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Abstract

Therapeutically, the closed-loop blood glucose-insulin regulation paradigm via a controllable insulin pump

offers a potential solution to the management of diabetes. However, the development of such a closed-loop

regulatory system to date has been hampered by two main issues. They are: (1) the limited knowledge on the

complex human physiological process of glucose-insulin metabolism that prevents a precise modeling of the

biological blood glucose control loop; and (2) the vast metabolic biodiversity of the diabetic population due

to varying exogneous and endogenous disturbances such as food intake, exercise, stress and hormonal factors,

etc. In addition, current attempts of closed-loop glucose regulatory techniques generally require some form of

prior meal announcement and this constitutes a severe limitation to the applicability of such systems. In this

paper, we present a novel intelligent insulin schedule based on the PSECMAC associative learning memory

model that emulates the healthy human insulin response to food ingestion. The proposed PSECMAC intel-

ligent insulin schedule requires no prior meal announcement and delivers the necessary insulin dosage based

only on the observed blood glucose fluctuations. Using a simulated healthy subject, the proposed PSECMAC

insulin schedule is demonstrated to be able to accurately capture the complex human glucose-insulin dynamics

and robustly addresses the intra-person metabolic variability. Subsequently, the PSECMAC intelligent insulin

schedule is employed on a group of Type-1 diabetic patients to regulate their impaired blood glucose levels.

Preliminary simulation results are highly encouraging. The work reported in this paper represents a major

paradigm shift in the management of diabetes where patient compliance is poor and the need for prior meal

announcement under current treatment regimes poses a significant challenge to an active lifestyle.

1 Introduction

Diabetes is a chronic disease where the body is unable to properly and efficiently regulate the use and storage

of glucose in the blood, leading to prolonged periods of high (hyperglycemia) or low (hypoglycemia) plasma

glucose concentration. The disease is reportedly the leading cause of adult blindness, end-stage renal failure,
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retinopathy, neuropathy, and lower-limb amputations [1]. Diabetes patients are also 2-4 times more likely to

develop medical conditions such as heart disease or stroke. Due to the chronic nature and the severity of the

complications related to the ailment, diabetes exerts a heavy financial burden on the society. The American

Diabetes Association has projected that the annual medical expenditure for diabetes in the United States alone

will reach a substantial sum of $192 billion by 2020 [2]. Many of the diabetes related medical complications,

however, can be prevented through the tight control of the diabetic blood glucose levels [3, 4].

The current standard treatment procedure of diabetes primarily involves insulin medication coupled with

strict dietary control. The insulin hormone is administered through discrete insulin injections, or to a lesser

extent, through continuous insulin delivery via an insulin pump. Discrete insulin injections are not therapeu-

tically ideal for the treatment of diabetes since the regulation of the insulin hormone is an open-loop process.

Continuous insulin infusion through a programmable insulin pump, on the other hand, offers a potential for a

closed-loop glucose regulatory paradigm due to the controllable insulin infusion rate [5]. Many automated glu-

cose regulatory techniques have been proposed, investigated and reported in the literature over the years [6–10].

All such proposed methods employed some forms of models of the human glucose-insulin metabolic process

in their control regimes.

Fundamental models [11–13] are constructed by mathematically describing the known physiological glu-

cose metabolic system behaviors such as the underlying glucose and insulin kinetics and transport dynamics

in the human body. Due to the use of static mathematical equations, the fundamental modeling approach is

inadequate when addressing the issue of patient specificity. The empirical approach, on the other hand, at-

tempts to capture the human glucose metabolic behaviors from the observed input-output clinical data [14].

Based on a predetermined model structure, a set of empirical parameters is subsequently determined for the

diabetic patient via data-fitting. The major drawback of the empirical approach stems from the data collection

process, where the patients are often subjected to a clinical test environment that introduces artificial conditions

such as fixed meal times, a carefully controlled dietary plan and limited exercise. Hence, the resultant glucose

metabolic models may not accurately reflect real-life conditions.

Compartmental modeling [10, 15, 16] combines the empirical and fundamental modeling techniques. Such

models are derived by compartmentalizing the various physiological components involved in the human metabolic

process and subsequently describing each component using fundamentally derived mathematical equations.

However, patient-specific parameters are obtained empirically via data fitting. Despite being the most popular

approach, some of the endocrine processes affecting glucose metabolism are still not yet fully understood at

present and therefore inhibits the effectiveness of the compartmental modeling technique. In particular, the

challenge of quantifying the amount and effect of unknown meal disturbances remains a major limitation of

the current models of the glucose metabolic process [17].
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The fundamental objective of the closed-loop glucose regulatory systems is to artificially re-create (via

variable insulin delivery) the healthy insulin profiles (i.e. normal secretion patterns) in a diabetic patient so as

to regulate the diabetic blood glucose level within the homeostatic range [18]. Therefore, the performances

of these systems to manage diabetes correlate to the accuracy of the models in describing the actual dynamics

of the glucose-insulin metabolic process [17]. It has been well established that the human glucose metabolic

process is not merely a function of the carbohydrate ingestion, insulin level, and the amount of exercise, but

it is also affected by level of stress and other hormonal factors [19–21]. Hence, there is a considerable day-

to-day variability in the glucose dynamics of an individual patient as well as across different patients. The

primary challenge in the realization of an effective closed-loop regulatory system (also referred to as an artificial

pancreas) is therefore the development of a control algorithm that is able to regulate the blood glucose level

under a wide range of patient state scenarios [17].

With respect to this notion, there are two major issues that render existing regulatory approaches inadequate.

Firstly, the majority of the current closed-loop glucose regulatory systems employ static mathematical or state-

space models of the human glucose metabolic process (i.e. compartmentalized physiological modeling) to

compute the amount of insulin required by a diabetic patient. These models often require manual tuning to

cater for the metabolic biodiversity of the diabetic patients, as well as the intra and inter-day variability in

the glucose metabolic rates of each specific patient [12, 22, 23]. Secondly, many of the proposed metabolic

models assumed some sort of meal models that require patients to specify the expected time and amount of

carbohidrate intake. This enforces strict patient compliance for the resultant closed-loop regulatory systems to

function properly. Even then, the therapeutic effects of these pseudo closed-loop systems remained poor and

are too rigid and inflexible to be widely employed for diabetes treatment.

In this paper, we propose a novel approach to the synthesize the normal insulin secretion patterns in a dia-

betic patient. The Pseudo Self-Evolving Cerebellar Model Articulation Controller (PSECMAC) network [24]

is employed as an intelligent insulin schedule that functionally models the biological process of normal pancre-

atic insulin secretion in response to serum glucose fluctuations due to food ingestion. The term insulin schedule

refers to the therapeutic regimens that control the administration of insulin to a diabetic patient based on the

observed glucose profile so as to mimic the normal insulin secretion patterns. PSECMAC is an associative

learning memory model whose structure and computational principles are inspired by the neurophysiological

properties of the human cerebellum that is responsible for human motor control [25–27]. Through PSEC-

MAC, the superior computing capacity of the human cerebellum is harnessed to model the complex and hihgly

non-linear glucose-insulin interactions in the human metabolic process.

The proposed PSECMAC intelligent insulin schedule is subsequently employed in a closed-loop glucose

regulation system to determine the insulin dosage required by a group of diabetic patients. Our proposed ap-
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proach has two distinct advantages. Firstly, the PSECMAC insulin schedule only needs to capture the dynamics

of the healthy insulin secretion profile from the observed glucose dynamics and thus eliminating the need to

explicitly model and quantify every minute aspect of the human glucose metabolic process, which would oth-

erwise be difficult if not impossible to measure (i.e food intake, stress level, etc). Secondly, the PSECMAC

insulin schedule can be easily adapted and customized to address the metabolic biodiversity of the diabetic

patients in a diverse population. This paper demonstrates how the proposed PSECMAC intelligent insulin

schedule can be applied to regulate the blood glucose level of a diabetic patient under various subject state

scenarios.

The rest of this paper is organized as follows. Section 2 briefly describes the PSECMAC network architec-

ture and Section 3 presents the proposed PSECMAC intelligent insulin schedule. In Section 4, the robustness

of the PSECMAC insulin schedule against the intra- and inter-day variabilities of the human glucose metabolic

process is evaluated. Subsequently, Section 5 demonstrates the use of the proposed PSECMAC intelligent

insulin schedule for the management of Type-1 diabetes. Finally, Section 6 concludes this paper.

2 The PSECMAC network

The PSECMAC network [24] is a computational model of the human cerebellum. The cerebellum constitutes

a vital part of the human brain system that mediates motor movement control and a number of sub-conscious

cognitive functions [25, 28]. It functions primarily as a motor movement calibrator [29] and possesses the

capability to model highly complex and nonlinear physical dynamics to facilitate the precise and rapid execu-

tions of dexterous movements and fluid motor reflexes [30]. PSECMAC was developed to emulate the rapid

and nonlinear function learning capability of the cerebellum. Such a computational model has diverse use in

applications such as autonomous control [31] and pattern recognition [24, 32, 33] where there are generally no

precise mathematical descriptions of the problems characteristics and the inherent process behavior can only

be inferred from measurable physical observations.

As a functional computational model of the human cerebellum, PSECMAC manifests as a multi-dimensional

multi-resolution associative memory network and employs an error-correction scheme to drive the network

learning and knowledge construction process. Figure 1 depicts the structure of a two-input PSECMAC net-

work. The PSECMAC network structure consists of a single layer of computing (memory) cells that are non-

linearly allocated to cover the entire input-output (I/O) mapping space. Each input to the network corresponds

to a dimension in the multi-dimensional PSECMAC memory array. The operation of the PSECMAC network

is characterized by the multi-resolution table look-up access of its memory cells that facilitates an effective

localized generalization and improved modeling accuracy of the network.
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Figure 1: The network structure for a two-input PSECMAC

PSECMAC employs a two-phased learning process, namely: structural learning and parameter tuning. The

objective of the structural learning phase is to create the PSECMAC model’s associative structure by computing

the quantization decision functions for each input dimension. Subsequently, the input to output associative

information of the training data samples are learnt by adapting the memory contents of the PSECMAC model

in the parameter tuning phase. The detailed description on the PSECMAC network have been repoted in [24].

