direct method (317 FAs are required in direct method) whereas
the reduction achieved using the VCSE method is only 8%. The
critical path lengths are identical (5 adder steps) in above
methods. The reduction of FAs as well as speed performance in
vertical subexpression methods (both VCSE and our
CP-VCSE) is less than that of the horizontal subexpression
methods (HCSE and CP-HCSE). Therefore, the vertical
subexpression methods offer better reduction over the
horizontal subexpression methods in implementing FIR filters
only when the coefficient wordlength is relatively smaller.
However, in the case of IIR filters, the requirement of adders in
horizontal subexpression methods are also higher since the
filter coefficients are not symmetric. Hence, the reductions

Paper No. 2032 5

offered by vertical subexpression methods are improved in
implementing IIR filters than their FIR counterparts.

The CP-VCSE procedure is as follows.
Step 1) Design the filter of length N according to the desired
specification.
Step 2) Obtain the CSD representation (in matrix form) of the

N infinite-precision coefficients,)0(h to
),1(−Nh for a desired wordlength. For example, let us

consider two cases, i.e., case-1: N is 10 (even
number of coefficients,)0(h to)9(h) and case 2: N
is 9 (odd number of coefficients,)0(h to)8(h). Set

.0=k
Step 3) Identify the VS [1 1], [1 –1], [1 0 1] and [1 0 –1] and

their negated versions that exist across the
coefficients,)1(),(+khkh and)2(+kh . (Note that
the algorithm will identify the VS across the
coefficients,)1(),0(hh and)2(h in the first iteration.
In the second iteration, i.e., when k is incremented by
one in Step 4, it will examine for the VS occur across
the coefficients,)2(),1(hh and),3(h after excluding
the VS already identified in)1(h and)2(h). Express
the filter output corresponding to these coefficients
using VCSE.

Step 4) Set .1+= kk If ()32/ −≤ Nk for even N and

 () 32/ −≤ Nk for odd N, go to Step 3. Otherwise,
go to Step 5. Thus, at the completion of this iteration,
the algorithm will identify all the VS present in the
first half of the symmetric coefficient set. Considering
the example, this first symmetric half set includes

)0(h to)4(h for 10=N (case-1) and)0(h to)3(h
for 9=N (case-2).

Step 5) Set .1−= Nk Identify the VS that exist across the
coefficients,)1(),(−khkh and).2(−kh
(Considering case-1, the algorithm will identify the
VS across the coefficients,)8(),9(hh and)7(h in
the first iteration. In the second iteration, i.e., when k
is decremented by one in Step 6, it will examine for
the VS occur across the coefficients,)7(),8(hh and

),6(h after excluding the VS already identified in
)9(h and)8(h). Express the filter output

corresponding to these coefficients using VCSE.
Step 6) Set .1−= kk If ()2)2/(+≥ Nk for even N and

 () 3)2/(+≥ Nk for odd N, go to Step 5.
Otherwise, go to Step 7. Thus, the algorithm will
identify all the VS present in the second half of the
symmetric coefficient set. Considering the example,
this second symmetric half set includes)5(h to)9(h
for 10=N (case-1) and)5(h to)8(h for

9=N (case-2). Note that the central coefficient
 ()2/Nh (i.e.,)4(h in case-2) is excluded when the

number of coefficients is odd since it does not have a
symmetric counter part.

Step 7) Examine the VCSE expressions obtained in Step 4
(former symmetric half) and Step 6 (latter symmetric
half) for terms that have identical shifts and delays.
Obtain the VCSE expressions of the latter part from
the former part by using appropriate delay operations.
Finally, add those terms that are left out (terms that do
not have any common shift and delay).

Step 8) Obtain the PFP of each of the expressions obtained in
Step 7. Set spanM = . Partition the span part into two
sub-filters of length 2/M (or two sub-components of
lengths  2/M and  2/M if M is odd). Scale the
latter subfilter by its order. Terminate the program
when all the VCSE expressions are coded using
CP-VCSE.

