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The focus of this paper is on the minimization of the variation in power consumed by a VLIW
processor during the execution of a target program through instruction scheduling. The problem is
formulated as a mixed-integer program (MIP) and a problem-specific branch-and-bound algorithm
has been developed to solve it more efficiently than generic MIP solvers. Simulation results based
on the TMS320C6711 VLIW digital signal processor using benchmarks from Mediabench and
Trimaran showed that over 40% average reduction in power variation can be achieved without
sacrificing execution speed of these benchmarks. Computational requirements and convergence
rates of our algorithm are also analyzed.
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1. INTRODUCTION

Very Long Instruction Word (VLIW) processors are designed for executing pro-
grams that exhibit a high degree of instruction-level parallelism (ILP) such as those
for multimedia signal processing. They are able to execute several instructions in
parallel on separate functional units. The number of instructions being executed
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simultaneously varies from clock cycle to clock cycle. Since the power consumed
by the processor at any given time depends on the number as well as the type
of instructions that are being executed, there are potentially large fluctuations in
processor supply current [Sami et al. 2002]. Large fluctuations in supply current
will lead to increase in power supply voltage noise, commonly known as the di/dt
problem, which may cause timing and logic errors [Chang et al. 1997; Smith et al.
1999; Chandrakasan et al. 2000]. For high-performance processors, the problem
is more pronounced because they generally have a larger number of gates, wider
datapaths and operate at higher clock frequencies, leading to larger surge currents
within a shorter time period. Furthermore, large current variation is usually corre-
lated with large current spikes that can adversely affect chip temperature [Brooks
and Martonosi 2001] to which chip reliability and sub-threshold leakage power are
exponentially related [Dhodapkar et al. 2000]. Besides, maximum battery life is
attained when the variance of the discharge current distribution is minimized [Pe-
dram and Wu 2002]. Battery efficiency may change by as much as 25% depending
on the discharge current profile given the same average current.

Published works on the control of power variation use either the hardware ap-
proach [Pant et al. 1999; 2000; Grochowski et al. 2002; Joseph et al. 2003; Powell
and Vijaykumar 2003; 2004; El-Essawy and Albonesi 2004] or the hybrid hard-
ware/software approach [Hazelwood and Brooks 2004]. For VLIW processors, since
the instruction schedules produced by the compiler largely determines the power
profile, power variation control can be achieved through instruction scheduling.
Two methods have been proposed specifically for minimizing processor power vari-
ance. The first one extends the performance-oriented iterative modulo scheduling
algorithm by adding power-aware heuristics [Yun and Kim 2001]. The alterna-
tive method is to formulate this scheduling problem as a mixed-integer program
(MIP) [Yang et al. 2002; Xiao and Lai 2004]. The advantage of the later approach
is that optimal solutions can be guaranteed. However, the computational com-
plexity of algorithms for solving the MIP is generally much higher than that for
heuristic ones, particularly if generic MIP solvers are used as in [Yang et al. 2002].

Furthermore, there are three main problems with the resource usage model
in [Yang et al. 2002; Xiao and Lai 2004]. First, they assumed that the instruc-
tions scheduled onto each functional unit were executed on dedicated resources in
a fully pipelined manner. In fact, instructions with multi-cycle functional unit la-
tency will lock the target functional unit for a number of cycles. No new instruction
can be dispatched to that functional unit during this locking period. Second, they
did not consider the issue of register utilization. Rescheduling instructions can
change variables’ lifetimes, which may increase pressure on the registers. Without
sufficient registers, the register allocator must insert spill and restore code into the
schedule which will cause extra delay and increase the total energy consumption
of the resulting schedule. Third, the sharing of resources, such as read/write ports
and shared buses, between the functional units had not been taken into account.
As a result, illegal schedules may result.

Another problem with [Yang et al. 2002] is that a rather unrealistic instruction-
level power model has been used. It assumes that every pipeline stage in a given
functional unit consumes the same amount of power. In fact, significant differences
ACM Journal Name, Vol. , No. , 02 2007.
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exist between the power consumed at different stages of the pipeline which are
reflected by experimentally verified VLIW instruction-level power models such as
the one proposed in [Julien et al. 2003]. Optimal schedules obtained based on the
simplistic power models may be far from optimal in reality.

In this paper, the problem of VLIW instruction scheduling for minimal power
variance is solved using the MIP approach. We shall refer to it as the power-
balanced scheduling problem. We make use of an accurate VLIW instruction-level
power model which is a modified version of the one proposed in [Julien et al. 2003].
Our MIP formulation is based on a more complete resource usage model which
takes into account constraints imposed by multi-cycle functional unit latency as
well as limited shared resources such as registers, read/write ports and buses that
have not been considered before. Appropriate data dependency constraints similar
to those used in [Chang et al. 1997; Leupers and Marwedel 1997; Wilken et al.
2000] are included to ensure that optimal execution performance of the resulting
schedule is maintained. The major contribution of this paper is the problem specific
branch-and-bound algorithm. It solves the MIP much more efficiently than generic
solvers, making the technique feasible for production compilers. In particular, the
heuristics used to guide the branching and selection processes greatly cut down
the search space. The lower bound estimation process is computationally efficient,
which also accelerates the convergence of the branch-and-bound algorithm. Another
advantage of the proposed branch-and-bound algorithm is that the peak power
can also be flexibly bounded by the branching heuristics. Empirical results show
that an average power variation reduction of over 40% can be achieved without
degrading the execution performance of the target programs and with a relatively
low computational cost.

The rest of this paper is organized as follows. The original VLIW power model
and our modifications that allow it to be used for instruction scheduling are pre-
sented in Section 2. In Section 3, our MIP formulation of the problem is presented.
Our efficient branch-and-bound algorithm is developed in Section 4. Section 5
shows the experimental results based on the C6711 VLIW digital signal processor,
using benchmarks programs from Mediabench and Trimaran.

2. INSTRUCTION-LEVEL POWER MODEL

Two instruction-level power models specifically for VLIW architectures can be
found in the literature. The first one, presented in [Sami et al. 2000; 2002; Bona
et al. 14; Benini et al. 2002; Zaccaria et al. 2003], has been used to characterize a
four-issue VLIW core with a six-stage pipeline. It takes into account factors such
as instruction ordering and power consumption in the pipeline stage. Experimental
results carried out on a set of embedded DSP benchmarks have demonstrated an
average error of 4.8% compared to gate-level simulations. The main disadvantage
of this model is its complexity, which requires a large number of parameters to be
estimated. Since these parameters are normally obtained via power measurements,
the number of measurements required is prohibitively large. Furthermore, it also
reduces the computational efficiency of the instruction scheduling algorithm.

The power model proposed in [Julien et al. 2003], on the other hand, has lower
complexity. Furthermore, the accuracy of this model is comparable to the first
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one with a maximum error between estimation and measurement of 4% for the
C62 and 6% for the C67 series of digital signal processors. Another advantage is
that the modeling methodology which is based on algorithmic activities is generally
applicable to any VLIW processor. However, some modifications to this model are
needed in order to be suitable for our instruction scheduling problem. In Section 2.1,
we shall briefly review the main components of this power model, followed by a
description of our modifications in Section 2.2.