In summary, the PSECMAC network possesses an effective localized learning capability that enables it

to efficiently capture and model complex and dynamic information from the training dataset. In this work,

we exploit these computational strengths of PSECMAC to model the biological process of healthy pancreatic

insulin secretion and to replicate such insulin release patterns in a diabetic patient.

3 The PSECMAC Intelligent Insulin Schedule (Model)

The work presented in this paper is based on the hypothesis that the rate of pancreatic insulin secretion in

a healthy person is functionally proportional to the serum insulin concentration measured from time to time.

This assumption is adopted because it is currently not technically possible to directly measure the rate of insulin

secretion by the human pancreatic β-cells [34, 35]. The serum insulin concentration therefore constitutes the

closest physically-measurable proxy to the rate of pancreatic insulin secretion in the human body, and is thus

employed to identify a baseline insulin profile to derive the required insulin schedule. This hypothesis is

motivated by the study of the insulin kinetics in the human metabolic system [36] and empirically supported

by previous clinical experiments reported in [34, 37] that have established that the insulin concentrations at

peripheral veins/arteries are roughly correlated and proportional to the insulin secretion rate of the pancreatic
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β-cells.

As previously described, the term insulin schedule here refers to the therapeutic regimens for the admin-

istration of insulin to a diabetic patient based on his/her periodically measured glucose profile to maintain the

blood glucose level within the normoglycemia range. To achieve the objective of replicating a healthy insulin

response in a diabetic patient, the approach adopted in this work is to construct the intelligent insulin schedule

using PSECMAC via the modeling of the healthy serum insulin response to the observed glucose level fluc-

tuations. Therefore, the resultant PSECMAC intelligent insulin schedule is essentially a model of the plasma

glucose-insulin interactions in the human metabolic process. This methodology is also aligned with the clinical

results on continuous insulin infusion experiments reported in [34], which demonstrated that the response of

the plasma insulin concentration in human subjects is proportional to the rate of insulin infusion.

The first step to the modeling of the healthy human insulin response is to determine the subject profile to

be employed in the study. This section introduces the subject profile adopted in this study, followed by the

detailed description of the proposed PSECMAC insulin schedule (model).

3.1 The Subject Profile

Due to the lack of real-life patient data and the logistical difficulties and ethical issues involving the collection of

such data, a well-known web-based simulator known as GlucoSim [38] is employed to simulate a person subject

to generate the blood glucose and insulin data that is needed for the construction of the healthy insulin response

model. For this purpose, a human profile for the simulated subject (Subject A) is created and described in

Table 1. The simulated person, Subject A, is a typical middle-aged Asian male. His body mass index (BMI) is

23.0 and within the recommended range for Asian. The GlucoSim simulator [39,40] employs a compartmental

modeling technique of the human glucose metabolism process. The mathematical models used in GlucoSim

to describe the glucose-insulin interactions in both the healthy and diabetic subjects are based on the work

of [36] and [10] respectively. The inputs to the GlucoSim simulator for the healthy person model are time and

carbohydrate content of the meals taken by the person, the body weight as well as the duration for which the

simulation is to be performed.

Based on the profile of Subject A, his recommended daily allowance (RDA) of carbohydrate intake from

meals is computed using an applet from the website of the Health Promotion Board of Singapore [41]. Ac-

cording to his sex, age, weight and lifestyle, the recommended daily carbohydrate intake for Subject A is

approximately 346.9g per day. Figure 2 illustrates a sample output from GlucoSim for Subject A based on four

meal intakes (i.e. breakfast, lunch, afternoon snack and dinner) that conform to his RDA. This output consists

of six elements: blood glucose, blood insulin, intestinal glucose absorption rate, stomach glucose, total glucose

6



Draft Manuscript: Please do not distribute S. D. Teddy et al.

Table 1: The profile of the simulated healthy Subject A

Attribute Name Attribute Value

Sex Male
Age 40 years old
Race Asian
Weight 67 kg (147.71 lbs)
Height 1.70 m (5 ft 7 in)
BMI 23 (Recommended for Asian)
Lifestyle Typical office worker with moderate physical activities such as walking

briskly, leisure cycling and swimming.

uptake rate and liver glucose production rate of Subject A respectively over a simulated time period of 24 hours.

The peaks in the stomach glucose subplot of Figure 2 coincide with the timings of the assumed daily four meals

(i.e. breakfast, lunch, afternoon snack and dinner) while those peaks in the intestinal glucose absorption rate

subplot reflect a delay effect (response) of food intake on the blood glucose level of Subject A. The subplots of

blood glucose and blood insulin illustrate the insulin-glucose regulatory mechanism in a healthy person such

as Subject A and depict the dynamics of the metabolic process when subjected to disturbances such as food

intakes.

Subsequently, four types of dietary profiles are defined to simulate the variations in the dietary habit of a

human subject. These dietary profile are denoted as normal, under, over, and irregular diet. They correspond

to the normal, under-eating, overeating, and irregular profiles respectively. The normal diet refers to a dietary

profile that conforms to the RDA of the carbohydrate intake of the subject. In this study, the carbohydrate

intake of a normal diet for Subject A is defined by eq. (1).

normal ∈ [0.85× RDA, 1.15× RDA] (1)

Similarly, the carbohydrate intakes of the under-eating and the overeating profiles are defined by eqs. (2) and

(3) respectively.

under ∈ [0.425× RDA, 0.575× RDA] (2)

over ∈ [1.275× RDA, 1.725× RDA] (3)

The normal, under and over diet profiles are each characterized by three regular meals (i.e. breakfast, lunch

and dinner) and one afternoon snack. The number of meals in the irregular profile, on the other hand, varies

between two to six meals a day, with the carbohydrate intake defined by eq. (4).

irregular ∈ [0.5, 2.0]× normal (4)
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Figure 2: Sample glucose metabolism data output from the GlucoSim simulator

Likewise, the meal timings of the irregular profile are randomized within the day.

In addition, the carbohydrate contents and the timings of the daily meals for each of the normal, under and

over diets are not fixed and are varied from day-to-day during the data collection phase. To account for the

inter and intra-day variability of the meal contents and the eating habits of Subject A, the computation listed in

Table 2 were performed to generate different sets of inputs for each day of the simulated period. These inputs

are subsequently used with the GlucoSim simulator to generate the glucose and insulin data.

3.2 PSECMAC Modeling of the Healthy Metabolic Insulin Response

In this section, the PSECMAC associative learning memory model is employed to capture the plasma insulin

response of Subject A to food ingestion based on the current and past plasma glucose information. The Glu-

coSim simulator is employed to generate a total of eight days of glucose and insulin data based on the profile

of Subject A and his normal dietary habit. The collected metabolic data is subsequently partitioned into two

groups: the first 4-days data is used for training the PSECMAC insulin response model, while the remaining
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Table 2: Computations for the generation of GlucoSim input parameters for the normal, under and over dietary profiles.
(Note: 8 sets of input parameters are generated for each meal profile. U(x,y): a uniformly distributed random number
between x and y inclusively; and N(µ,σ): a normally distributed random number with mean µ and standard deviation σ.)

GlucoSim Input Value Remarks

Meal Timings Only four meals* per day and meal timings
are typical of an office worker

Breakfast Time U(0700hrs,0900hrs)
9>>=>>;

Meal timings are uniformly randomized within
their specific ranges

Lunch Time U(1130hrs,1200hrs)
Afternoon Snack Time U(1500hrs,1600hrs)
Dinner Time U(1830hrs,2030hrs)

Total Carbohydrate Intake Per Day TotalCarb = 350g + N(µ=0g,σ=50g)
(RDA for Subject A is approx. 350g)

Breakfast Carbohydrate U(12%,18%) × TotalCarb 9>>>>=>>>>;
Carbohydrate percentages are uniformly
randomized within their specific ranges and
normalized so that total sum is 100%

Lunch Carbohydrate U(25%,35%) × TotalCarb
Afternoon Snack
Carbohydrate

U(13%,19%) × TotalCarb

Dinner Carbohydrate U(35%,45%) × TotalCarb

*It is assumed that Subject A does not take morning and evening snacks. Hence the morning and evening snack timings are kept
constant at 1000 and 2200 hours during input to the simulator, and their respective carbohydrate contents are preset to 0g.

4-days data is used for the evaluation of the trained model. A sampling interval of 5 minutes is adopted to dis-

cretize the measurements of the blood glucose and insulin concentrations. Let IH(P )
x denotes the insulin profile

of the healthy subject P under the dietary profile x ∈ {normal, under, over, irregular}. The insulin relationship

to be modelled by the PSECMAC network is formalized as eq. (5) where ÎH(A)
normal(t + 1) is the predicted blood

insulin concentration at time t + 1;
{
Z

H(A)
normal(t)

}
denotes the information set that characterizes the glucose

metabolic process of the healthy Subject A due to a normal diet at time t; and F(·) is a nonlinear function that

implements the insulin model mapping from the input metabolic variables
{
Z

H(A)
normal(t)

}
to the desired output,

that is, the blood insulin concentration at the next sampling instance IH(A)
normal(t+ 1).

Î
H(A)
normal(t+ 1) = F

H(A)
normal

({
Z

H(A)
normal(t)

})
(5)

Based on the collected blood glucose data, a total of 18 variables (consisting of the current and past blood

glucose measurements and its derivatives) are extracted as inputs to model the healthy insulin profile of Subject

A. Subsequently, a novel feature selection algorithm named Monte Carlo Evaluative Selection (MCES) [42]

is employed to identify the prominent features that best characterize the insulin response of a healthy person.