IV. ADDER COMPLEXITY IN COEFFICIENT-PARTITIONING
The number of FAs required in CP method can be

obtained
by modifying (1) and (2) as follows. If 2x and 3x are the CS
obtained from the input ,1x and

jkx represents the data from

the set { }321 ,, xxx that has to be shifted corresponding to the
position of the j-th CSD bit, the general expression for filter
output corresponding to a coefficient)(nh of wordlength B is

 ∑=
=

−z

j
k

p
j j

j xsny
1

))(2()((12)

where { }, 1 0, ,1−∈js { },B 1, ,0∈jp and z is the

number of nonzero digits. If
1sp is the shift, (12) can be

expressed in PFP form as

 ∑=
=

−−− z

j
k

pp
j

p
j

sjs xsny
1

)())(2(2)(11 (13)

Partitioning the coefficient into two sub-components of lengths
 2/)(11 pspM z −= and  ,2/)(12 pspM z −= and scaling

the later part by its order, ,2 2sp− (13) can be written as































∑

+∑

=

=

−−−−

−−

=−

 2 2

 2

2)(
2

2
2

212
2

2

1
11

1

1
1

1

1

)(

)(

1

M

j
k

ppp
j

p

k
ppM

j
j

p

j
ssjs

j
sj

s

xs

xs

ny (14)

where  { }2/)(,......1,0)(
111 szsj pppp −∈− and

   { }.),...(12/)(,2/)()(
111212 szszszssj ppppppppp −+−−∈−−

 Let ∑
=

1

1 1 1

M

j
ja and ∑

=

2

2
21

M

j
jb represent the number of FAs

required to compute the terms, ,2
1

11
1

1
1

)(

1 j
sj

k
ppM

j
j xs −−

=
∑ and

2
212

2

2
2

)(

1
2

j
ssj

k
pppM

j
j xs −−−

=
∑ respectively, obtained using (1)

and (2). The total number of FAs required to compute (14) is

 n
M

j
j

M

j
j Fba +∑+∑

==

2

2

1

1 1 21 1 (15)

Paper No. 2032 6

where nF is the range of the last term of (14), i.e.,

.2)(1
z

sz
k

pp
j xs −−

 We have also examined the adder complexity reduction
achieved by partitioning the coefficient into more than two
sub-components. When the filter output expression (14)
(corresponding to partitioning into two halves) is implemented
using the parallel tree-structured addition, the inner shift

operation ,2 2sp− is performed just before the final-stage adder
of the tree. Therefore, the widths of the adders in the preceding

stages that compute the sum of the bracketed term of 22 sp− are
less and only the final-stage adder requires the highest width.
Assume that the coefficient is partitioned into n
sub-components, instead of two. The output expression (14)
can be written as

..............
22

2

2)(

2

2

2

212
2

2

1

1
1

11
1

1

1

)(

1

)(

+





















∑

+∑

=

=

−−−−

=

−−

−

jk

ssjs

j
sj

s

x

M

j

ppp
j

p

M

j
k

pp
j

p

s

xs

ny
















∑+

=

−−−− n

n
nj

nssnj
n

ns
M

j
k

ppp
j

p xs
1

)(122 (16)

 In this case, the widths of the adders in the
intermediate-stages of the tree-structure are larger since the

multiple inner shifts,),2, ,2 ,2(32 nsss ppp −−− in (16) need
to be performed prior to the intermediate additions. Hence,
each of these intermediate-stage adders would require more
FAs. Therefore, partitioning a coefficient into two halves offers
the best FA reduction than partitioning into multiple parts.
 The number of times each subexpression occurs is counted
by an exhaustive search. In HCSE method, this requires a time
complexity of)(2nO where n is the total number of nonzero
terms in the coefficient set [11]. Assume that there are N
coefficients and each coefficient has at the most B nonzero bits.
Thus, the total number of nonzero bits is)(BN × and time

complexity of HCSE algorithm is).)((2BNO × When
compared with HCSE, our method has an additional
complexity of coefficient-partitioning. Assume that W is the
coefficient wordlength, aW is the span of the PFP
representation and X is the position of the first nonzero bit
from the MSB. The maximum value of aW (i.e.,)max,aW is
W and the minimum value of X (i.e.,)minX is 1 (this is the
case when the MSB is a nonzero bit). In the case of a CSD
number, since no adjacent bits are ones, if a nonzero bit occurs
at),2(−W then the only possibility of occurrence of the next
nonzero bit is in the LSB position, i.e., at .W Note that if