2.1 An Algorithmic Activity Based Power Model

The algorithmic activity based power modeling methodology is motivated by the
observation that the architectural complexity of VLIW processors hides the details
of many internal activities. Hence no significant power consumption difference can
be observed between similar types of instructions. For instance, for the C6201
digital signal processor, an addition and a multiplication dissipate about the same
amount of power. The same is true for data transfer instructions between on-chip
memories. Modeling of a target VLIW processor involves grouping its architectural
components into functional blocks based on a functional-level concurrent activity
analysis. The activity rates of these functional blocks and their interactions are
modeled by instruction-level algorithmic parameters. The power cost is estimated
from the instruction-level algorithmic activities of the target program.

The instruction-level algorithmic activity based modelling method in [Julien et al.
2003] is illustrated with C62. The model described in this section is based on this
processor.

2.1.1 Functional Blocks with Concurrent Activities. The architecture of the tar-
get VLIW processor is modeled as two functional blocks – the instructions man-
agement unit (IMU) and the processing unit (PU). They model the concurrent
activities in the pipeline steps. The pipeline steps can be separated into three
stages:

(1) The fetch stage. It includes program address generation (PG), program address
send (PS), program access ready wait (PW) and program fetch packet receive
(PR), which fetch the instructions from program memory.

(2) The decode stage. The instructions are first dispatched to the correct unit (DP)
and then decoded by the processing unit (DC).

(3) The execution stage. The instruction is executed in a variable number of steps.

Figure 1 shows the two functional blocks together with the associated concurrent
activities. The first five pipeline steps (PG to DP) are performed by the IMU and
the rest by the PU.

2.1.2 Instruction-Level Algorithmic Parameters. In the C6x family of VLIW
processors [Texas Instruments 2000], eight instructions constitute a fetch packet and
are fetched at the same time. The execution of the individual instructions in a fetch
packet is partially controlled by a bit in each instruction which determines whether
the instruction executes in parallel with another instruction. All instructions that
are executed in parallel constitute an execute packet. The remaining instructions
are executed in the cycles afterwards. The maximum size of an execute packet is
ACM Journal Name, Vol. , No. , 02 2007.
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Fig. 1. Functional blocks with concurrent activities (from [Julien et. al. 2003]).

equal to the maximum issue width of the processor. Figure 2 shows an example of
a fetch packet with three execute packets.

The activity rate of the functional blocks and their interactions are modeled by
two algorithmic parameters α and β. They are obtained from the compiled code
and have a significant impact on the final power consumption. The parallelism rate
α indicates the average flow between the fetch stages and the program memory
controller in the IMU. It can be defined in terms of the number of fetch packets
NFP and execute packets NEP .

α = NFP/NEP (1)

Since NFP ≤ NEP , α ≤ 1 with α = 1 when parallelism is highest. In the example
shown in Figure 2, NFP = 1, NEP = 3 and α = 1/3.

The processing rate β between the IMU and the PU represents the utilization
ACM Journal Name, Vol. , No. , 02 2007.
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Execute Packet 1 :
ADD .L1 A1, A2, A3

|| ADD .L2 B1, B2, B3
Execute Packet 2 :

LDW .D2 ∗B5, B1
Execute Packet 3 :

ADD .L2 B2, B3, B4
|| MPY .M1 A1, A2, A3
|| ADD .L2 B1, B2, B3
|| NOP
|| ADD .L1 A1, A2, A3

Fig. 2. Example of a fetch packet which consists of three execute packets.

rate of the processing units. It is given by

β =
1

NPUmax

(
NPUtot

NEP

)
(2)

where NPUmax is the number of processing units in the processor and NPUtot is
the total number of instructions which have been executed on the processing units.
Thus NPUtot/NEP indicates the average number of the processing units used per
cycle. For the C62 processor, NPUmax = 8 and in the example shown in Figure 2,
NPUtot = 7 since one of the instruction is a NOP (no operation) which does not
involve any execution. Thus, we have β = 7/24.

2.1.3 Power Model Coefficients. The total power Itot consumed by the processor
when there is no instruction or data cache misses is proportional to the power
consumed by the IMU and the PU. Hence

Itot = IIMU + IPU + e (3)

where

IIMU = aα (4)

IPU = bβ (5)

and e is a constant which represents the idle power consumed by the processor
when it is not fetching or executing any instruction.

The power consumption laws that form the power model are able to take into ac-
count all the power consumption sources including pipelines and internal memories.
If pipeline stalls are considered, then α and β should be replaced by

α′ = α(1− PSR) (6)

β′ = β(1− PSR) (7)

respectively where PSR is the pipeline stall rate. If the power consumed by direct
memory access (DMA) is included, then (3) becomes

Itot = IIMU + IPU + IDMA + e (8)

with

IDMA = fε (9)
ACM Journal Name, Vol. , No. , 02 2007.
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Fig. 3. The modified power model.

ε is the DMA utilization rate which represents the activity level of the DMA unit.

2.2 Model Modifications

In order to perform power-balanced instruction scheduling, run-time power profiling
must be enabled by the power model. We are not able to produce such power
profiles using the power model described in Section 2.1. Therefore we propose
some modifications to it which are described in detail in Sections 2.2.1 to 2.2.4.

2.2.1 Functional Blocks with Concurrent Activities. Table I shows the average
power cost of the instruction decode step DC and the various execution steps E1, E2,
and E3 to E5 with respect to the parallelism rate α. It is obvious that the power cost
of these steps are significantly different. More importantly, concurrent activities
between internal memory and the processing units in the PU exist only when the
executed instructions involve data memory access. In order to perform better run-
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Table I. Power cost of each pipeline step (Istep) of a C6201 running at 200MHz (from [Julien et. al.
2003]).

α Istep(mA)

Fetch and DP DC and E1 E2 E3 to E5

0.125 197.4 60 4 95

0.25 111 64.75 4 95

0.5 69.6 62.5 NA NA

1 48.125 63.31 NA NA

time power profiling, fine-grained concurrent activity analysis is necessary. We
propose that the PU be divided into two separate functional blocks. For those
instructions that do not involve memory access, the decode stage can be grouped
with the execute steps to form the computation unit (CU). Another functional block
called the data memory unit (DMU) handles the execution steps that access internal
data memory. The subdivided functional block grouping is shown in Figure 3.

2.2.2 Instruction-Level Algorithmic Parameters. The concepts of fetch and ex-
ecute packets are unique to the C6x family of processors. In order to make our
model applicable to more generic VLIW architectures, the definitions for α and β
given by (1) and (2) have to be modified. Since the parallelism rate α is reflected
by the average width K of the instruction words in IMU, it can be defined by

α = K/Kmax (10)

where Kmax is the issue width of the processor. The utilization rate β can be
redefined as

β = NPU/NPUmax (11)

where NPU is the average number of processing units used per cycle with the
same physical meaning as the NPUtot/NEP term in (2). For the C62 processor,
Kmax = NPUmax = 8. Applying (10) to the example in Figure 2, we have K = 8/3,
and thus α = 1/3 which is the same as that by (1). Similarly applying (11), we
have NPU = 7/3 and β = 7/24.