That is, given by eq. (6), for the normal diet, where R = MCES denotes the MCES feature selection process.

The reduced set of inputs/features for the normal diet is subsequently denoted by eq (7).

Î
H(A)
normal(t+ 1) = F

H(A)
normal

(
R
({
Z

H(A)
normal(t)

}))
(6)
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{
z

H(A)
MCES, normal(t)

}
= R

({
Z

H(A)
normal(t)

})
(7)

The MCES method has the advantages of (1) low computational cost; (2) the ability to identify both correlated

and irrelevant features based on weight ranking; (3) being applicable to both classification and regression tasks;

and (4) is independent of the underlying induction algorithm used to perform the feature selection process.

The MCES algorithm is executed independently for 50 times, where in each run, 50 iterations on the training

set (first 4-days of metabolic data) is performed. This results in a total of 2500 iterations of the training set

for the MCES algorithm and the feature ranking results from these executions are aggregated to determine

the relevant features for the insulin modeling task. The top four features, namely: the current glucose level

(G(t)), the 4-point exponential moving average (EMA) of the glucose level (GMAM
(t)), the delta change in the

glucose level over the last 5 minutes (dG(t)), and the 2-point EMA of the glucose level (GMAS
(t)) are selected

as the glucose indicators/inputs to the PSECMAC insulin response model. The computational objective of

the PSECMAC insulin response model is subsequently formalized as eq. (8) where IH(A)
normal(t + 1) is the actual

measured blood insulin level at time t+ 1.

∥∥∥IH(A)
normal(t+ 1)− ÎH(A)

normal(t+ 1)
∥∥∥

minimize

=
∥∥∥IH(A)

normal(t+ 1)− F
H(A)
normal

({
z

H(A)
MCES, normal(t)

})∥∥∥
minimize

(8)

A PSECMAC network with a memory size of 8 cells per dimension is constructed to model the insulin pro-

file of the healthy subject as shown in eq. (6). A neighborhood size (N) of 0.1 and a Gaussian width constant (γ)

of 0.3 have been empirically determined to give the optimal modeling performance. As benchmarks, the insulin

modeling task is also performed using various well-established empirical models. The benchmarking models

studied in this work are the classical cerebellar computational model of the Cerebellar Model Articulation

Controller (CMAC) network [43,44]; two other cerebellar-based architectures, namely: (1) the HCAQ-CMAC

network [31] and (2) the Fuzzy CMAC with Yager Inference Scheme (FCMAC-Yager) [45]; a well-established

neuro-fuzzy system termed the Generic Self-Organizing Fuzzy Neural Network (GenSoFNN-CRI) [46]; as

well as the classical machine learning models of the Radial Basis Function (RBF) network [47] and the Multi-

Layered Perceptron (MLP). The parameters for the FCMAC-Yager and the GenSoFNN-CRI systems have all

been empirically optimized for best performances. There are two network structures of the MLP, each having

one and two hidden layers respectively. These have also been empirically determined. The RBF network is

initialized to contain 50 hidden layer nodes. In addition, the size of the CMAC and the HCAQ-CMAC networks

has been defined as 8 cells per dimension for a fair comparison with the proposed PSECMAC insulin response

model.
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Table 3: Simulation results for the various insulin response models

Recall Generalization
Network RMSE PC PI1 RMSE PC PI1 MAE MSE PI2
PSECMAC 6.3011 0.9918 13.58 4.0737 0.9948 19.61 2.1187 16.595 5.32

CMAC 4.4990 0.9958 18.11 6.6692 0.9880 12.88 4.6351 44.478 7.89

HCAQ-CMAC 4.3494 0.9961 18.62 5.6357 0.9905 14.92 3.4779 31.761 7.09

FCMAC-Yager 6.7013 0.9929 12.89 6.8474 0.9899 12.61 6.0575 46.887 6.64

GenSoFNN-CRI 6.6710 0.9944 12.96 5.8942 0.9953 14.44 4.7014 34.742 6.09

MLP (4-120-1) 26.337 0.8861 3.24 24.291 0.8552 3.38 20.666 590.05 27.23

MLP (4-20-4-1) 23.450 0.8908 3.64 21.757 0.8607 3.78 18.637 473.37 24.11

RBF 6.4141 0.9915 13.37 5.3977 0.9906 15.48 3.4419 29.135 6.56

Table 3 lists the recall (in-sample testing) and the generalization (out-of-sample testing) performances of the

various benchmarked insulin models. RMSE denotes the root-mean-squared-error between the set of computed

and expected insulin levels; and PC is the Pearson correlation coefficient, a statistical measure reflecting the

goodness-of-fit between the computed and expected insulin dynamics. A performance index (PI1) measure is

used to combine the RMSE and the PC values of the benchmarked networks as described in eq. (9).

PI1 =
PC

1 + RMSE
× 100, PI1 ∈ [−100, 100] (9)

such that a higher PI1 value corresponds to a better overall prediction performance of the insulin model. In

addition, the generalization results are also reported in terms of the mean-absolute-error (MAE) and the mean-

squared-error (MSE) values of the computed insulin response. The MSE measure magnifies the larger errors

between the computed and the actual insulin concentrations; hence the impact of these errors is pronounced for

this measure. Together with the MAE value, this would allow one to discern amongst the insulin models that

give consistent but minute errors from the insulin models that provide highly accurate predictions at most of the

sampled points but with occasional large errors. The MSE and MAE measures are subsequently combined as

shown in eq. (10), such that a lower PI2 value implies a more consistent prediction performance of the model.

PI2 =
MSE

1 + MAE
, PI2 ∈ [0,∞] (10)

As shown in Table 3, the PSECMAC insulin response model achieved the best generalization performances

among all the benchmarked models. The generalization evaluation of the PSECMAC model results in the

highest PI1 value and the lowest PI2 value, which demonstrate the accuracy and consistency in its predicted

insulin responses. The generalization results of the PSECMAC model outperformed those of the benchmarked

cerebellar-based architectures (i.e. the CMAC, HCAQ-CMAC and FCMAC-Yager networks), thereby demon-

strating the effectiveness of the PSECMAC network as a cerebellar-based insulin response model. While the
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Figure 3: 3-days generalization performances of the CMAC and PSECMAC networks in modeling the insulin profile of a
healthy person

uniform quantization process of the CMAC network results in a lower accuracy of the computed output, the

non-uniform quantization process of the HCAQ-CMAC network employs a hierarchical clustering technique

that groups together neighboring regions of inputs having similar outputs. Although this approach is highly

effective in optimizing the generalization ability of the HCAQ-CMAC network, it may result in a reduced out-

put accuracy as in the case of the insulin prediction task. The FCMAC-Yager network, on the other hand, is

a Mamdani fuzzy rule-based system that adopts trapezoidal-shaped fuzzy sets as membership functions. This

often leads to a low output accuracy due to the coarse granularity of the membership functions.

The recall performances of the PSECMAC insulin response model, however, are slightly inferior to those

of its uniformly-quantized CMAC counterpart. This is because the static structure of the basic CMAC network

results in a model that is optimized for the training set. The adaptive memory quantization mechanism of the

PSECMAC network, on the other hand, is better equipped towards obtaining an efficient characterization of

the complex and intertwined glucose–insulin relationships. This enables the PSECMAC network to achieve

an improved generalization result despite poorer recall performances as demonstrated by the simulation results

on the insulin prediction task. In contrast, a significant performance degradation is observed for the CMAC

insulin response model as the emphasis is shifted from the recall to the generalization evaluation.
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In addition, the PSECMAC insulin response model achieved a 26.7% higher ((19.61− 15.48)/15.48) PI1

value and a 18.9% ((6.56−5.32)/5.32) lower PI2 value over the best performing benchmarked non-cerebellar-

based model (i.e. RBF) for the generalization evaluation. The PSECMAC network has comprehensively outper-

formed the benchmarked GenSoFNN-CRI neuro-fuzzy system and the classical machine learning technique-

based (i.e. MLP, RBF) insulin models. The simulation results outlined in Table 3 have also demonstrated

the inability of MLP in capturing the underlying relationships between the glucose indicators and the insulin

responses. Both the 3-layers and 4-layers MLPs reported the poorest recall and generalization performances

amongst the benchmarked systems. Figure 3 depicts a 3-days snapshot of the generalization performances

of the CMAC and PSECMAC insulin response models. Simulation results shown in Figure 3 and Table 3

have sufficiently demonstrated the highly encouraging accuracy of the PSECMAC insulin response model in

predicting the correct insulin response based on the selected glucose indicators.

4 PSECMAC Modeling of the Healthy Insulin Response under Varying

Dietary Profiles

As discussed in the Introduction, it is highly desirable to have a closed-loop glucose-insulin regulatory system

that is able to address the intra- and inter-day variability observed in the human glucose metabolic process. In

this section, the robustness of the proposed PSECMAC insulin response model against the intra-day variability

in the metabolic process of a healthy person is investigated. The objective of the study is to evaluate how the

insulin response model F
H(A)
normal (see eq. (6)) responds to the different dietary profiles of Subject A. For example,

the computed insulin response when Subject A overeats based on the insulin model F
H(A)
normal is defined as eq. (11)

where
{
z

H(A)
MCES,over(t)

}
denotes the set of glucose indicators extracted from the dietary data of Subject A when

he overeats. Note that the set of glucose indicators fed as inputs to the PSECMAC insulin response model is

the same for all the dietary profiles evaluated in this section. That is, the inputs are the salient glucose variables

identified by the MCES feature selection process in Section 3.2. Hence, the purpose of the computational

experiments performed in this section is essentially to ascertain whether the insulin response ÎH(A)
normal(x)(t+ 1) is

a good approximator of IH(A)
x (t+ 1), where x ∈ {under, over, irregular} denotes the different dietary profiles,

Î
H(A)
normal(x)(t + 1) is the insulin response computed with the insulin response model F

H(A)
normal that is constructed

from the dietary data of Subject A according to his normal diet, and IH(A)
x (t+ 1) is the actual insulin response

as observed from the metabolic data of Subject A.