,WX = it means that there is only one nonzero bit in the
coefficient and hence no adders are needed to compute the
output for that tap. Therefore, the maximum value of X (i.e.,

)maxX for any coefficient that has more than one nonzero bit is

).2(−W The additional complexity in our method is mainly on
the computation of shift differences of the LSB half of the PFP
coefficient. This is linearly related to the number of nonzero
terms in the LSB half. A PFP coefficient can have a maximum
of   2/)1(2/)minmax, −=− WXWa nonzero terms in its LSB
half after partitioning. Thus, the additional complexity of our
method for N coefficients is the search time to determine X as
well as to compute the shift differences of the LSB half, which
is given by  [][].2/)1()2(NWWO ×−+− The total time
complexity is
 +× 2)((BNO  [][]NWWO ×−+− 2/)1()2((17)
A comparison of the time complexity of our algorithm with that
of the HCSE [11] can be made through an example. Consider
the CSD coefficients in Fig. 3. In this case, N is 6, total number
of nonzero bits (i.e.,)BN × is 36 and W is 16. The complexity

of HCSE algorithm is .1296)36(2 =O Using (27), the
complexity of our method is 1428, which is only 10% more
than the HCSE method.

V. EXPERIMENTAL RESULTS
In this section, we present examples of implementing several

FIR and IIR filters using our algorithm. The proposed
CP-HCSE and CP-VCSE techniques are compared with HCSE
[11] and VCSE [16] methods and reductions of FAs are
determined.

A. FIR Filters
The FIR filters are designed using Parks-McClellan

algorithm. The normalized pass-band and the stop-band edges
of the filter are π2.0 and π25.0 respectively. The CSD
representation of the coefficients using 8, 12, 16, 20 and 24 bits
are considered. Direct method means the CSD implementation
without employing any CSE technique. Table I shows the
number of FAs required to implement the multipliers of the
filters of different lengths (N) using the direct method.
Comparison of the number of FAs required in HCSE method
[11] and our CP-HCSE method is shown in Table II. The FA
requirement in VCSE [16] and our CP-VCSE methods are
listed in Table III. Fig. 7 shows the percent reduction of FAs
achieved using various methods over the direct method in
designing the FIR filter of length 50, for different wordlengths.
Note that the VCSE [16] and the proposed CP-VCSE methods
offer better reduction than their horizontal counterparts (HCSE
[11] and our CP-HCSE respectively) only when the coefficient
wordlength is smaller (8 bits). For wordlengths larger than 8
bits, both the horizontal subexpression techniques result in
higher reduction than the vertical subexpression techniques.
The average reductions of VCSE and CP-VCSE are 26.5% and
42% respectively whereas these figures are 34.8% and 51.7%
for HCSE and CP-HCSE methods. This shows that our
methods offer a significant reduction of FAs in MB
implementations.

The reduction of FAs over the direct method in designing the
FIR filter whose coefficients are coded using 16-bit CSD, for
different number of filter taps are shown in Fig. 8. The average
reduction offered by the CP-HCSE method is 54%, which is the