With the subdivided functional blocks in Figure 3, an additional algorithmic
parameter δ is needed to represent the activity rate of the DMU and its interactions
with the CU. Parameter δ which represents the data memory access rate can be
computed by

δ = NMU/NMUmax (12)

where NMUmax is the maximum number of internal data memory accesses that
can be executed in a single instruction cycle and NMU is the average number of
internal data memory accesses executed per cycle.

2.2.3 Power Model Coefficients. The expression for the total power Itot, previ-
ously given by (3), now becomes

Itot = IIMU + ICU + IDMU + e (13)

where IIMU , ICU and IDMU are the power consumed by the IMU, CU and DMU
respectively. Now,

ICU = cβ (14)
ACM Journal Name, Vol. , No. , 02 2007.
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LOOP :
ADD .L1 A1, A2, A3

|| ADD .L2 B1, B2, B3
ADD .L1 A1, A2, A3

|| ADD .L2 B1, B2, B3
· · · · · ·

ADD .L1 A1, A2, A3
|| ADD .L2 B1, B2, B3

B .S1 LOOP

Fig. 4. Example C6711 elementary program with α = 1/4, β = 1/4 and δ = 0.

LOOP :
ADD .L1 A1, A2, A3
ADD .L1 A1, A2, A3
· · · · · ·

ADD .L1 A1, A2, A3
B .S1 LOOP

Fig. 5. Example C6711 elementary program with α = 1/8 and β = 1/8 and δ = 0.

IDMU = dδ (15)

where c and d are the model coefficients for the CU and DMU respectively.
The power model coefficients a, c, d and e in (4) and (13)-(15) can be estimated

by measuring the supply current to the processor (Itot) in a similar way to [Tiwari
et al. 1994; Russell and Jacone 1998]. A set of elementary programs are designed
to activate the IMU, CU and DMU together or separately. For each elementary
program the values of α, β and δ could be computed as described in Section 2.2.2.
Each elementary program is typically placed in an infinite loop in order to obtain
a stable current reading. There are some constraints on the size of the loops. On
one hand, we want to minimize the impact of the branch at the end of the loop by
having more instructions within the loop. On the other hand, the loop size should
not be so large that it causes cache misses which are undesirable.

Suppose N elementary program experiments are conducted. Then the power
model coefficients a, c, d and e can be estimated by linear regression that minimizes
the sum of squares of the residuals

∑N
q=1(aα+ cβ +dδ + e− Itot)2. In order to cope

with the effect of nuisance factors and the imprecision inherent in measurements, a
large N is required.

The physical meaning of the model coefficients can be illustrated through the
example programs in Figures 4 and 5. The program in Figure 4 consumes more
power than the one in Figure 5. The power difference, according to the equations
(10)-(15), is given by

a

Kmax
+

c

NPUmax

The (a/Kmax) component is the additional power consumed by the functional block
IMU because the issue width of the instruction word K in Figure 4 is one more than
the other program. The additional power consumed by the first program is also
due to the number of processing units used per cycle NPU . Since this difference is
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one, the power difference is (c/NPUmax).

2.2.4 Power Consumption As A Function Of Time. Our scheduling problem
requires the computation of power consumption as a function of time. Let the
instruction schedule be 〈W1,W2, ..., Wi, ...,Wt〉 where Wi =

(
w1

i , w2
i , ..., wk

i

)
is the

long instruction word fetched at the i -th time slot of this schedule and wj
i , 1 ≤ j ≤ k

are the individual instructions that make up Wi. Suppose the i -th time slot of this
schedule corresponds to the PG (program address generation) pipeline step when
Wi is fetched. Then the average power in the i-th time slot of this schedule is the
sum of the power of the IMU, the power of the CU and the power of the DMU in
this time slot. It can be expressed mathematically as

I(i) = I
(i)
IMU + I

(i)
CU + I

(i)
DMU + e (16)

According to equations (4) and (10), the power of the IMU in the i-th time slot
I
(i)
IMU is proportional to the parallelism α(i) activated in this time slot. As depicted

in Figure 3, in the i -th time slot when the instruction word Wi is in its PG pipeline
step, Wi−1 is already in the PS step, Wi−2 is in the PW step, and so on. Let Ki,
Ki−1, Ki−2, Ki−3 and Ki−4 be the width of the instruction words in time slots i,
i− 1, i− 2, i− 3 and i− 4 respectively. We have

I
(i)
IMU = aα(i) (17)

α(i) = K(i)
/

Kmax (18)

K(i) =
1
5

4∑
m=0

Ki−m (19)

where K(i) is the average width of the instruction words in IMU in the i-th time
slot.

Similarly, in the i -th time slot, instruction word Wi−5 is in the DC (decode) step
in the functional block CU. At the same time, Wi−6 is in its first execution (E1)
step. Even if instructions with multiple execution pipeline steps exist, we do not
need to add up those instruction words which are in their pipeline steps after E1.
This is because, according to Table I, the execution steps after E1 in CU consume
much less power compared to the steps before. For example, there is no significant
power dissipation difference between an addition and a multiply instruction because
the second step E2 which exists for multiply only, consumes only 4mA per execution
against 60mA per execution in the DC or E1 step. According to (14) and (11), the
power of the CU in the i-th time slot I

(i)
CU is proportional to the utilization rate β(i)

activated in this time slot. Hence,

I
(i)
CU = cβ(i) (20)

β(i) = NPU (i)
/

NPUmax (21)

NPU (i) =
1
2

6∑
m=5

NPUi−m (22)

where NPUi−5 and NPUi−6 are the number of instructions at their pipeline step
ACM Journal Name, Vol. , No. , 02 2007.
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DC and E1 respectively.
Finally, in the i -th time slot, if any one of Wi−7, Wi−8 and Wi−9 is involved

in the three pipelines steps for data memory access in the functional block DMU
(address send, access ready wait and data receive), we have

I
(i)
DMU = dδ(i) (23)

δ(i) = NMU (i)
/

NMUmax (24)

NMU (i) =
1
3

9∑
m=7

NMUi−m (25)

where NMUi−7, NMUi−8 and NMUi−9 are the number of internal data memory
accesses executed at time slots i, i− 1 and i− 2 respectively.

2.3 Model Accuracy

In [Julien et al. 2003] the instruction-level algorithmic activity based modeling
method was applied to the C62 and the C67 VLIW digital signal processors. These
two processors share the same functional block analysis but the model coefficient
values are different. The models were validated using a number of classical digital
signal processing algorithms: a finite impulse response (FIR) filter, a least-mean-
square (LMS) filter, a discrete wavelet transform with two image sizes: 64×64-pixel
(DWT1) and 512× 512-pixel (DWT2), an enhanced full-rate (EFR) vocoder based
on the global system for mobile communication (GSM) standard, and an MPEG
application. The average error between the estimates and the physical measure-
ments was 2.5%, with a maximum error of 4%. The maximum error between the
estimates and the physical measurements of the C67 was 6% [Julien et al. 2003].

The idea behind this instruction-level algorithmic activity based power modeling
method is that the power consumed by a processor is proportional to the power
consumed by the functional blocks, which are grouped by concurrent activity anal-
ysis. The power by each functional unit is proportional to the degree of parallelism
in it. The architectural complexity of VLIW processors hides the details of many
internal activities. Our modifications do not downgrade the model accuracy, be-
cause only the model representation has been changed in order to better profile
power consumption over time. The idea behind this model remains the same.