Î
H(A)
normal(over)(t+ 1) = F

H(A)
normal

({
z

H(A)
MCES,over(t)

})
(11)
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Table 4: Simulation results of the PSECMAC and CMAC insulin response models for the various dietary profiles

Network Dietary Profile RMSE PC PI1 MAE MSE PI2
PSECMAC Normal 4.0737 0.9948 19.61 2.1187 16.595 5.32

Undereat 3.3064 0.9930 23.06 1.6454 10.932 4.13

Overeat 17.668 0.9765 5.23 5.8056 312.16 45.87

Irregular 34.769 0.9259 2.59 7.4270 1208.9 143.5

CMAC Normal 6.6692 0.9880 12.88 4.6351 44.478 7.89

Undereat 5.8997 0.9818 14.23 3.8684 34.806 7.15

Overeat 24.680 0.9433 3.67 7.9923 609.10 67.74

Irregular 40.319 0.8797 2.13 9.4144 1625.6 156.1

Table 5: Performance comparisons between the PSECMAC and CMAC insulin response models for the various dietary
profiles

Dietary PI1 PI2
Profile PSECMAC CMAC % Gain PSECMAC CMAC % Gain
Normal 19.61 12.88 52.25 5.32 7.89 32.57

Undereat 23.06 14.23 62.05 4.13 7.15 42.24

Overeat 5.23 3.67 42.51 45.87 67.74 32.29

Irregular 2.59 2.13 21.60 143.5 156.1 8.07

Average 44.60% 28.79%

For the simulations, a set of 4 days of glucose and insulin data is generated for each of the dietary profiles us-

ing GlucoSim. The PSECMAC insulin response model trained with the data extracted from the normal dietary

profile (as in Section 3.2) is then applied to respectively predict the healthy insulin responses for the different

dietary profiles (i.e. under, over and irregular eating). Table 6 tabulates the performances of the PSECMAC

model in predicting the insulin responses for the various dietary profiles. The RMSE, PC, PI1, MAE, MSE, and

PI2 values are employed as the performance measures of the PSECMAC insulin response model. In this paper,

the CMAC network is employed as the key benchmark architecture to assess the performance of the trained

PSECMAC insulin model. This is because beside being the predecessor to PSECMAC, the CMAC network is

also widely-used in control applications [48,49] and therefore constitutes a highly viable model for insulin reg-

ulation in a closed loop setup. Table 4 oulines the insulin prediction performances of both the CMAC and the

PSECMAC insulin models for the various dietary profiles. Table 5 subsequently lists the detailed performance

comparisons between the PSECMAC and CMAC insulin response models for all the dietary profiles.

From the results tabulated in Tables 4 and 5, one can observe that the PSECMAC insulin response model has

comprehensively outperformed the benchmarked CMAC insulin response model for all the evaluated dietary

profiles. The PSECMAC insulin response model yielded, on average, a 44% increment in PI1 and a 29%

decrement in PI2 over the CMAC insulin response model. The highest performance gains of the PSECMAC

over the CMAC insulin response model were noted for the undereat diet, with gains of 62% and 42.2% in
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the PI1 and PI2 values respectively. These gains are even higher than those for the normal diet (i.e. PI1 gain

of 52.3% and PI2 gain of 32.6%), for which the PSECMAC and CMAC insulin response models have been

specifically trained. However, Table 5 also shows that the performance gains of the PSECMAC over the CMAC

insulin response model are lower for the overeat and irregular dietary profiles. This is due to the substantial

decrease in the PI1 and PI2 values achieved by the PSECMAC insulin response model for the overeat and

irregular diets despite its superiority over the benchmarked CMAC insulin response model. These observations

are analyzed as follows.

The undereat dietary profile provides an evaluation on the sensitivity of the trained insulin models to the

smaller fluctuations in the blood glucose concentration resulting from the reduced carbohydrate intakes. Fig-

ure 4 depicts the 3-days computed insulin responses of the CMAC and PSECMAC insulin response models for

the undereat diet. As shown in Figure 4, both the CMAC and PSECMAC insulin response models were able

to achieve a rather precise fit to the actual (desired) insulin response of Subject A. This is because the under-

eat diet is metabolically an attenuation of the normal dietary profile (refer to eq. (2)). Therefore, the training

derived from the normal dietary profile is functionally adequate to prime the insulin models with the necessary

characteristic mappings or domain knowledge to predict the insulin requirements for the undereat diet.

However, the computed insulin responses of the CMAC insulin response model were plagued by offset

errors (refer to B1, B2 and B3 of Figure 4(a)) that contribute to its poorer performances. In addition, several

overshoots were noted in the computed CMAC insulin responses as highlighted by A1 and A2 in Figure 4(a).

These offsets and overshoots in the computed insulin responses may be attributed to the uniform partitioning of

the input–output mapping space of the basic CMAC network. The uniform quantization of the CMAC memory

space results in a static output resolution throughout the entire CMAC input space, and this often leads to an

averaging effect and reduced output precision as manifested in the offsets and overshoots of Figure 4(a). In

contrast, the PSECMAC network non-uniformly allocates its memory cells according to the characteristics of

the training data, where more memory cells (and hence higher output resolutions) are allocated to the significant

regions of the input space. This enables PSECMAC to compute an accurate prediction of the insulin responses

of Subject A for the undereat dietary profile (as shown by P1 and P2 in Figure 4(b)).

The overeat and irregular dietary profiles, on the other hand, stimulate the uncertainty associated with the

meal consumption habits of Subject A and the inter-day variability of his metabolism process. This sought

to investigate the robustness of the PSECMAC and CMAC-based insulin response models under demanding

conditions. Similar to the normal and undereat profiles, the overeat diet is characterized by four daily meals.

The total daily carbohydrate intake when Subject A overeats, however, is greater than his recommended daily

allowance (refer to eq. (3)). Hence, overeating causes the CMAC and PSECMAC insulin response models

to be subjected to meal (carbohydrate) intakes that exceed those of the normal diet (from which the models
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Figure 4: 3-days generalization performances of the CMAC and PSECMAC network in modeling the insulin profile of
Subject A for the undereat diet

have previously been derived). The overeat diet effectively assesses the capacity of the insulin models in

responding to the augmented fluctuations and increased levels of the glucose concentrations that are above the

range encountered in the normal profile. On the other hand, the irregular dietary profile is defined based on the

day-to-day variation in the amount of carbohydrate consumed together with the sporadic number of meals taken

by Subject A in a day. As described in Section 3.1, the number of meals for the irregular dietary profile varies

between 2 to 6 meals per day while the amount of daily carbohydrate intakes ranges between half to twice

of the RDA for Subject A. Therefore, the irregular diet essentially evaluates the performances of the trained

PSECMAC and CMAC insulin respose models for a challenging set of circumstances that is characterized by

both large (rapid) and small (slow) fluctuations in the measured blood glucose concentrations.

Figures 5 and 6 depict the 3-days generalization results of the CMAC and PSECMAC insulin response

models for the overeat and irregular dietary profiles respectively. Based on the two figures, several observations

can be made of the generalization performances of the two insulin models. Firstly, although the computed

insulin responses of both the CMAC and the PSECMAC insulin response models were able to closely match

the actual (desired) insulin responses of the healthy subject within the range of low to moderate insulin values,

both insulin models failed to track the occasional high peaks in the healthy insulin profile arising from the large
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Figure 5: 3-days generalization performances of the CMAC and PSECMAC network in modeling the insulin profile of
Subject A for the overeat dietary profile

amount of carbohydrate intakes associated with overeating. The poor generalization performances of both

models for the prominent peaks of the overeat and irregular diets are thus primarily due to the large undershoot

errors, as highlighted by A1, A2 and A3 in Figure 5(a), as well as P1, P2 and P3 in Figure 5(b).

These undershoot errors are due to the fact that no prior training has been performed to enable the models

to derive the required insulin responses for large-sized meal disturbances, as a large amount of carbohydrate

intake results in a surge of the blood glucose levels to a range that is beyond the information that has been

extracted from the normal diet. Consequently, as the insulin response of a healthy person is dependent on the

circulating blood glucose concentration, a high carbohydrate intake will result in a large undershoot error. This

is especially evident in the generalization results for the irregular diet depicted in Figure 6 (see A1 and A2 of

Figure 6(a) and P1 and P2 of Figure 6(b)).

Secondly, the lack of model training for the large-sized meal scenarios in the overeat and irregular diets also

gives rise to the empty cells phenomena that degrades the consistency of the predicted insulin responses of the

CMAC insulin response model. The empty cells phenomena in a CMAC-based system occurs whenever the

input vector accesses the regions of untrained CMAC memory cells and thus resulting in an undesirable system

output. In this example, the effects of the untrained CMAC cells are highlighted as C1 and C2 in Figures 5(a)
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Figure 6: 3-days generalization performances of the CMAC and PSECMAC network in modeling the insulin profile of
Subject A for the irregular dietary profile

and 6(a). On the other hand, the non-uniform memory quantization scheme of the PSECMAC architecture

allows the PSECMAC insulin response model to better generalize the characteristics of the glucose–insulin

relationships. This enables the PSECMAC insulin response model to compute a reasonable prediction of the

insulin response even for an input vector that has not been encountered before. Lastly, similar to the evaluation

results observed of the undereat diet, the computed CMAC insulin responses suffer from offset errors that

further degrade the performances of the CMAC insulin model (see B1 and B2 of Figures 5(a) and 6(a)).