Paper No. 2032 7

highest among all the techniques. The average reduction
achieved using the CP-VCSE method is 44.2% where as that of
the HCSE and the VCSE methods are 36.4% and 22.4%
respectively. Furthermore, Fig. 8 shows that our methods offer
higher reduction of FAs for higher-order filters. For example,
in the case of the filter with 10 taps, the reduction achieved
using our CP-HCSE technique (46.5%) is higher than that of
the HCSE method (35.2%) by 11.3%. On the other hand, for
the filter with 400 taps, these reductions are 60.6% and 38.7%
respectively. Thus, in the case of 400-tap filter, our CP-HCSE
method offers a reduction of 21.9% over the HCSE method.
This reduction is almost twice that for the filter with 10 taps.
 The reductions of FAs achieved using our CP-HCSE
technique over the HCSE method for different numbers of filter
taps are shown in Fig. 9. For wordlengths of 12 bits and above,
our method results in higher reduction as the filter order
increases. This illustrates that the use of shorter shifts by
partitioning the coefficient results in significant reduction of
FAs required to implement the low-magnitude end-coefficients
(end-coefficient here being defined as the first 4/N
coefficients,)0(h to  (),14/ −Nh of an FIR filter) of higher
order filters. Our CP-HCSE technique offers average FA
reductions of 26.5% and 32.8% over the HCSE method for the
16-bit and 24-bit cases respectively.
 We have examined the reduction of FAs for FIR filters of
various specifications. Our simulation results show that
reductions are identical to the above-mentioned design
example for filters of different pass-band and stop-band edges.
Furthermore, it has been observed that slightly better FA
reductions are achieved for filters with relatively wider
transition bands. As the transition band of the filter becomes
wider, the side-lobes of the impulse response decrease and
hence the magnitudes of the end-coefficients of)(nh will also
decrease. Hence, most of the nonzero bits of the CSD
representations of end-coefficients occur in the LSB part and
the use of shorter shifts in our method results in considerable
reduction of FAs. We illustrate this using an example of an FIR
filter whose transition band is wider than that in the previous
design example. The normalized pass-band and the stop-band
edges of the filter are π2.0 and π35.0 respectively. The
reduction of FAs over the direct method in designing the filter
whose coefficients are coded using 16-bit CSD, for different
number of filter taps are shown in Fig. 10. The average
reductions offered by the CP-HCSE and the CP-VCSE
methods are 58% and 47.2% respectively, whereas these
reductions were 54% and 44.2% for the filter in the previous
example. The reductions achieved using HCSE and VCSE
methods are almost identical in both cases. Thus, our
coefficient-partitioning methods offer improved FA reductions
when employed to implement filters with relatively wider
transition bands. It may also be noted that the critical path
lengths of filter structures obtained using our CP methods are
same as that of the CSE methods.

Though we use the CSE techniques for comparison
throughout the paper, it must be noted that our CP algorithm
can also be applied to minimum-adder multipliers designed
using other methods. Basically, the CP algorithm can optimize
the coefficient multipliers designed using any other complexity

reduction techniques to further minimize the number of FAs.
We have examined the reduction of FAs achieved when the CP
method is applied to the nonrecursive signed common
subexpression (SCSE) method [15]. The filters, FIR2 (order 16,
wordlength 16), FIR4 (order 25, wordlength 9) and FIR6 (order
60, wordlength 14), used in [15] are used here for comparison.
Table IV shows the comparison of the number of FAs (NFA)
and critical path lengths (CPL). Note that the SCSE method
optimized using our CP algorithm (CP-SCSE method) offers an
average FA reduction of 15% over the SCSE method. The
critical path lengths of these two methods are identical. These
examples illustrate that our approach offers a more general
solution for multiplier complexity reduction.

B. IIR Filters
We consider the implementation of elliptic IIR filters since

for a given set of specifications, it has a lower order than any
other IIR filter type. The normalized cutoff frequency (nω) of
the filter is 0.2, the pass-band ripple is 0.1dB and the stop-band
ripple is 50dB. The order of an IIR filter required to meet a
given frequency response specification is considerably less
than its FIR counterpart. However, IIR filters are more
sensitive to coefficient quantization as it may result in change
in pole locations that eventually causes higher quantization
error and limit cycle effect [23]. Therefore, more number of bits
are required in the representation of the coefficients of IIR
filters as compared to their FIR counterparts. Hence, the CSD
representation of the coefficients using 12, 16, 20, 24 and 32
bits are considered in this example. Table V shows the number
of FAs required to implement the multipliers of the filters of
different orders (N) using direct method. Comparison of the
number of FAs required in HCSE method and our CP-HCSE
method is shown in Table VI. The FA requirement in VCSE
and our CP-VCSE methods are listed in Table VII. Fig. 11
shows the reduction of FAs achieved using various methods
over the direct method in designing the elliptic IIR filter of
order 13, for different wordlengths.