3. MIXED-INTEGER PROGRAM FORMULATION

The MIP for power balanced scheduling consists of two main parts – the objective
function and the constraints. The objective function is to minimize the power vari-
ance for the program segment considered. Instruction scheduling is traditionally
done using list scheduling on basic blocks or modulo scheduling on loops [Allen
and Kennedy 2002]. But for VLIW processors techniques are used enlarge the
instruction scheduling scope and “region” refers to each program segment consid-
ered [Faraboschi et al. 2001; Kathail et al. 2001].

There are three main types of constraints in this MIP. Due to data dependency
and resource usage conflicts among the instructions, not all combinations of instruc-
tions are allowed in a single very long instruction word. All legal combinations must
firstly satisfy the data dependency constraints imposed by the data flow require-
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ments of the target program. At the same time, they must also satisfy the resource
constraints which are imposed by the architecture of the VLIW processor. The
third type of constraints ensures that the total execution time of the schedule will
not exceed that of the initial schedule. Therefore if a speed-optimized instruction
schedule is used as the initial schedule for the MIP, the power-balanced solution
will also be speed-optimized.

The complete mixed-integer program is formally given by P1 below. The total
execution time is divided into time slots. The total number of time slots and
instructions is given by t and n respectively. A complete instruction schedule X
is composed of the set of non-zero binary decision variables xk

i . xk
i equals 1 if

instruction k is allocated to time slot i; otherwise it is 0.
Each functional unit is capable of executing certain types of instructions. A

functional unit is indexed by the unit type and the index of the particular unit
within that type. Functional unit latency Lk is the number of cycles that the
instruction engages the functional unit k. The number of delay slots Dl associated
with an instruction l is the number of cycles required before the result of that
instruction, once issued, is available.

For ease of reference, the notations used in the MIP are listed in Appendix A.
Detailed discussions on the objective function and the constraints are given in
subsequent sections.

P1: min P (X)

subject to

X =
⋃

i,k:xk
i
=1

{xk
i } k = 1, ..., n; i = 1, ..., t

xk
i ∈ {0, 1} k = 1, ..., n; i = 1, ..., t

(26)

t∑

i=1

ixm
i −

t∑

i=1

ixl
i ≥ Dl ∀ < l, m >∈ E (27)

n∑
k=1

ak
qjx

k
i ≤ 1−

n∑
k=1

Λ(i−
t∑

z=1
xk

z)Λ(
t∑

z=1
xk

z + Lk − i)ak
qj

j = 1, ..., u; q = 1, ..., cj ; i = 1, ..., t

(28)

n∑
l=1

Rl
c ≤ g, c = 1, · · · , t (29)

n∑

k=1

u∑

j=1

cj∑
q=1

bl
kqja

k
qjx

k
i ≤ 1, l = 1, ..., s; i = 1, ..., t (30)

n∑

k=1

u∑

j=1

cj∑
q=1

dl
qja

k
qjx

k
i ≤ 1, l = 1, ..., r; i = 1, ..., t (31)
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n∑

k=1

u∑

j=1

cj∑
q=1

el
qja

k
qjx

k
i ≤ 1, l = 1, ..., w; i = 1, ..., t (32)

t∑

i=1

ixk
i + Dk ≤ t, k = 1, ..., n (33)

t∑

i=1

xk
i = 1, k = 1, ..., n (34)

3.1 Objective Function

Power consumption in each of the t time slots is obtained through equations (16)-
(23). The variables in these equations are related to the binary decision variables
in the MIP in the following ways.

Ki, Ki−1, Ki−2, Ki−3 and Ki−4 are the width of the instruction words in time
slot i, i − 1, i − 2, i − 3 and i − 4 respectively. They can be computed by adding
up the binary decision variables for corresponding time slots.

Km =
n∑

k=1

xk
m, m = i, i− 1, . . . , i− 4 (35)

NPUi−5 and NPUi−6 are the number of instructions decoded in time slots i and
i− 1 respectively. They are actually instructions already fetched in time slots i− 5
and i− 6 respectively. Therefore,

NPUm =
n∑

k=1

xk
m, m = i− 5, i− 6 (36)

NMUi−7, NMUi−8 and NMUi−9 are the number of internal data memory ac-
cesses executed at time slots i, i − 1 and i − 2 respectively. They relate to the
instructions fetched in time slots i− 7, i− 8 and i− 9 respectively. Hence,

NMUm =
n∑

k=1

fkxk
m, m = i− 7, i− 8, i− 9 (37)

where fk = 1 if instruction k involves internal data memory access. Otherwise it
is zero.

Substituting (35)-(37) into (16)-(23), the total power consumption Ii in time slot
i can be expressed in terms of the binary decision variables xk

i .

Ii = a
Kmax

· 1
5

n∑
k=1

(
xk

i + xk
i−1 + xk

i−2 + xk
i−3 + xk

i−4

)

+ b
NPUmax

· 1
2

n∑
k=1

(
xk

i−5 + xk
i−6

)

+ c
NMUmax

· 1
3

n∑
k=1

(
fkxk

i−7 + fkxk
i−8 + fkxk

i−9

)
+ e

(38)
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The average power over the duration of the whole schedule is

M =
1
t

(
t∑

i=1

Ii

)
(39)

An appropriate objective function is therefore given by

P (X) =
t∑

i=1

(Ii −M)2 (40)

This objective function will be most appropriate for smoothing the discharge profile
to improve battery efficiency. If it is desirable to bound the absolute peak power,
the method discussed in Condition 1 of Section 4.2 could be used. However, it
cannot guarantee a bound for the worst possible instantaneous current variation
and so it cannot be used to solve the di/dt problem mentioned in Section 1.

3.2 Data Flow Dependency Constraints

Flow dependencies occur when one instruction m uses the result of another instruc-
tion l. The time slots where these instructions are scheduled are given by

∑t
i=1 ixl

i

and
∑t

i=1 ixm
i respectively. The result of instruction l becomes available after Dl

delay slots . Thus instruction m must be scheduled at least Dl time slots after
instruction l. These constraints are specified by (27).

Register reuse can introduce additional flow dependencies. Anti-dependencies
and output dependencies will not be considered, since they can be addressed by
register renaming. Register pressure will be considered through the resource usage
constraints.

3.3 Resource Usage Constraints

There are four types of resource constraints. They are the constraints on the
functional units, registers, shared buses and read/write ports. We shall describe
each of them in detail.

3.3.1 Functional Unit Constraint. There are two types of constraints on the
functional units. The first one is simply that two instructions that use the same
functional unit cannot be in the same instruction word. Since ak

qj is the binary
variable that indicates if the q-th functional unit of type j can execute instruction
k, this type of constraint can be expressed mathematically as

n∑

k=1

ak
qjx

k
i ≤ 1 (41)

The second type of constraint on a functional unit is associated with instruc-
tions that has multi-cycle functional unit latency. These instructions occupy the
functional unit for a number of cycles. So new instructions cannot be dispatched
to that functional unit during this locking period. A functional unit q of type j is
locked by an earlier instruction k in the current time slot i if the following three
conditions are satisfied.