To complete the assessment of the PSECMAC insulin model, the set of simulations is repeated using the re-

maining similarly-trained benchmark systems of Section 3.2 and the results are presented in Table 6. From the

results tabulated in Table 6, it is evident that the PSECMAC insulin model generally outperformed the bench-

mark insulin models. Similar to the results of the insulin modeling task of the normal dietary profile presented

in Section 3.2, the PSECMAC insulin model comprehensively outperformed the cerebellar-based architectures

for all the evaluated dietary profiles. The trained PSECMAC insulin model also achieved superior prediction

performances over the benchmarked MLP and GenSoFNN-CRI models. The RBF-based insulin model, how-

ever, reported a slight performance improvement over the PSECMAC model for the overeat dietary profile.

This minute performance inferiority can be attributed to the effect of insufficient training in the PSECMAC
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Table 6: Simulation results of the insulin response models for the various dietary profiles

Network Dietary Profile RMSE PC PI1 MAE MSE PI2
PSECMAC Normal 4.0737 0.9948 19.61 2.1187 16.595 5.32

Undereat 3.3064 0.9930 23.06 1.6454 10.932 4.13

Overeat 17.668 0.9765 5.23 5.8056 312.16 45.87

Irregular 34.769 0.9259 2.59 7.4270 1208.9 143.5

HCAQ-CMAC Normal 5.6357 0.9905 14.92 3.4779 31.761 7.09

Undereat 5.1075 0.9842 16.11 3.0007 26.087 6.52

Overeat 19.567 0.9659 4.69 7.0539 382.87 47.54

Irregular 54.017 0.7664 1.39 10.447 2917.8 254.9

FCMAC-Yager Normal 6.8474 0.9899 12.61 6.0575 46.887 6.64

Undereat 6.7976 0.9849 12.63 6.2401 46.207 6.38

Overeat 40.338 0.8398 2.03 10.914 1627.2 136.6

Irregular 66.382 0.6070 0.90 16.123 4406.6 257.3

GenSoFNN-CRI Normal 5.8942 0.9953 14.44 4.7014 34.742 6.09

Undereat 5.5689 0.9932 15.12 4.6603 31.013 5.48

Overeat 23.328 0.9560 3.93 8.2062 544.2 59.11

Irregular 42.096 0.8804 2.04 10.658 1772.1 152.0

MLP (4-120-1) Normal 24.291 0.8552 3.38 20.666 590.05 27.23

Undereat 21.922 0.8165 3.56 19.526 480.6 23.4

Overeat 34.019 0.9083 2.59 25.246 1157.3 44.09

Irregular 50.236 0.9610 1.88 32.891 2523.7 74.47

MLP (4-20-4-1) Normal 21.757 0.8607 3.78 18.637 473.37 24.11

Undereat 21.269 0.8318 3.74 18.833 452.4 22.81

Overeat 32.699 0.9139 2.71 24.949 1069.2 41.20

Irregular 45.280 0.9341 2.02 28.116 2050.3 70.42

RBF Normal 5.3977 0.9906 15.48 3.4419 29.135 6.56

Undereat 3.9704 0.9899 19.92 2.5791 15.764 4.40

Overeat 14.010 0.9838 6.55 6.5549 196.3 25.94

Irregular 51.525 0.7901 1.50 10.495 2654.8 230.95

network. Due to the PSECMAC localized learning scheme, the training dataset on the normal dietary profile

is not sufficient to equip the trained PSECMAC insulin model with an accurate response for the high insulin

peaks associated with the overeat diet. This effect is less pronounced in the RBF-based insulin model due to

a larger steady state error, as evidenced by the higher MAE value of the RBF-based insulin prediction results

for the overeat diet in comparison to that of the PSECMAC model. Nevertheless, the superior performances

of the PSECMAC insulin model over its RBF-based counterpart on the normal, undereat and irregular dietary

profiles further reinforced the choice of the PSECMAC network for the modeling of the insulin response in a

healthy subject.

From the results of the previous computational experiments, one can conclude that the poor performances of

the PSECMAC and other benchmarked insulin response models for the overeat and irregular dietary evaluations

are predominantly caused by the lack of prior training on large-sized meal disturbances. Therefore, in order to

enhance the generalization performances, the trained insulin response models are dynamically tuned to adapt
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Table 7: Simulation results of the tuned insulin models for the overeat and irregular dietary profiles

Network Dietary Profile RMSE PC PI1 MAE MSE PI2
PSECMAC Overeat 9.9580 0.9922 9.05 4.8759 99.162 16.88

Irregular 19.089 0.9763 4.86 6.9385 364.40 45.90

CMAC Overeat 22.943 0.9512 3.97 6.8259 526.36 67.26

Irregular 23.846 0.9621 3.87 11.884 568.63 44.13

GenSoFNN-CRI Overeat 11.616 0.9918 7.86 6.1869 134.93 18.77

Irregular 26.473 0.96425 3.51 13.722 700.82 47.60

Table 8: Performance comparisons between the tuned insulin models for the various dietary profiles

PI1
Dietary Profile Tuning Phase PSECMAC CMAC GenSoFNN-CRI % Gain1 % Gain2
Overeat Before 5.23 3.67 3.93 42.51% 33.08%

After 9.05 3.97 7.86 127.9% 15.14%

% Improve 73.04% 8.17% 99.49%

Irregular Before 2.59 2.13 2.04 21.60% 27.94%

After 4.86 3.87 3.51 25.58% 38.46%

% Improve 87.64% 81.69% 72.06%

PI2
Dietary Profile Tuning Phase PSECMAC CMAC GenSoFNN-CRI % Gain1 % Gain2
Overeat Before 45.87 67.74 59.11 32.29% 22.40%

After 16.88 67.26 18.77 74.90% 10.07%

% Improve 63.20% 0.71% 68.25%

Irregular Before 143.5 156.1 152.0 8.07% 5.59%

After 45.90 44.13 47.60 −4.01% 3.57%

% Improve 68.01% 71.73% 68.68%

their learnt schedules to the overeat and the irregular dietary profiles. For this purpose, a set of 4-days (new)

glucose and insulin data is generated for each of the overeat and irregular diets respectively using the GlucoSim

simulator for Subject A. The collected data is subsequently employed to tune the trained insulin response

models. In this study, the adaptation process of the PSECMAC insulin model is compared to those of the CMAC

and GenSoFNN-CRI models. These two benchmark models are selected because they possess online learning

capability that enables the continuous adaptation of the insulin response to a new dietary profile. Tables 7

and 8 list the generalization performances of the tuned insulin response models for the overeat and irregular

dietary profiles. The “% Gain1” and “% Gain2” measures denote the percentage gain in the performances of

the PSECMAC insulin response model over its CMAC and GenSoFNN-CRI counterparts. The “% Improve”

measure, on the other hand, computes the percentage of performance improvement achieved by the tuning

process of the respective insulin models. As an illustration, the 3-days predicted insulin responses of the tuned

CMAC and PSECMAC insulin response models are depicted in Figures 7 and 8 for the overeat and irregular

diets respectively.
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Figure 7: 3-days generalization performances of the CMAC and PSECMAC networks (after-tuning) in modeling the insulin
profile of Subject A for the overeat dietary profile

From the results tabulated in Tables 7 and 8, one can observe that the tuning process leads to substantial

improvements in the performances of all the benchmarked insulin response models. In accordance with the

earlier hypothesis, the adaptive tuning mechanism enabled both the CMAC and PSECMAC insulin response

models to compute more accurate predictions of the insulin responses for the peaks associated with the large

carbohydrate intakes present in the overeat and irregular diets. These are highlighted as A1, A2 and P1, P2 of

Figures 7 and 8. In addition, the adaptive tuning has also increased the gain in the performance (% Gain) of the

PSECMAC insulin response model over its CMAC counterpart for the overeat diet. This is due to the fact that

the non-uniform quantization scheme of the PSECMAC network allows for better characterization of the se-

lected glucose variables to insulin responses relationships. As highlighted in B1, B2 and C1 of Figure 7(a), the

suboptimal static quantization of the CMAC memory cells has resulted in the offset errors and the occurrence

of the empty cell phenomena in the predicted CMAC insulin responses.

However, with respect to Table 7, the generalization performances of the CMAC insulin response model

for the irregular dietary profile after the tuning process are comparable to those of the PSECMAC model.

As depicted in Figure 8(b), the PSECMAC insulin response model exhibited a considerable undershoot error

(highlighted as P1) despite being able to compute fairly accurate predictions of the insulin responses for most
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Figure 8: 3-days generalization performances of the CMAC and the PSECMAC networks (after-tuning) in modeling the
insulin profile of Subject A for the irregular dietary profile

of the sampled points. This is due to the fact that the extra 4-days of new metabolic data might not be sufficient

to capture the comprehensive characteristics of the irregular diet. In contrast to the overeat profile that adopts

a constant 4-meals-a-day regime, the irregular dietary profile varies the number of meals taken together with

an enlarged range for the daily total carbohydrate intakes. Such irregularities (uncertainties) translate to large

permutations of eating patterns (i.e. insulin profile) that cannot be comprehensively characterized by only

4-days of metabolic data. Therefore, it is highly plausible that insufficient training (tuning) accounts for the

uncharacteristically large undershoot errors observed in the computed PSECMAC insulin responses. On the

other hand, the averaging principle in the output computation process of the CMAC network would likely

have assisted in improving the overall performance of the CMAC insulin response model. However, from

Figure 8(a), it can be observed that the computed CMAC insulin responses suffer from many offset errors (see

B1, B2, B3 and B4) as well as the empty cell phenomena (i.e. C1). Therefore, by comparing the computed

insulin responses of the CMAC (Figure 8(a)) and PSECMAC (Figure 8(b)) insulin response models, it is

evident that the PSECMAC insulin response model produced more preferable insulin responses due to the

general accuracy and consistency of its computed insulin profile.