Since the IIR filter coefficients are not symmetric, the
horizontal subexpression techniques do not have the advantage
of exploiting the coefficient symmetry as in FIR filter designs.
Hence, both the vertical subexpression methods (VCSE [16]
and our CP-VCSE) offer higher reduction than the horizontal
subexpression techniques for wordlengths of 12 and 16 bits.
However, for larger wordlengths (20, 24 and 32 bits), the
horizontal subexpression techniques (HCSE [11] and our
CP-HCSE) results in better reduction than their vertical
counterparts. It can be seen that the reduction of FAs achieved
using the HCSE method decreases for larger wordlengths,
whereas our CP-HCSE technique results in a better reduction in
such cases. In the case of VCSE method, the FA reduction
decreases considerably for larger wordlengths (from 44% for
12 bits to 19% for 32 bits). Though our CP-VCSE also shows a
similar behavior for larger wordlengths, note that the reduction
of FAs is only minimal (from 49.2% for 12 bits to 43% for 32
bits). Our CP-VCSE technique offers the best reduction of FAs
among all other methods for 12 and 16 bit implementations. In
the case of wordlengths larger than 16 bits, our CP-HCSE
technique offers the best reduction. From Fig. 11, it can be seen
that the HCSE and VCSE method offer identical average FA

Paper No. 2032 8

reductions (31%) for different wordlengths, over the direct
method. The average FA reductions offered by our CP-HCSE
and CP-VCSE techniques are almost identical (44.4% and
44.8% respectively).

We have examined the reduction of FAs for IIR filters with
different pass-band and pass-band edges as well as various
stop-band ripples. In addition to elliptic filters, Butterworth and
Chebyshev IIR filters were also examined. It has been noted
that our CP methods result in considerable reduction of FAs in
all these cases irrespective of the filter specifications. Thus, the
simulation results of FIR and IIR filters clearly illustrate that
our coefficient-partitioning techniques (CP-HCSE and
CP-VCSE) offer the best reduction of FAs than
minimum-adder implementation methods using HCSE [11] and
VCSE [16]. Based on the simulation results, the following
guidelines for choosing the best implementation method from
our CP-HCSE and CP-VCSE methods can be formulated.
1. The CP-HCSE technique offers the best FA reduction for
designing FIR filters than the CP-VCSE method except in the
case where the coefficient wordlength is smaller (8 bits). In
most practical filter applications, the frequency response of the
filter will deteriorate if the coefficient is coded using a
wordlength of 8 bits. This deterioration is minimal only for
filters with fewer taps (typically, less than 15 taps). Therefore,
in such cases the CP-VCSE technique can be adopted since it
offers better reduction than the CP-HCSE method when the
coefficient wordlength is 8 bits. For filters with taps more than
fifteen, larger wordlengths (12, 16 and 24 bits) are required to
meet the desired magnitude response. Hence, the CP-HCSE
method would be the best choice in such cases.
2. In the case of IIR filters, the CP-VCSE method offers the
best reduction for coefficient wordlengths of 12 and 16 bits.
For larger wordlengths, the CP-HCSE method offers a slightly
better reduction than the CP-VCSE method.

VI. CONCLUSIONS
We have presented a coefficient-partitioning method to

implement low-complexity digital filters with a minimum
number of FAs. While the optimization criterion in
conventional low-complexity filter implementation methods is
the number of adders, the focus of our method is to minimize
the number of FAs required for each adder. Our
coefficient-partitioning algorithm is combined with the pseudo
floating-point coefficient-coding scheme and applied to
optimize the common subexpression elimination methods.
Design examples show that our methods offer considerable
reduction of FAs when compared with HCSE [11] and VCSE
[16] methods. The FA reduction achieved using our methods is
substantially higher for higher order filters.

REFERENCES
[1] G. K. Ma and F. J. Taylor, “Multiplier policies for digital signal

processing,” IEEE ASSP Magazine, vol. 7, no. 1, pp. 6-20, Jan. 1990.
[2] D. Li, “Minimum number of adders for implementing a multiplier and its

application to the design of multiplierless digital filters,” IEEE Trans.
Circuits Syst., vol. 42, no. 7, pp. 453-460, July 1995.

[3] H. Samueli, “An improved search algorithm for the design of
multiplierless FIR filters with powers-of-two coefficients,” IEEE Trans.
Circuits Syst., vol. 36, no. 7, pp. 1044-1047, July 1989.