(1) Instruction k can be executed on this functional unit , i.e. ak
qj = 1.
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(2) The time slot when instruction k is issued,
∑t

z=1 zxk
z , is earlier than i. This

can be expressed as

Λ

(
i−

t∑
z=1

zxk
z

)
= 1

where

Λ(x) =
{

1, x ≥ 1
0, otherwise

for integer values of x.
(3) Time slot i is in the lock-down period of instruction k, i.e. Lk time slots after

k has been issued. Mathematically,

Λ

(
t∑

z=1

zxk
z + Lk − i

)
= 1

These three conditions can be combined into a single expression

Λ

(
i−

t∑
z=1

zxk
z

)
Λ

(
t∑

z=1

zxk
z + Lk − i

)
ak

qj = 1 (42)

Check this against each of the n instructions gives us constraint (28).

3.3.2 Register Constraints. A rescheduling of instructions may lengthen a vari-
able’s lifetime, leading to increased pressure on registers. Therefore we need to
analyze the lifetime of each register variable to ensure that there are sufficient
registers for reallocation in each time slot. We shall assume that

(1) all registers are of the same type;
(2) every operand of an instruction occupies at most one register;
(3) the result of an instruction resides in the register used by later instructions.

These three assumptions describe the most common way by which instructions uti-
lize the general registers. Some processors may have special-purpose instructions
that make use of special registers. Extra register constraints can be included for
the rescheduling of these special instructions. If an operand of certain instructions
requires more than one register, the number of feasible time slots where this instruc-
tion can be reschedule into will be smaller since it takes up more registers. Further-
more, if data are allowed to be passed from one instruction to another directly, then
these two instructions will have more feasible time slots to be rescheduled into.

The register usage chain can be derived from the dependence relations in the data
flow graph. The lifetime of a register variable starts at the time when an instruction
defines it until the time when it is last used by other instructions. Consider the
data flow graph where only instruction m uses the register variable that instruction
l has defined. Since

∑c−Dl+1
i=1 xl

i = 1 if instruction l defined the variable no later
than the time slot c and

∑c−Lm+1
i=1 xm

i = 0 if instruction m uses it no earlier than
c,

Rl
c =

c−Dl+1∑

i=1

xl
i −

c−Lm+1∑

i=1

xm
i (43)
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is equal to 1 if time slot c is in the lifetime of the defined register variable, where Dl

is the number of delay slots of instruction l and Lm is the functional unit latency
of instruction m.

Extending (43) to a set S of instructions that uses this register variable, we have

Rl
c = Λ


 ∑

∀m∈S




c−Dl+1∑

i=1

xl
i −

c−Lm+1∑

i=1

xm
i





 (44)

This is the basis of constraint (29), which ensures that the total number of live
register variables in a given time slot does not exceed the total number of registers
available.

3.3.3 Shared Bus Constraints. A shared bus l should not be used by more than
one instruction in any time slot i. An instruction k would use shared bus l in
time slot i if this instruction is allocated to time slot i, i.e. xk

i = 1, and it can
be executed on the q-th functional unit of type j that requires shared bus l, i.e.
ak

qjb
l
kqj = 1. Constraint (30) on shared bus usage is to ensure that the total number

of instructions in a given time slot using the same shared bus must not exceed one.

3.3.4 Read/Write Port Constraints. If two functional units share a read register
port that forbids parallel access for source operands, then instructions using these
functional units cannot be scheduled to the same instruction word if they both
require source operands. Similar restriction applies to the write register ports for
the destination of the instructions. An instruction k would use read register port
l in the time slot i if it is allocated to time slot i, i.e. xk

i = 1, and it can be
executed on the q-th functional unit of type j which shares read register port l, i.e.
ak

qjd
l
qj = 1. Thus we arrive at constraints (31) and (32).

3.4 Other Constraints

Constraint (33) guarantees that all execution deadlines must be met. In order to
ensure that the execution performance of the target program is not compromised,
we can set the total number of time slots as that in the optimal schedule obtained
by a performance-oriented compiler.

Since the total execution time of the MIP solution does not exceed that of the
initial schedule, the total power consumption of the whole program would remain
unchanged. This is because equation (3) which is used for computing the total power
is linear. Rescheduling instructions in this way will only result in a redistribution
of power among the time slots available. While the power variation changes, the
total power computed by (3) remains the same.

In addition, constraint (34) ensures that each instruction must be issued once
and only once.

4. A BRANCH AND BOUND ALGORITHM

P1 can be solved using generic MIP solvers which are much more efficient than
using exhaustive search. However, they do not have problem-specific knowledge to
help reduce the search space and therefore are generally inferior to problem specific
algorithms. In this section, we shall describe a branch-and-bound algorithm that
ACM Journal Name, Vol. , No. , 02 2007.
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we developed for solving P1 efficiently. One more advantage is that the peak power
can also be flexibly bounded by one of the heuristics for branching.

4.1 Preliminaries

We shall assume that an initial schedule is obtained by using a standard perfor-
mance optimized compiler. Therefore the task is to reschedule instructions for min-
imal power variation. Starting with the initial schedule X1, a branch-and-bound
tree can be constructed using X1 as the root node. Each node of the tree represents
a feasible schedule. A branch of the tree connects a parent schedules Xr to a child
schedule Xt if Xt is obtained from Xr by rescheduling one single instruction.

For every schedule Xr in the branch and bound tree, we define two associate sets
of instructions. The first set, denoted Ur, consists of the instructions rescheduled
along the path from X1 to Xr. The second set, denoted Vr, consists of all the
remaining instructions yet to be rescheduled. A schedule Xs is a successor of Xr if
we can obtain Xs from Xr by rescheduling only the instructions in the set Vr.

Let Iu
i denote the total power consumption in time slot i due to the instructions

in Ur. Iu
i can be computed in a similar way to (38), i.e.

Iu
i = a

Kmax
· 1

5

∑
∀k∈Ur

(
xk

i + xk
i−1 + xk

i−2 + xk
i−3 + xk

i−4

)
+

b
NPUmax

· 1
2

∑
∀k∈Ur

(
xk

i−5 + xk
i−6

)
+

c
NMUmax

· 1
3

∑
∀k∈Ur

(
fkxk

i−7 + fkxk
i−8 + fkxk

i−9

)
+ e

(45)

We shall now discuss the branching process, selection rules and lower bound
estimation of our algorithm in detail.

4.2 Branching

Let XCBS denote the current best schedule. For any schedule Xr, if the lower
bound of the objective function values for all the successors of Xr is not less than
the objective function value for XCBS (i.e. P (XCBS)), then no better schedule
exists among the successors of Xr. Therefore there is no need to branch from Xr

and Xr can be removed from the leaf schedule pool. Otherwise we branch from Xr.
The branching process for a selected leaf schedule Xr is summarized in Algo-

rithm 1. New schedules are generated from Xr by rescheduling an instruction in
the set Vr. The higher priority is given to instructions with less data dependen-
cies. Instructions with less data dependencies typically have more schedule slacks
for power balancing. The convergence of the branch-and-bound algorithm should
accelerate if these schedule slacks are explored earlier.