The GenSoFNN-CRI network, on the other hand, managed to achieve comparable modeling performances
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following the adaptive tuning process for both the overeat and the irregular dietary profiles. This is mainly

due to the dynamically evolving nature of the GenSoFNN-CRI system that enables it to incrementally adapt its

network structure to accomodate newly emerging information. Such a dynamically evolving structure, how-

ever, increases the computational complexity of the resultant insulin response model. In addition, GenSoFNN

network employs trapezoidal membership functions to define its receptive fields and this reduces the accuracy

of its computed output. This is evident from the simulation results presented in Tables 7 and 8 that clearly

showed the superior accuracy of the PSECMAC insulin model over its GenSoFNN-CRI counterpart. Lastly,

the sets of results from the previous simulations have demonstrated that the proposed PSECMAC insulin re-

sponse models can be adapted to address the intra- and inter-day variability of the glucose metabolic process

of a healthy subject.

5 PSECMAC Intelligent Insulin Schedule (Model) for the Regulation

of Diabetic Blood Glucose Level Under Non Meal Announcement

The PSECMAC insulin model developed in Section 3 is subsequently applied as a pump controller in a closed-

loop glucose regulatory system to regulate the insulin infusion rate to a simulated Type-1 diabetic patient. The

control objective of our PSECMAC intelligent insulin schedule (model) is to synthesize the healthy insulin

responses in the diabetic subject. That is, the proposed PSECMAC-based glucose regulatory system aims to

emulate the physiological process of pancreatic insulin release to drive the insulin profile of the controlled

diabetic patient to that of a healthy person. In this study, the GlucoSim simulator for a Type-1 diabetic person

is employed as the simulator for the diabetic patient. Similar to the healthy person model, the Type-1 diabetic

model of GlucoSim is constructed based on the compartmental modeling of the various organs involved in the

human glucose metabolic cycle and their respective interactions. In the Type-1 diabetic model of GlucoSim,

however, an intra-peritoneal (IP) insulin injection (to the portal vein) sub-system is included in place of the

pancreatic insulin secretion module of the healthy person model. Please refer to [38] for the technical details

and a web-based version of the GlucoSim simulator.

As described previously, the work in this section is based on the hypothesis that the rate of insulin secretion

by the pancreatic β-cells in a healthy subject is functionally proportional to the serum insulin concentration

measured from time to time. This insulin response, in turn, is derived from the observed glucose fluctuations

due to the food disturbances. The proposed insulin pump control module for the closed-loop glucose-insulin

regulatory system therefore consists of two sub-systems. They are: (1) the PSECMAC insulin response model;

and (2) the interface to the GlucoSim Type-1 diabetic simulator. In this setup, the PSECMAC insulin model
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Figure 9: Static closed-loop control setup for PSECMAC-based glucose–insulin regulation

predicts the required future blood insulin concentration based on the glucose indicator values extracted from

the metabolic data of the diabetic patient. The simulator interface, on the other hand, serves to transform

the predicted future blood insulin concentration (in microU/ml unit) into the equivalent insulin flow rate (in

microU/min unit), and to subsequently scale the resultant flow rate to produce the required insulin injection

rate. Figure 9 depicts the closed-loop control setup for the PSECMAC-based glucose regulation system.

In the control structure of Figure 9, a fully diabetic patient B (denoted as FD(B)) with a BMI similar to

that of Subject A is simulated. The diabetic patient model of the GlucoSim simulator accepts, as its inputs,

the dietary data and the insulin injection rate as well as the previous metabolic state of the diabetic model. As

outputs, the GlucoSim diabetic model computes the current insulin and glucose concentrations in the blood as

well as the internal states of the various compartments in the model. All the internal variables are in turn used

to compute the next state of the diabetic model. To obtain the appropriate insulin injection rate, the required

future insulin response of the diabetic subject FD(B) under a particular dietary profile is first computed using

the PSECMAC insulin model F
H(A)
normal of Section 3. The computational output of the PSECMAC insulin model

is formalized as eq. (12)

ÎFD(B)
xD,(H(A), normal)(t+ 1) = FH(A)

normal

({
zFD(B)

mces, normal(t)
})

(12)

where ÎFD(B)
xD,(H(A), normal)(t + 1) denotes the computed insulin requirement of the fully diabetic patient B (i.e.

FD(B)) for the dietary profile xD ∈ {normal, under, over, irregular} based on the PSECMAC healthy insulin

model constructed from the normal diet (i.e. (H(A),normal));
{
zFD(B)

mces, normal(t)
}

is the set of glucose indicators

identified via the MCES feature selection process (see Section 3) after being extracted from the diabetic glucose

metabolism data for the normal diet at time t; and F
H(A)
normal refers to the PSECMAC insulin model constructed

for the healthy model of Subject A with a normal diet.

Subsequently, the computed insulin response ÎFD(B)
xD,(H(A), normal)(t + 1) is applied to the simulator interface
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Table 9: The control performances of the PSECMAC-based closed-loop control system for Patient FD(B) under the various
dietary profiles

PSECMAC-Controlled Uncontrolled
Dietary Profile RMSE PC PI1 RMSE PC PI1
Normal 38.915 0.6231 1.56 259.93 0.1778 0.07

Under 22.050 0.8287 3.60 203.30 0.0957 0.05

Over 64.766 0.4832 0.73 509.19 0.2699 0.05

Irregular 53.199 0.7727 1.43 561.48 0.2665 0.05

(H) to obtain the required insulin injection rate. This is formalized as in eq. (13)

IInjectRate(t) = H
(
ÎFD(B)

xD,(H(A), normal)(t+ 1)
)

= h× ÎFD(B)
xD,(H(A), normal)(t+ 1)× CR (13)

where IInjectRate(t) denotes the required injection rate, H denotes the transfer function of the simulator interface

module (H), h is the scaling factor, and CR refers to the conversion rate from the predicted insulin concentration

(microU/ml) to the insulin flow rate (microU/min). The conversion rate (CR) is computed as [50] described in

eq. (14) where BodyWeight refers to the body weight of the diabetic patient.

CR = (9.9314× BodyWeight + 0.6859) (14)

A series of control simulations were performed on the normal, under, over and irregular dietary profiles to

calibrate the scaling factor h of the proposed PSECMAC-based closed-loop glucose–insulin regulatory system

under non-meal announcement. From the simulation results, a scaling factor of h = 5 was empirically deter-

mined to give the best control performances for all the dietary profiles. Table 9 lists the resultant 4-days control

performances of the static closed-loop insulin control system with a scaling factor of h = 5 for the various

dietary profiles. The control efforts of the static PSECMAC-based insulin regulatory system are benchmarked

against those of the healthy model. RMSE denotes the root-mean-squared-error value between the blood glu-

cose level of the controlled diabetic subject (FD(B)) and the (desired) blood glucose level of the healthy subject

(H(A)). The PC value, on the other hand, measures the Pearson correlation coefficient between the blood glu-

cose level of the controlled diabetic and that of the healthy subject. Based on the PC and RMSE values, a

performance index PI1 is computed as in eq. (9).

As a baseline comparison to the observed performances of the static PSECMAC-based glucose control

system, the set of metabolic simulations for the different diets is repeated but with no insulin infusion. That

is, it is assumed that there is no insulin administration to the diabetic patient model. Hence, the diabetic

blood glucose fluctuations observed are due to the carbohydrate intakes and the result of the various insulin-
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independent glucose removal mechanisms. The simulation results for the uncontrolled (no insulin infusion)

glucose metabolic process of FD(B) are presented in Table 9.

As highlighted previously, the objective of the glucose regulatory system proposed in this work is to synthe-

size the healthy glucose-insulin metabolic dynamics in a diabetic subject. From the simulation results tabulated

in Table 9, one can observe that the PSECMAC-based glucose regulatory system has achieved encouraging glu-

cose control performances without meal announcement. This is shown by the good correlations between the

controlled (diabetic) and healthy blood glucose levels. The best control performances were achieved for the

undereat diet with a Pearson correlation of approximately 82.9%, indicating a close fit between the controlled

and healthy glucose-insulin dynamics. However, the performances of the PSECMAC-based glucose regulation

system are comparatively degraded for the irregular and overeat diets, but are still close to the normoglycemia

level. This may be due to the poor accuracy of the PSECMAC insulin response model when applied to the

irregular and overeat profiles. The PSECMAC insulin response model employed for the simulations was con-

structed based on the normal dietary data. As reported in Section 4, the output accuracy of the PSECMAC

insulin response model trained on the normal diet tends to degrade when applied to the overeat and the ir-

regular diets. Moreover, due to the highly non-linear characteristics of the glucose metabolic cycle, a small

inaccuracy in the insulin infusion schedule may translate to a large disparity in the observed diabetic blood

glucose concentrations (as compared to the healthy glucose response).

The simulation results in Table 9, however, have clearly demonstrated the significant impact of the proposed

PSECMAC-based glucose regulatory system in achieving an effective control of the diabetic blood glucose

levels. The glucose metabolic profile of the diabetic Subject B, if left uncontrolled, has a RMSE of as high

as 561 mg/dl (for the irregular diet) with a maximum correlation of only about 27% to the healthy glucose

dynamics. Such a high RMSE value suggests that the patient is experiencing extreme and prolonged episodes

of hyperglycemia as illustrated in Figure 10. Figure 10 depicts the 3-days blood glucose levels of the diabetic

Subject B (controlled and uncontrolled) for the different dietary profiles as benchmarked to those of a healthy

person. Specifically, Figure 10 shows that the diabetic patient suffers from multiple severe hyperglycemia

episodes for all the evaluated dietary profiles if there is no control of the blood glucose levels.

The PSECMAC-based glucose regulatory system, on the other hand, has been shown to effect an adequate

control of the diabetic blood glucose levels so that the patient achieved glucose levels that are highly comparable

to those of a healthy person. In particular, with the help of the PSECMAC-based glucose regulation system,

the diabetic patient managed to achieve healthy blood glucose levels for the undereat and normal diets without

any meal announcement and the intelligent insulin regulatory regime works on the changes in glucose level.