[4] Y. C. Lim and S. R. Parker, “Design of discrete coefficient-value linear
phase FIR filters with optimum normalized peak ripple magnitude,” IEEE
Trans. Circuits Syst., vol. 37, no. 12, pp. 1480-1486, Dec. 1990.

[5] C.-L. Chen and A. N. Willson, “A trellis search algorithm for the design
of FIR filters with signed-powers-of-two coefficients,” IEEE Trans.
Circuits Syst. II, vol. 46, no. 1, pp. 29-39, Jan. 1999.

[6] C. F. Chen, “Implementing FIR filters with distributed arithmetic,” IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. 33, no. 5, pp.
1318-1321, Oct. 1985.

[7] S. A. White, “Applications of distributed arithmetic to digital signal
processing: a tutorial review,” IEEE ASSP Magazine, vol. 6, no. 13, pp.
4-19, July 1989.

[8] T. Tjahjadi and W. Steenart, “Non-recursive digital FIR filter
implementation using stored square ROM multipliers,” in proc. IEEE
ICASSP, vol. 8, pp. 1196-1199, April 1983.

[9] J. I. Guo, C. M. Liu, and C. W. Jen, “The efficient memory-based VLSI
arrays for DFT and DCT,” IEEE Trans. Circuits Syst. II, vol. 39, no. 10,
pp. 723-733, Oct. 1992.

[10] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, “Synthesis of
multiplierless FIR filters with minimum number of additions,” in
Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design, Los Alamitos, CA: IEEE Computer Society
Press, 1995, pp. 668-671.

[11] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677-688, Oct.
1996.

[12] M. Yagyu, A. Nishihara, and N. Fujii, “Fast FIR digital filter structures
using minimal number of adders and its application to filter design,”
ICICE Trans. Fundam. Electron. Commun. Comput. Sci., no. 8, pp.
1120-1129, E79-A, 1996.

[13] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, “A
new algorithm for elimination of common subexpressions,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Syst.,
vol. 18, no. 1, pp. 58-68, January 1999.

[14] R. Pasko, P. Schaumont, V. Derudder, and D. Durackova, “Optimization
method for broadband modem FIR filter design using common
subexpression elimination,” in Proceedings on the 10th International
Symposium on System Synthesis, pp. 100-106, 1997.

[15] M. M. Peiro, E. I. Boemo, and L. Wanhammar, “Design of high-speed
multiplierless filters using a nonrecursive signed common subexpression
algorithm,” IEEE Trans. Circuits Syst. II, vol. 49, no. 3, pp. 196-203,
March 2002.

[16] Y. Jang and S. Yang, “Low-power CSD linear phase FIR filter structure
using vertical common sub-expression,” Electronics Letters, vol. 38, no.
15, pp. 777-779, July 2002.

[17] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,” IEE
Proceedings – G, vol. 138, no. 3, pp. 401-412, June 1991.

[18] A. G. Dempster and M. D. Mcleod, “Use of minimum adder multiplier
blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, pp.
569-577, Sept. 1995.

[19] N. Shakarayya, K. Roy and D.Bhattacharya, “Algorithms for low power
and high-speed FIR filter realization using differential coefficients” IEEE
Trans. Circuits Syst. II, vol. 44, pp. 488-497, June 1997.

[20] H. Choo, K. Muhammad and K. Roy, “Complexity reduction of digital
filters using shift inclusive differential coefficients” IEEE Transactions
on Signal Processing, vol. 52, no. 6, pp. 1760-1772, June 2004.

[21] A. P. Vinod and E. M–K. Lai, “On the implementation of efficient
channel filters for wideband receivers by optimizing common
subexpression elimination methods,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Syst., vol. 24, no. 2,
pp. 295-304, February 2005.

[22] A.P. Vinod, A.B. Premkumar and E. M-K. Lai, “An optimal Entropy
coding scheme for efficient implementation of pulse shaping FIR filters in
digital receivers,” Proceedings of IEEE International Symposium on
Circuits and Systs, vol. 4, pp. 229-232, May 2003.

[23] J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles,
Algorithms, and Applications. Prentice Hall, 1998.

Paper No. 2032 9

Fig. 3. Horizontal Subexpressions in 6-tap FIR filter.