Suppose instruction k in Vr is to be rescheduled. First, we branch from Xr by
rescheduling instruction k to all time slots. The child schedules are checked against
the constraints (27)-(32). The objective function values of those feasible ones are
then computed. For any feasible child schedule Xf , if P (Xf ) < P (XCBS), then
Xf becomes the new XCBS . Next, Xr is deleted from the leaf schedule pool and the
generated feasible child schedules are examined to see which ones should be inserted
into this pool. Let Xs be the new schedule after instruction k is rescheduled to
time slot j. Then Xs can be inserted into this pool if it satisfies the following five
conditions.
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Algorithm 1: The branching process for a selected leaf schedule Xr. (The
array “RescheduleInstructionSequence” descending stores all the instructions
according to their priorities to be rescheduled.)

input : The selected leaf schedule Xr determied by the selection rules in
Section 4.3.

output: The updated leaf schedule pool.

if the lower bound for Xr < the objective function value of the1

CurrentBestSchedule then
i ← the depth of Xr;2

Reschedule the instruction at RescheduleInstructionSequence[i+1] to all3

the time slots;
if the objective function value of any feasible child schedule < the4

objective function value of the CurrentBestSchedule then
Replace CurrentBestSchedule by this child schedule;5

end6

if the depth of Xr < n− 1 then7

/*Otherwise the branching process will reach the bottom of the8

branch and bound tree.*/;
Add the feasible child schedules which satisfy the five conditions9

described in Section 4.2 to the leaf schedule pool;
end10

end11

Delete Xr from the leaf schedule pool.12

Condition 1. Iu
j should not be larger than the peak power of the current best

schedule. That is,

Iu
j ≤ Pmax (XCBS) (46)

where Pmax (XCBS) is the peak power of the current best schedule.
If it is desirable to limit the peak power of the resultant schedule, then we can re-

place Pmax (XCBS) in (46) by a predetermined bound on the peak power. However,
by doing this, potentially optimal solutions may be abandoned.

Condition 2. Data dependencies must be satisfied. These dependencies are ex-
pressed by the following inequality:

t∑

i=1

ixb
i −

t∑

i=1

ixa
i ≥ Gab (47)

for all instructions a, b = 1, 2, ..., n and Gab > 0. Here,
t∑

i=1

ixa
i and

t∑
i=1

ixb
i respec-

tively obtain the time slots where instructions a and b are scheduled to, and

Gab =
{

Lab, if instruction b directly or indirectly depends on instruction a
−1, otherwise

(48)
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where Lab denotes the length of the longest path from instruction a to instruction
b in the data dependency graph.

Applying (47) to the new schedule Xs obtained by rescheduling instruction k to
time slot j, we have

j −
t∑

i=1

ixa
i ≥ Gak

t∑
i=1

ixb
i − j ≥ Gkb

(49)

where ∀a, b ∈ Ur and Gak, Gkb 6= −1.

Condition 3. The time slots where an instruction may be scheduled must satisfy
(47) as well as the deadline constraints (33). For instruction k in the new schedule
Xs, the range of possible time slots are given by

Gk
front∑

j=1

xk
j = 0, if Gk

front ≥ 1

t−Gk
back+1∑

j=Gk
front

+1

xk
j = 1

t∑

j=t−Gk
back

+2

xk
j = 0, if Gk

back ≥ 1

where

Gk
front = max

h
(Gh,k) (50)

Gk,F = max
l

(Gk,l) (51)

Gk
back = Gk,F + DF (52)

where DF is the number of time slots needed to execute instruction F which is
defined in (51).

Condition 4. The resource constraints (28-32) must be satisfied in time slot j.

Condition 5. The lower bound of the objective function values for the successors
of Xs must be less than P (XCBS).

4.3 Selection Rules

Given the current leaf schedule pool, the branch and bound algorithm uses the
selection rules to choose the one for branching. The selection strategy is to give
higher priority to the leaf schedules with less instructions in its Ur. Such a selection
rule can ensure that the instructions with less data dependencies are rescheduled
earlier. Instructions with less data dependency may have more schedule slacks for
power balancing. Therefore, it would accelerate the convergence of the branch and
bound algorithm if these schedule slacks are explored earlier.
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4.4 Lower Bound Estimation

The efficiency and effectiveness of the branch-and-bound algorithm is highly depen-
dent on how accurately the lower bound of the objective function, given a selected
schedule Xr, can be estimated. There are two basic requirements for the lower
bound estimation algorithm. First, the estimated lower bound should be tight, i.e.
its value should not be too far off the optimal value for the successors of Xr. This
helps to reduce the search space. Second, it should be computationally efficient.

A common approach is to relax the integer constraints on the non-branched
decision variables in the MIP. The optimal solution of the relaxed program then
provides a lower bound estimate. However, a direct application of this approach to
P1 is not computationally efficient enough since it still involves solving the original
program albeit without the integer variables. More importantly, this approach does
not provide us with a lower bound that is tight enough for our problem.

Our approach is to recognize that at this time we are only interested in obtaining
a lower bound of the objective function values instead of an optimal instruction
schedule. In any successor of Xr, the power consumption at time slot i, denoted
by Ii, is a sum of the power consumption of instructions already rescheduled (Iu

i )
plus the power consumption of the instructions from the set Vr. By redistributing
the power consumption of instructions in Vr, we obtain the minimum of the objec-
tive function (40), which is a lower bound of the objective function values for the
successors of Xr.

The total power consumption of each instruction in Vr is composed of power
consumption in each function block which is spread out over a number of time slots.
We shall denote the power consumed by an instruction in a time slot in function
blocks IMU, CU and DMU as PIMU , PCU and PDMU . For example, we have
PIMU = 1

5
a

Kmax
according to (17) and each instruction stays in IMU for continous

five time slots. Let yIMU
i , yCU

i and yDMU
i denote the number of units of PIMU , PCU

and PDMU respectively in a particular time slot i. An alternative mixed-integer
program, PLB, can be formulated based on these variables. The optimal solution of
PLB will provide us with a lower bound of the objective function for the successors
of Xr. This alternative MIP is specified as follows.

PLB: min P (X) =
t∑

i=1

(Ii −M)2

subject to

yIMU
i ≥ 0

yCU
i ≥ 0

yDMU
i ≥ 0

(53)

Iv
i = yIMU

i PIMU + yCU
i PCU + yDMU

i PDMU , i = 1, ..., t (54)
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t∑

i=1

Iv
i = Itotal −

t∑

i=1

Iu
i (55)

Ii = Iu
i + Iv

i , i = 1, ..., t (56)

where

Itotal = tM (57)

PLB has the same objective function as P1. However, the decision variables,
yIMU

i , yCU
i and yDMU

i , are the real-valued instead of binary (xk
i ). Iu

i represents
the total power of the instructions that has already been rescheduled. Iv

i represents
the power of the instructions that has yet to be rescheduled. In solving PLB, we are
essentially redistributing the various portions of power of those instructions in Vr,
instead of the whole instructions, to the available time slots. Note that no actual
instruction schedules are explicitly obtained.

The advantage of using PLB is that it implicitly ensures that instructions will
not occupy fractions of a time slot by sub-dividing the power of a single instruction
in a functional block into integer number of time slots. In contrast, if we simply
relax the constraints on the binary decision variables xk

i of P1 in a conventional
way, some instructions will not start at the beginning of a time slot. This leads to
a solution with power variation much less than that obtained through PLB. Thus
PLB is able to provide us with a much more accurate lower bound. This is stated
formally by the following theorem.