Although the controlled blood glucose responses of the diabetic Subject B for the overeat and irregular diets

do not follow closely those of a healthy person, the effectiveness of the proposed closed-loop control structure
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Figure 10: 3-days control performances of the PSECMAC intelligent insulin schedule for Patient FD(B) under the various
dietary profiles

27



Draft Manuscript: Please do not distribute S. D. Teddy et al.

Table 10: The profile of the simulated diabetic Patient FD(C) and Patient FD(D)

Attributes Patient FD(C) Patient FD(D)

Sex Male
Age 40 years old
Race Asian
Height 1.70 m
Lifestyle Typical office worker with moderate physical activities

such as walking briskly, leisure cycling and swimming.
Weight 58 kg 52 kg
BMI 20 18

RDA 323.9 g 308.5 g

in maintaining the normoglycemia state of the diabetic patient is clearly reflected in the fast control response

time in bringing down the elevated blood sugar levels.

Subsequently, to evaluate the empirical performance of the proposed PSECMAC insulin schedule (model)

when it is employed to regulate the blood glucose levels of patients with different metabolic rates, two new

diabetic patients (referred to as Patient FD(C) and Patient FD(D) respectively) that belong to the same subject

group as Patient FD(B) were simulated. The respective subject profiles of Patient FD(C) and Patient FD(D)

are listed as Table 10. These two newly-created patient profiles are similar to that of Subject A except for

the variations in the body weights and thus the resultant BMIs. Based on the respective recommended daily

carbohydrate allowance (RDA) of Patient FD(C) and Patient FD(D), the meal profiles of each patient for all

the four evaluated dietary scenarios (i.e. normal, under, over and irregular diets) were generated using the rules

listed in Table 2 of Section 3.1.

The set of glucose control experiments performed using Patient FD(B) described above is subsequently

repeated for both Patient FD(C) and Patient FD(D). That is, the trained PSECMAC insulin schedule (model)

is employed to regulate the continuous insulin infusion rates for both patients using the closed-loop glucose-

insulin control setup of Figure 9. The blood glucose regulation performances of the PSECMAC-based closed-

loop control system for both patients under the various dietary scenarios evaluated is summarized as Table 11.

Figures 11 and 12 illustrate respectively the observed blood glucose fluctuations for Patient FD(C) and Patient

FD(D) when there is no insulin infusion and when the PSECMAC-based closed loop insulin infusion system

is applied.

From the tabulated results of Table 11 and the plots shown in Figures 11 and 12, one can observe that the

diabetic blood glucose levels of the newly simulated patients are well regulated and the quality of control for

both Patient FD(C) and Patient FD(D) are highly comparable to that achieved for Patient FD(B). The simu-

lation results have therefore successfully demonstrated the robustness of our proposed approach in addressing

the metabolic biodiversity of diabetic patients from the same subject group and also further reinforced the ef-
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Table 11: The control performances of the PSECMAC-based closed-loop control system for Patient FD(C) and Patient
FD(D) under the various dietary profiles (Note: N=Normal, U=Under, O=Over and I=Irregular)

Patient FD(C) Patient FD(D)
PSECMAC-Controlled Uncontrolled PSECMAC-Controlled Uncontrolled

Diet RMSE PC PI1 RMSE PC PI1 RMSE PC PI1 RMSE PC PI1
N 39.323 0.7079 1.76 323.44 0.1807 0.06 34.188 0.7125 2.02 288.65 0.2236 0.08

U 23.386 0.8150 3.34 223.67 0.1424 0.06 14.661 0.9063 5.77 204.56 0.1678 0.08

O 53.691 0.5053 0.92 421.67 0.2184 0.05 54.418 0.5495 0.99 451.15 0.2388 0.05

I 50.205 0.7769 1.52 513.12 0.2947 0.06 49.114 0.7282 1.45 457.05 0.2832 0.06

fectiveness of the proposed PSECMAC intelligent insulin schedule when employed to realize the closed-loop

regulation of blood glucose using the no meal announcement method.

6 Conclusions

The key to a successful management of diabetes is to maintain long term near-normoglycemia of the diabetic

patient. The current protocol and standard of diabetes treatment is largely inadequate due to the following

reasons: (1) the de-facto therapy of daily discrete insulin injections for blood glucose control encountered

suboptimal therapeutic outcomes as it is difficult to achieve near-normal blood glucose levels via an open-loop

control; (2) a majority of the existing closed-loop insulin regulatory systems rely on static mathematical models

of the human glucose metabolic process that are often ill-equipped to address the metabolic bio-diversity of

the diabetic patients; (3) the currently adopted glucose metabolic model do not account for the intra- and

inter-day variability in the metabolic process of the individual patient; and (4) the prior meal announcement in

prevailing regimes for diabetes management has substantial drawback due to non-compliant and ill-discipline

of the patients.

In this paper, a novel approach to the management of diabetes that addresses the above-mentioned problems

was proposed. The developed PSECMAC intelligent insulin schedule (model) aims to emulate the biological

process of metabolic insulin secretion by the pancreatic β-cells in a healthy person and to subsequently repro-

duce this healthy insulin response in a diabetic patient. The PSECMAC intelligent insulin schedule (model)

requires no prior meal announcement and models the healthy insulin response based solely on the observed

plasma glucose fluctuations. In the simulations, four types of dietary profiles (i.e. normal, under, over and

irregular) were created to simulate the intra- and inter-day variability in the meal intakes of the healthy and dia-

betic subjects. The PSECMAC insulin schedule is then evaluated on the different dietary profiles to investigate

the modeling performances of the proposed insulin response model. The evaluation results has demonstrated

that the PSECMAC insulin response model can be adapted to suit the intra- and inter-day variability in the
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Figure 11: 3-days control performances of the PSECMAC intelligent insulin schedule for Patient FD(C) under the various
dietary profiles

glucose metabolic process of a healthy subject. Subsequently, the PSECMAC intelligent insulin schedule is

employed in a closed-loop glucose control system to regulate the diabetic blood glucose level without meal

announcement. The preliminary results on a group of simulated Type-1 diabetic patients further established the
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Figure 12: 3-days control performances of the PSECMAC intelligent insulin schedule for Patient FD(D) under the various
dietary profiles

PSECMAC intelligent insulin schedule (model) as a highly promising solution for the personalized manage-

ment of diabetes and the patient no longer need to announce the meals to the insulin regulatory system. As part

of the future work toward this direction, research effort is currently directed at developing an adaptive tuning
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strategy for the online updating of the PSECMAC intelligent insulin schedule to create a truly personalized

closed-loop glucose-insulin regulatory system. Such an adaptive closed-loop system will allow for optimal

therapeutic effectiveness to address the various limitations of existing treatment regimes and enables a diabetic

patient to live an active lifestyle.

References

[1] R. J. Rubin, W. M. Altman, and D. N. Mendelson, “Health care expenditures for people with diabetes

mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 78, pp. 809A–809F, 1992.

[2] American Diabetes Association, “Economic costs of diabetes in the U.S. in 2002,” Diabetes Care, vol.

269, no. 3, pp. 917–932, 2003.

[3] Diabetes Control and Complication Trial, “Diabetes control and complication trial (DCCT): The effect of

intensive treatment of diabetes in the development and progression of long-term complications in insulin-

dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, pp. 977–986, 1993.

[4] ——, “The effect of intensive treatment of diabetes in the development and progression of long-term

complications in insulin-dependent diabetes mellitus,” Diabetes Care, vol. 18, pp. 1468–1478, 1995.

[5] L. Fletcher, G. Hraban, P. Huang, B. Srinivasan, and R. Venook, “Feasibility of an implanted, closed-loop,

blood-glucose control device,” Immunology, vol. 230, 2001.

[6] R. Hovorka, “Management of diabetes using adaptive control,” International Journal on Adaptive Control

and Signal Processing, vol. 19, pp. 309–325, 2005.

[7] L. M. Schetky, P. Jardine, and F. Moussy, “A closed loop implantable artificial pancreas using thin film

nitinol mems pumps,” Proceedings of International Conference on Shape Memory and Superelastic Tech-

nologies (SMST-2003), 2003.

[8] M. E. Fisher, “A semiclosed-loop algorithm for the control of blood glucose levels in diabetics,” IEEE

Transaction on Biomedical Engineering, vol. 38, no. 1, pp. 57–61, 1991.

[9] R. L. Ollerton, “Application of optimal control theory to diabetes mellitus,” International Journal of

Control, vol. 50, pp. 2503–22, 1989.

[10] J. T. Sorensen, “A physiologic model of glucose metabolism in man and its use to design and assess

improved insulin therapies for diabetes,” Ph.D. dissertation, Departement of Chemical Engineering, MIT,

1985.

32



Draft Manuscript: Please do not distribute S. D. Teddy et al.

[11] M. Eren-Oruklu, A. Cinar, L. Quinn, and D. Smith, “Estimation of future glucose concentrations with

subject-specific recursive linear models,” Diabetes Technology and Therapeutics, vol. 11, pp. 243–253,

2009.

[12] A. Makroglou, J. Li, and Y. Kuang, “Mathematical models and software tools for the glucose-insulin

regulatory system and diabetes: An overview,” Applied Numerical Mathematics, vol. 56, pp. 559–573,

2006.

[13] A. De Gaetano and O. Arino, “Mathematical modeling of the intravenous glucose tolerance test,” Journal

of Mathematical Biology, vol. 40, pp. 136–168, 2000.

[14] V. Tresp, T. Briegel, and J. Moody, “Neural network models for the blood glucose metabolism of a

diabetic,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1204–1213, 1999.

[15] R. S. Parker, F. J. Doyle III, and N. A. Peppas, “A model-based algorithm for blood glucose control in

type-1 diabetic patient,” IEEE Transactions on Biomedical Engineering, vol. 46, pp. 148–157, 1999.