Bit
shift

)(nh

-1

-2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16

)0(h 0 1 0 0 0 1 0 -1 0 1 0 1 0 1 0 -1

)1(h 0 1 0 -1 0 0 0 1 0 1 0 1 0 -1 0 -1

)2(h 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 -1 0

)3(h 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 -1 0

)4(h 0 1 0 -1 0 0 0 1 0 1 0 1 0 -1 0 -1

)5(h 0 1 0 0 0 1 0 -1 1 0 1 0 1 0 -1

Fig. 1. FIR filter implementation using CSE.

⊕
2

ky

⊕ DD

CS: 2112 >>+= xxx

⊕
5 10 14

⊕

A1 (11)

A2 (22)

A3 (26)

1x

Multiplier
Block

Critical path = 3 adder-steps

Fig. 2. Filter implementation using CP method.

Signal path Data

1b 2112 >>+= xxx (CS)

2b 2
4

222 24 xxxx −+=>>+

3b 95 222 >>+>>+ xxx

2
9

2
5

2 22 xxx −− ++=

ky 14105 222 >>+>>+>> xxx

2
14

2
10

2
5 222 xxx −−− ++

⊕
2

ky

⊕ D D

⊕
 4

5

⊕

A1 (11)

A2 (16)

A3 (22)

1x

Multiplier
Block

5

b1

b2

b3

Critical path = 3 adder-steps

Paper No. 2032 10

Fig. 5. Vertical Subexpressions in 6-tap FIR filter.

Bit
shift

)(nh

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16

)0(h 0 1 0 0 0 1 0 -1 0 1 0 1 0 1 0 -1

)1(h 0 1 0 -1 0 0 0 1 0 1 0 1 0 -1 0 -1

)2(h 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 -1 0

)3(h 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 -1 0

)4(h 0 1 0 -1 0 0 0 1 0 1 0 1 0 -1 0 -1

)5(h 0 1 0 0 0 1 0 -1 1 0 1 0 1 0 -1

Fig. 4. Proposed filter structure using CP-HCSE of Fig. 3.

1x

2x

3x

⊕
2

⊕
2

-

⊕ ⊕
⊕

)11()11(

)16()16(⊕
⊕

)18(
⊕
)15(

2

4 4 6

2

- -
7

6

)25(

)13(⊕)12(

2

3

⊕)23(

⊕D D ⊕

⊕ ⊕D D ⊕ D y

Critical path = 3 adder-steps

)0(y)1(y

@

@ @
Sharing of
symmetric parts
indicated as @ Multiplier

Block

⊕

4

-
)24(

8 10

Paper No. 2032 11

Filter length
(N)

Number of FAs in Direct Method

 8-bit 12-bit 16-bit 20-bit 24-bit
10 162 341 550 648 972
30 222 588 1141 1662 2260
50 303 940 1690 2774 3832
80 327 1429 2617 4022 5820

120 414 1581 3462 5766 8205
250 663 2189 5294 9810 14948
400 947 2672 6414 11936 19717

N

Number of FAs in HCSE Method [11] Number of FAs in CP-HCSE Method

 8-bit 12-bit 16-bit 20-bit 24-bit 8 -bit 12-bit 16-bit 20-bit 24-bit
10 122 217 357 421 618 114 181 292 335 468
30 213 372 775 1197 1557 182 311 597 856 1128
50 182 615 1097 1778 2444 162 473 831 1243 1671
80 237 839 1586 2482 3719 211 612 1154 1725 2468
120 297 746 2181 3748 5506 255 560 1499 2444 3495
250 467 1294 3319 6004 9627 399 930 2118 3767 5740
400 827 1510 3919 7413 12402 706 1050 2540 4607 7256

Fig. 6. Proposed filter structure using CP-VCSE of Fig. 5.