Theorem 4.1. For a given schedule Xr, the optimal value of P (X) obtained by
the integer program PLB is a lower bound of the objective function P (X) of the
mixed-integer program P1 for all successors of Xr.

Proof. For a given schedule Xr, let sLB denote the optimal value of P (X) for
the integer program PLB. We need to prove that for any successor Xs of Xr,
sLB ≤ P (Xs).

Let P1′ be the subproblem of P1 with the partial schedule Xr. It is an MIP
with binary decision variables xk

i for k ∈ Vr and i = 1, ..., t. Let sP1′ denote the
optimal objective function value of P1′. Then for any successor Xs of Xr,

sP1′ ≤ P (Xs) (58)

Now compare PLB with P1′ for Xr. The two formulations have the same objec-
tive function. But in PLB, the data dependency and resource constraints on the
instructions in Vr have been removed. Since PLB is actually the same problem as
P1′ but with less constraints, the optimal value of PLB must be less than the one
obtained by P1′. That is, for Xr,

sLB ≤ sP1′ (59)

Therefore, based on (58) and (59), sLB ≤ P (Xs) for any successor Xs of Xr.

Furthermore, PLB is a very simple integer program which can be solved very
efficiently. It does not have any data dependency and resource constraints as in
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input : The schedule Xr.
output: The lower bound of the objective function values for all the

successor generated from Xr.

bound = 0;1

calculate each Iu
i according to (45); initiate each Ii with its Iu

i : Ii = Iu
i ;2

tempCount ← number of units of PDMU consumed by the instructions in3

Vr;
for i ← 1 to tempCount do4

Suppose the value in time slot W is the smallest among the current Ii5

(i = 1 to t), then IW = IW + PDMU ;
end6

tempCount ← the number of units of PIMU consumed by the instructions7

in Vr;
for i ← 1 to tempCount do8

Suppose the value in time slot W is the smallest among the current Ii9

(i = 1 to t), then IW = IW + PIMU ;
end10

tempCount ← the number of units of PCU consumed by the instructions in11

Vr;
for i ← 1 to tempCount do12

Suppose the value in time slot W is the smallest among the current Ii13

(i = 1 to t), then IW = IW + PCU ;
end14

bound ← the objective function value computed from the obtained15

Ii(i = 1, ..., t);
Return bound;16

Algorithm 2: A water-filling algorithm to solve the integer program PLB.

P1. Hence it can be solved by using a simple water-filling algorithm as shown in
Algorithm 2. This algorithm starts with the schedule where each time slot already
has power consumption given by Iu

i . The power units of the instructions in Vr are
placed into the time slots of this schedule by filling those time slots with lowest
power first. The power units which are larger are chosen first because it is easier
to use the smaller portions to “fill in the gaps” later so that power variation is
minimized.

5. PERFORMANCE EVALUATION

Texas Instruments’ C6711 digital signal processor is used as the target VLIW pro-
cessor for our experiments. Its detailed resource constraints and instruction set
information can be found in [Texas Instruments 2000]. Figure 6 illustrates its in-
ternal organization. The algorithmic activity based power model for the C6711
described in Section 2.2 is employed.

The Mediabench [Lee et al. 1997] and the Trimaran benchmarks [Chakrapani
et al. 2005] are used. The benchmark programs are compiled using the compiler in
Code Composer Studio with optimization options “-o3” (optimization enabled at
ACM Journal Name, Vol. , No. , 02 2007.
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Fig. 6. Functional Organization of TMS320C6711 (from [TI 2000]).

file level) and “-ms0” (speed first, size second). The instruction schedules obtained
are used as the initial feasible solution for P1. By setting the total number of
available time slots as these speed optimized ones, the solution provided by P1
will have the same speed performance but with power variations minimized. In
this way, the proposed branch-and-bound algorithm is used an additional back-end
phase in the non-power-aware compiler.

All our computational experiments were conducted on an Intel Pentium 4 per-
sonal computer running at 2.8 GHz with 512MB RAM under Microsoft Windows
2000. The numerical results are shown in Table II. The major findings are sum-
marized as follows.

(1) Reduction in power variation: Overall, our algorithm produces schedules with
an average improvement of 46.85% for the Trimaran benchmarks and 41.76%
for the MediaBench benchmarks while maintaining the same speed performance
as the non-power-balanced schedules (refer to Columns “Fn”, “F” and “Imv”).
Comparison between the values under Columns “Fn” and “F” for Trimaran
and Mediabench benchmarks is also respectively highlighted in Figure 7.

(2) Reduction in maximum power deviation: The reductions on average in terms of
maximum deviation from the mean are 24.10% for the Trimaran benchmarks
and 17.31% for the MediaBench benchmarks (refer to Columns “fn”, “f” and
“Imf”).

Figure 8 respectively shows the percentage of rescheduled instructions and the
percentage of time slot with rescheduled instructions for each Trimaran benchmark.
These percentages are not exactly consistent with those improvement percentages
under Column “Imv” in Table II. The reason is that the optimization achieve-
ment also depends on the power consumption and execution clock cycles of the
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Table II. Power variation reduction, computational efficiency and largest power deviation reduction
of Trimaran benchmarks and Mediabench Benchmarks.

Trimaran Fn F T fn f Imv ImvT Imf
(×106) (×106) (sec.) (%) (×106) (%)

bmm 12.23 5.98 1.86 400 324 51.09 3.36 19.05

dag 1.55 0.953 0.046 290 290 38.57 13.01 0

eight 0.96 0.63 0.031 227 138 34.22 10.56 39.16

fact2 0.65 0.38 0.03 162 115 41.53 8.69 29.45

fib 0.753 0.347 0.046 162 94 53.85 8.81 41.98

fib-mem 1.07 0.504 0.11 213 147 52.87 5.19 30.86

fir 9.28 6.14 1.185 468 423 33.81 2.65 9.66

hyper 0.69 0.374 0.031 156 99 45.68 10.14 36.68

ifthen 1.59 0.988 0.062 290 290 37.83 9.70 0

mm 4.04 2.076 0.498 399 310 48.67 3.95 22.15

mm-double 5.56 3.08 0.72 390 308 44.61 3.45 20.98

mm-dyn 4.14 1.74 0.688 399 229 58.15 3.49 42.55

mm-int 3.42 1.64 0.39 420 287 52.21 4.58 31.56

nested 2.12 0.76 0.16 414 195 64.20 8.71 52.85

sqrt 3.94 2.60 0.69 365 365 33.88 1.95 0

strcpy 1.16 0.61 0.093 224 224 47.31 5.90 0

wave 2.16 0.91 0.20 302 203 57.95 6.21 32.85

Average 46.85 6.49 24.10

Mediabench Fn F T fn f Imv ImvT Imf
(×106) (×106) (sec.) (%) (×106) (%)

adpcm 3.74 1.84 8.97 384 267 50.85 0.212 30.38

epic 240.99 134.74 188.72 821 718 44.09 0.56 12.49

g721 65.78 35.01 23.47 524 496 46.77 1.31 5.43

gsm 362.23 265.77 191.71 796 631 26.63 0.50 20.68

jpeg 1416.44 781.59 1497.38 883 741 44.82 0.42 16.10

mpeg2 981.26 614.46 808.78 955 775 37.38 0.45 18.80

Average 41.76 0.58 17.31

Fn: power variation defined by (40) of schedules produced by Code Composer
F: power variation defined by (40) of schedules produced by the branch-and-bound algorithm
T: the computation time of the branch-and-bound algorithm
fn: maximum power deviation from the mean for schedules produced by Code Composer
f: maximum power deviation from the mean for schedules produced by the branch-and-bound
algorithm
Imv: percentage improvement of “F” over “Fn”

ImvT: the gain per unit time ImvT = Fn−F
T

Imf: percentage improvement of “f” over “fn”

rescheduled instructions.
Figure 9 shows the convergence behavior for a program block with 60 instructions

and 39 time slots. As a result of the proposed branching rules and selection rules, the
branch-and-bound algorithm is able to reach a solution with an objective function
value within 4.4% of the global optimum after only 380 leaf schedules have been
visited.