[16] R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Federici, T. R. Pieber,

H. C. Schaller, L. Schaupp, T. Vering, and M. E. Wilinska, “Nonlinear model predictive control of glucose

concentration in subjects with type-1 diabetes,” Physiological Measurement, vol. 25, pp. 905–920, 2004.

[17] B. W. Bequette, “A critical assessment of algorithms and challenges in the development of a closed-loop

artificial pancreas,” Diabetes Technology and Therapeutics, vol. 7, pp. 28–47, 2005.

[18] F. M. Ashcroft and S. J. H. Ashcroft, Insulin: Molecular Biology to Pathology. New York: Oxford

University Press, 1992.

[19] D. Porte Jr., D. G. Baskin, and M. W. Schwartz, “Insulin signaling in the central nervous system,” Dia-

betes, vol. 54, no. 5, pp. 1264–1276, 2005.

[20] M. W. Schwartz and D. Porte Jr., “Diabetes, obesity and the brain,” Science, vol. 307, pp. 375–379, 2005.

[21] K. Prank, C. Jurgens, A. von zur Muhlen, and G. Brabant, “Predictive neural networks for learning the

time course of blood glucose levels from complex interaction of counterregulatory hormones,” Neural

Computation, vol. 10, pp. 941–953, 1998.

[22] R. Bellazzi, G. Nucci, and C. Cobelli, “The subcutaneous route to insulin-dependent diabetes therapy,”

IEEE Engineering in Medicine and Biology, vol. 20, no. 1, pp. 54–64, 2001.

[23] R. S. Parker, F. J. Doyle III, and N. A. Peppas, “The intravenous route to insulin-dependent diabetes

therapy,” IEEE Engineering in Medicine and Biology, vol. 20, no. 1, pp. 65–73, 2001.

33



Draft Manuscript: Please do not distribute S. D. Teddy et al.

[24] S. D. Teddy, C. Quek, and E. M.-K. Lai, “PSECMAC: A novel self-organizing multi resolution associative

memory architecture,” IEEE Transactions on Neural Networks, vol. 19, no. 4, pp. 689–712, 2008.

[25] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, 4th Edition. McGraw-Hill,

Health Professions Division, 2000.

[26] W. T. Thach, “What is the role of the cerebellum in motor learning and cognition?” Trends in Cognitive

Sciences, vol. 27, no. 9, pp. 331–337, 1998.

[27] F. A. Middleton and P. L. Strick, “Cerebellar output: Motor and cognitive channels,” Trends in Cognitive

Sciences, vol. 27, no. 9, pp. 348–354, 1998.

[28] ——, “The cerebellum: An overview,” Trends in Cognitive Sciences, vol. 27, no. 9, pp. 305–306, 1998.

[29] J. S. Albus, “Marr and Albus theories of the cerebellum: Two early models of associative memory,”

Proceedings of IEEE COMPCON, pp. 577–582, 1989.

[30] H. Eichenbaum, The Cognitive Neuroscience of Memory: An Introduction. Oxford University Press,

2002.

[31] S. D. Teddy, E. M.-K. Lai, and C. Quek, “Hierarchically clustered adaptive quantization CMAC and its

learning convergence,” IEEE Transactions on Neural Networks, vol. 18, no. 6, pp. 1658–1682, 2007.

[32] ——, “A cerebellar associative memory approach to option pricing and arbitrage trading,” Neurocomput-

ing, vol. 71, pp. 3303–3315, 2008.

[33] W. L. Tung and C. Quek, “eFSM - a novel online niral-fuzzy semantic memory model,” IEEE Transac-

tions on Neural Networks, in press, 2009.

[34] R. S. Sherwin, K. J. Kramer, J. D. Tobin, P. A. Insel, J. E. Liljenquist, M. Berman, and R. Andres, “A

model of the kinetics of insulin in man,” Journal of Clinical Investigation, vol. 53, pp. 1481–1492, 1974.

[35] G. Toffolo, M. Campioni, R. Basu, R. A. Rizza, and C. Cobelli, “A minimal model of insulin secretion

and kinetics to assess hepatic insulin extraction,” American Journal of Physiology, Endocrinology and

Metabolism, vol. 290, pp. E169–E176, 2006.

[36] W. R. Puckett, “Dynamic modeling of diabetes mellitus,” Ph.D. dissertation, Departement of Chemical

Engineering, Wisconsin-Madison, 1992.

[37] U. Fischer, H. Hommel, H. D. Gottschling, P. Heinke, and E. Jutzi, “Estimation of pancreatic iri output

rate and its relation to glucose tolerance in normal anaesthetized dogs,” Diabetologia, vol. 11, pp. 291–

299, 1975.

34



Draft Manuscript: Please do not distribute S. D. Teddy et al.

[38] GlucoSim, “GlucoSim: A web-based educational simulation package for glucose-insulin levels in the

human body,” Illinois Institute of Technology, http://216.47.139.198/glucosim/gsimul.html, Online.

[39] C. Erzen, G. Birol, and A. Cinar, “Development and implementation of an educational simulator: GLU-

COSIM,” Chemical Engineering Education, vol. 37, no. 4, pp. 300–305, 2003.

[40] A. Cinar, “A. web-based simulations for dynamic variations in blood glucose concentration of patients

with type 1 diabetes,” in E. Opara (Ed.) Nutrition and Diabetes: Pathophysiology and Management.

CRC/Taylor and Francis Press, Boca Raton, FL, 2005, pp. 281–300.

[41] HPBSg, “Health promotion board singapore,” http://www.hpb.gov.sg, Online.

[42] K. Quah and C. Quek, “MCES: A novel monte carlo evaluative selection approach for objective feature

selections,” IEEE Transactions on Neural Networks, vol. 18, no. 2, pp. 431–448, 2007.

[43] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller

(CMAC),” Journal of Dynamic Systems, Measurement, and Control. Trans. ASME, pp. 220–227, 1975.

[44] ——, “Data storage in cerebellar model articullation controller (CMAC),” Journal of Dynamic Systems,

Measurement, and Control. Trans. ASME, pp. 228–233, 1975.

[45] J. Sim, W. L. Tung, and C. Quek, “FCMAC-Yager: A novel Yager inference scheme based fuzzy CMAC,”

IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1394–1410, 2006.

[46] W. L. Tung, C. Quek, and P. Y. K. Cheng, “GenSo-EWS: A novel neural-fuzzy based early warning

system for predicting bank failures,” Neural Networks, vol. 17, no. 4, pp. 567–587, 2004.

[47] WEKA, “WEKA 3: Data mining software in java,” The University of Waikato,

http://www.cs.waikato.ac.nz/ml/weka/, Online.

[48] G. A. Larsen, S. Cetinkunt, and A. Donmez, “CMAC neural network control for high precision motion

control in the presence of large friction,” Journal of Dynamic Systems, Measurement, and Control, vol.

117, pp. 415–420, 1995.

[49] S. Ku, G. A. Larsen, and S. Cetinkunt, “Fast servo control for ultra-precision machining at extremely low

feed rates,” Mechatronics, pp. 381–393, 1998.

[50] K. B. Bischoff, “Physiological pharmacokinetics,” Bulletin of Mathematical Biology, vol. 48, no. 3–4, pp.

309–322, 1986.

35



Authors’ Biographies 
 
 

1.     S. D. Teddy   
 
S. D. Teddy received both her B.Eng. (First Class Honors) and Ph.D. degrees 
in computer engineering from Nanyang Technological University, Singapore, 
in 2003 and 2008 respectively. She is currently a research fellow with the Data 
Mining Department of the Institute for Infocomm Research, A*STAR, 
Singapore.  Her current research interests include the cerebellum and its 
computational models, artificial neural networks, the study of brain-inspired 
learning memory systems, computational finance, and autonomous control of 
bio-physiological processes. 
 
 
 

2.    C. Quek 
 

C.Quek received the B.Sc. degree in electrical and electronics engineering and 
the Ph.D. degree in intelligent control from Heriot Watt University, 
Edinburgh, Scotland. He is an associate professor and a member of the Centre 
for Computational Intelligence, formerly the Intelligent Systems Laboratory 
and the Assistant Chair at the School of Computer Engineering, Nanyang 
Technological University. His research interests include intelligent control, 
intelligent architectures, AI in education, neural networks, fuzzy neural 
systems, neurocognitive informatics and genetic algorithms. C.Quek is a 
Member of IEEE and a member of the IEEE Technical Committee on 
Computational Finance. 
 
 



 

3.    Edmund M-K. Lai 
 

Edmund M-K. Lai received the B.E.(Hons) and PhD degrees in 1982 and 1991 
respectively from the University of Western Australia, both in electrical engineering. 
He is currently a faculty member of the School of Engineering and Advanced 
Technology, Massey University in Wellington, New Zealand.  Previously he has been 
a faculty member of the Department of Electrical and Electronic Engineering, The 
University of Western Australia from 1985 to 1990, the Department of Information 
Engineering, the Chinese University of Hong Kong from 1990 to 1995, Edith Cowan 
University in Perth from 1995 to 1998 and the School of Computer Engineering, 
Nanyang Technological University in Singapore from 1999 to 2006.  His current 
research interests include artificial neural networks, compressed sensing, and 
information theory. 

 
 

4.   Ali Cinar 
 

Ali Cinar is a professor of chemical engineering at Illinois Institute of 
Technology, Vice Provost for Research and Dean of the Graduate College at 
IIT since 2000 and the director of the Engineering Center for Diabetes 
Research and Education since 2004. His research specializations include agent-
based techniques for modeling, supervision and control of complex and 
distributed systems, modeling of diabetes, angiogenesis and tissue formation, 
and automatic control of insulin pumps for patients with diabetes. Dr. Cinar 
holds a Ph.D. in chemical engineering from Texas A&M University.  He is a 
member of IEEE and fellow of AIChE. He has published two books, over 180 
technical papers in refereed journals and conference proceedings.  Full list of 
publications, detailed description of research interests, presentations, and 
software is available at www.chbe.iit.edu/~cinar 
 