1x

4x

5x

⊕ ⊕-

⊕ ⊕

⊕

)9()9(

)18()14(⊕)16(

2

8

4

6

8)25(

)25(

⊕D

⊕ ⊕D D ⊕ 2Dy

Critical path = 5 adder-steps

Multiplier
Block

)28(

D D

-

⊕

6

⊕

6

-

-

4

⊕ ⊕

⊕
)13()16(

2

3

7
)24(

--

6

⊕
-

⊕-
)28(

)29(

4

4SA

10

Table I Number of FAs required to implement the FIR filters using direct method

Table II Number of FAs required to implement the FIR filters using HCSE and proposed CP-HCSE methods

Paper No. 2032 12

N

Number of FAs in VCSE Method [16] Number of FAs in CP-VCSE Method

 8-bit 12-bit 16-bit 20-bit 24-bit 8 -bit 12-bit 16-bit 20-bit 24-bit
10 104 233 467 566 804 95 225 356 411 539
30 177 389 950 1419 2000 149 375 679 979 1546
50 154 624 1306 2272 3119 137 491 990 1731 2521
80 203 885 2007 3097 4732 174 870 1395 2156 3329
120 247 787 2597 4612 6531 217 764 1818 3096 4726
250 391 1357 3865 6916 11839 334 1353 2753 4827 7967
400 653 1598 4662 8689 15773 495 1601 3188 6159 10588

Table III Number of FAs required to implement the FIR filters using VCSE and proposed CP-VCSE methods

Fig. 8. Reduction of full adders over the direct method in designing the FIR filter with
coefficient wordlength of 16 bits, for different number of filter taps.

Fig. 7. Reduction of full adders achieved using various methods over the direct method in
designing the FIR filter of length 50, for different wordlengths.

Paper No. 2032 13

 FIR2 FIR4 FIR6
Method [11] [15] CP-SCS

E
[11] [15] CP-SCS

E
[11] [15] CP-SCS

E
NFA 460 390 300 660 620 570 1234 1042 904
CPL 4 3 3 3 2 2 4 4 4

Fig. 9. Reduction of full adders achieved using proposed CP-HCSE technique over the HCSE
method [11] for different number of FIR filter taps.

Fig. 10. Reduction of full adders over the direct method in designing the FIR filter of wider transition
band with coefficient wordlength of 16 bits, for different number of filter taps.

Table IV Comparison of the reduction of FAs and critical path lengths in realizing the FIR filters in [15]

Paper No. 2032 14

Filter order (N) Number of FAs in Direct Method
 12-bit 16-bit 20-bit 24-bit 32-bit

5 320 589 858 1222 2007
7 437 805 1043 1589 2636
9 716 1117 1657 2295 3596

11 1075 1635 2331 3001 4485
13 1462 1956 2796 3514 5218
15 1826 2543 3339 4283 6624

N Number of FAs in HCSE Method [11] Number of FAs in CP-HCSE Method
 12-bit 16-bit 20-bit 24-bit 32-bit 12-bit 16-bit 20-bit 24-bit 32-bit
5 261 475 637 875 1423 227 375 484 650 1022
7 314 588 798 1119 1866 278 498 615 820 1312
9 516 751 1067 1487 2402 455 623 837 1106 1722

11 789 1115 1559 2017 3104 706 943 1259 1558 2292
13 917 1297 1907 2425 3872 845 1112 1552 1912 2849
15 1200 1752 2324 2827 4769 1076 1647 1867 2214 3524

N Number of FAs in VCSE Method [16] Number of FAs in CP-VCSE Method
 12-bit 16-bit 20-bit 24-bit 32-bit 12-bit 16-bit 20-bit 24-bit 32-bit
5 212 417 722 1078 1722 163 327 489 725 1158
7 267 525 883 1302 2206 213 423 664 906 1429
9 430 658 1276 1866 3035 365 593 901 1265 2000

11 659 956 1655 2278 3821 547 842 1366 1615 2565
13 823 1082 2170 2681 4206 737 972 1613 1954 2953
15 1057 1460 2468 3349 5571 887 1246 1990 2377 3796

Table V Number of FAs required to implement the Elliptic IIR filters using direct method

Table VI Number of FAs required to implement the Elliptic IIR filters using HCSE and proposed CP-HCSE

Table VII Number of FAs required to implement the Elliptic IIR filters using VCSE and proposed CP-VCSE
th d

Fig. 11. Reduction of full adders achieved using various methods over the direct method in
designing the elliptic IIR filter of order 13, for different wordlengths.