For complex programs, the time taken to reach the optimal solution may be
unacceptably long. Given the convergence behavior of the branch-and-bound al-
ACM Journal Name, Vol. , No. , 02 2007.
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Fig. 7. Comparison of power variation between the original schedules and the rescheduled for
Trimaran benchmarks and Mediabench Benchmarks.

gorithm, it may be sensible to obtain a sub-optimal solution within a reasonable
time instead. Using the most time consuming mediabench benchmarks, “jpeg” and
“mpeg2”, we set a maximum limit of 300 nodes per instruction block. The results
in Table III shows that an average saving of 70.39% in computation time can be
achieved at the cost of a reduction in the improvement of power variation by 9.68%
(refer to Columns “dImv” and “uT”). This tradeoff result between computation
time and power variation reduction percentage is also highlighted in Figure 10 for
jpeg and mpeg2 respectively.

6. CONCLUSIONS

Although VLIW is an energy-efficient architecture and VLIW instruction scheduling
techniques for performance optimizations are adaptable to total energy optimiza-
tion, instruction schedules that are optimized for speed often exhibit large variation
in processor power consumption during the execution of the target program. This
paper focusses on minimizing the power variance by rescheduling instructions with-
out compromising on the execution speed. The problem is formulated as a mixed-

ACM Journal Name, Vol. , No. , 02 2007.



26 · S. Xiao and E. Lai

Fig. 8. Percentages of rescheduled instructions and time slots with rescheduled instructions in the
power-balanced schedules for Trimaran benchmarks.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of subproblems solved

P
er

ce
nt

ag
e 

fr
om

 th
e 

gl
ob

al
 o

pt
im

um

Fig. 9. Convergence behavior of the branch-and-bound algorithm for a problem size of 60 instruc-
tions and 39 time slots.
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Table III. Tradeoff between computation time and power variation reduction with maximum
subproblem 300.

Program Fn F300 T300 Imv300 ImvT300 dImv uT
(×106) (×106) (sec.) (%) (×106) (%) (%)

jpeg 1416 909 490 35.83 1.035 8.99 67.25

mpeg2 981 716 214 26.99 1.237 10.39 73.53

Average 9.68 70.39

Fn: power variation defined by (40) of the schedules produced by Code Composer
F300: power variation defined by (40) of schedules produced by the branch-and-bound algorithm
with maximum branching limit of 300
T300: the computation time for F300

Imv300: percentage improvements of “F300” over “Fn”

ImvT300: the gain per unit time ImvT300 = Fn−F300
T300

dImv: the degraded best objective function values computed by dImv = Imv − Imv300

uT: computation time saving percentage by comparing “T300” and “T” in Table II

Fig. 10. Tradeoff between computation time and power variation reduction percentage with max-
imum subproblem 300.

integer program. The major contribution of this paper is a branch-and-bound
algorithm that can solve this MIP much more efficiently than generic solvers, mak-
ing the technique more attractive for use in practical compilers. In particular, the
heuristics used to guide the branching and selection processes are able to reduce
the search space substantially. The lower bound estimation process is effective and
computationally efficient, which also accelerates the convergence of the branch-and-
bound algorithm. Furthermore, the peak power can also be flexibly bounded by the
heuristics for branching. The results of simulation experiments based on the C6711
VLIW digital signal processor using benchmarks programs from Mediabench and
Trimaran confirmed the effectiveness and efficiency of our method.
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7. FUTURE WORK

The techniques proposed in this paper are for VLIW instruction scheduling at
compile time. During the execution of the program, power variation would be
affected by instruction and data cache misses. These factors are not considered in
this paper. An extension of the current work is to develop techniques that can be
used at the compile time to estimate and handle cache misses.

Only simulated results are presented. The problem would be treated more thor-
oughly if direct physical measurements of runtime power variation on a real system
are performed. This requires measuring the instantaneous current from a program
execution trace for any benchmark program at least the processor clock frequency.
The existing setup uses sampled multimeter data for measuring runtime power con-
sumption [Isci and Martonosi 2003]. But if this setup is used for our purpose, some
dynamics measurement techniques have to be refined. There is need for synchro-
nization between the software application execution, the processor’s clock, and the
oscilloscope [Muresan and Gebotys 2001], since a well and true power vs. time
waveform is required in order to determine the position of an instruction or of a set
of instructions in the waveform and then give some insight into the possible defect
of our algorithm and the improvement to be made. The work next is to develop
measurement schemes appropriate for our purpose.

A. NOTATIONS OF THE MIP

. n is the total number of instructions in the given schedule.

. t is the total number of time slots available.

. xk
i = 1 if instruction k is allocated to time slot i. Otherwise, xk

i = 0.
. X is the set of n variables xk

i which equal to 1. Thus X specifies a schedule.
. u is the total number of functional unit types in the target VLIW processor.
. cj is the total number of functional units of type j.
. g is the total number of physical registers.
. s is the total number of shared buses.
. r is the total number of shared read register ports which forbid parallel access.
. w is the total number of shared write register ports which forbid parallel access.
. ak

qj = 1 if the q-th functional unit of type j can execute instruction k. It is zero
otherwise.

. bl
kqj = 1 if instruction k allocated to the q-th functional unit within type j uses

shared bus l. It is zero otherwise.
. dl

qj = 1 if the q-th functional unit of type j shares read register port l. It is
zero otherwise.

. el
qj = 1 if the q-th functional unit of type j shares write register port l. It is

zero otherwise.
. E is the set of all flow-dependent pairs < l,m >, where instruction m depends

on instruction l.
. Rl

c = 1 if instruction l defines a register variable and it is live at time slot c.
Otherwise, Rl

c = 0.
. Dk is the number of delay slots of instruction k.

ACM Journal Name, Vol. , No. , 02 2007.



VLIW Instruction Scheduling for Minimal Power Variation · 29

. Lk is the functional unit latency of instruction k.

. fk = 1 if instruction k involves internal data memory access. It is zero other-
wise.

. Ii is the average power in the time slot i.

. M is the average power over all t time slots.

. A function Λ(x) is defined by

Λ(x) =
{

1, x ≥ 1
0, otherwise

where x is an integer.
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