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Abstract

In recent years, the interaction between evolution and learning has received much attention from the research commu-
nity. Some recent studies on machine learning have shown that it can significantly improve the efficiency of problem
solving when using evolutionary algorithms. This paper proposes an architecture for learning and evolving of Flexible
Job-Shop schedules called LEarnable Genetic Architecture (LEGA). LEGA provides an effective integration between
evolution and learning within a random search process. Unlike the canonical evolution algorithm, where random elitist
selection and mutational genetics are assumed; through LEGA, the knowledge extracted from previous generation by
its schemata learning module is used to influence the diversity and quality of offsprings. In addition, the architecture
specifies a population generator module that generates the initial population of schedules and also trains the schemata
learning module. A large range of benchmark data taken from literature and some generated by ourselves are used to
analyze the efficacy of LEGA. Experimental results indicate that an instantiation of LEGA called GENACE outperforms
current approaches using canonical EAs in computational time and quality of schedules.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of scheduling has increased in
recent years due to the growing consumer demand
for variety, reduced product life cycles, changing
markets with global competition and rapid develop-
ment of new processes and technologies. These
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economic and commercial market pressures empha-
size the need for a system which minimizes inven-
tory but is able to maintain customer satisfaction
levels of production and delivery specification.
Often, this requires an efficient, effective and accu-
rate scheduling plan. The Job-Shop Scheduling
Problem (JSP) is one of the most popular scheduling
models existing in practice [1]. It has attracted many
researchers due to its wide applicability and inher-
ent difficulty [2–5]. It is also well known that JSP
is NP-hard [6], and hence deterministic methods of
search are in general inefficient. The n · m classical
.
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JSP involves n jobs and m machines. Each job is to
be processed on each machine in a pre-defined
sequence. Each operation of a job is to be processed
only on one machine at a time. In practice, the shop-
floor setup typically consists of multiple copies of
the most critical machines so that bottlenecks due
to long operations or busy machines can be reduced
[25]. Therefore, an operation may be processed on
more than one machine having the same function.
This leads to a more complex problem known as
the flexible job-shop scheduling problem (FJSP).
With the new extension, two decisions have to be
made: assignment of an operation to an appropriate
machine and sequencing the operations on each
machine. In addition, for complex manufacturing
systems, a job can visit a machine more than once
(called recirculation). These three features of the
FJSP significantly increase the complexity of finding
even approximately optimal solutions [7].

The canonical EA has been applied to solve
many applications in the real world. However, its
results are still limited due to the reliance on ran-
domized natural selection and recombination [8].
Recently, the study of interaction between evolu-
tion and learning for solving optimization prob-
lems has been attracting much attention from
researchers and many promising results [8–12]
have been obtained. The diversity and disparity
of these approaches has motivated our pursuit
for a holistic architecture called LEGA, which
supports the interaction between evolution and
learning to approximate the FJSP efficiently. This
architecture comprises the integration of three
modules: Evolutionary Algorithm (EA), schemata
learning (SL) and Population Generator. Instead
of simply using a randomized search process as
in the canonical EA, the search space in every gen-
eration is intelligently guided by the SL module
towards promising areas while the population gen-
erator module is used to generate good initial
schedules and in turn, to train the SL module.
The SL module is updated by good features of
the best schedules during EA execution. The objec-
tive is to minimize the makespan; the maximum
completion time of all operations. We demonstrate
the efficacy of this architecture in the instantiation
of GENACE [21] which is applied to common
benchmark problems from [13–17], and others gen-
erated by ourselves. Experimental results show
that using the LEGA architecture, GENACE out-
performs previous approaches for solving the
FJSP.
The paper is organized as follows. Section 2 gives
the formal definition of FJSP. A practical model of
the FJSP is also described. Section 3 reviews recent
related works for solving the FJSP. Current studies
of the interaction between evolutionary and learn-
ing for solving optimization problems are also dis-
cussed. Section 4 describes the proposed LEGA
architecture and the integration of its three mod-
ules. The Population Generator module that uses
a form of Composite Dispatching Rules (CDRs)
and the k-nearest neighbor method applied to SL
module are also detailed. Section 5 presents and
analyzes the performance results of LEGA when
applied to solve common benchmarks in literature
and others generated by ourselves. Finally, Section
6 gives some concluding remarks and directions
for future work.

2. Problem formulation

Similar to the classical JSP, the FJSP takes into
account the assignment of each operation of each
job to a machine and sets its starting and ending
times. However, the task is more challenging than
the classical one because it requires a proper selec-
tion of a machine from a set of machines to process
each operation of each job. Generally, the FJSP is
formulated as follows:

• Let J = {Ji}16i6n, indexed i, be a set of n jobs to
be scheduled.

• Each job Ji consists of a predetermined sequence
of operations. Let Oi,j be operation j of Ji.

• Let M = {Mk}16k6m, indexed k, be a set of m

machines.
• Each machine can process only one operation at

a time.
• Each operation Oi,j can be processed without

interruption on one of a set of machines P(Oi,j).
Therefore, we denote pi,j,k to be processing time
of Oi,j on machine Mk.

• The objective of this problem is to find a schedule
that has minimum time required to complete all
operations (minimum makespan).

Kacem et al. [15] classified the FJSP into two
sub-problems as follows:

• Total FJSP (T-FJSP): each operation can be pro-
cessed on any machine of M.

• Partial FJSP (P-FJSP): each operation can be
processed on one machine of subset of M.
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Fig. 1. Typical process flow for PCB assembly.
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According to Kacem et al. [15], for the same
number of machines and jobs, the P-FJSP is more
difficult to solve than the T-FJSP. Therefore, the
P-FJSP is transformed to the T-FJSP by adding ‘infi-
nite processing times’ to the unused machines and to
solve the latter instead. However, although the P-
FJSP is a generalization of the T-FJSP, in order to
compare our experimental results (in Section 5) with
the latest results from [15], we will still distinguish
between the problem types of T-FJSP and P-FJSP.
The flexibility of our representation (to be described
in Section 4.3) allows us to use a single representa-
tion to describe both problem types. Therefore, the
performance results that we obtain will also apply
to both.

Constraint information on the FJSP can be illus-
trated with a table [13,15] where each cell denotes
the processing time of that operation on the corre-
sponding machine. Table 1 presents a P-FJSP prob-
lem of 2 jobs by 3 machines. Each operation of a
job can be processed on more than one machine.
The processing time on each machine is predefined.
For instance, operation O1,1 of job 1 can be pro-
cessed on machine M1 with processing time 4 units
and on machines M2 with processing time 5 units.
Machine M3 is unavailable for O1,1.

In this paper, we shall assume that:

• All machines are available at time 0.
• All jobs are released at time 0.
• The order of operations for each job is predefined

and cannot modified.

2.1. Modeling job assignments in the electronic

manufacturing service industry

We shall now review the practical use of our
FJSP model based on job assignments in the elec-
tronics manufacturing service (EMS) industry. The
data were collected from CEI Contract Manufactur-
ing Limited Company, Singapore.
Table 1
An example of the P-FJSP

M1 M2 M3

J1 O1,1 4 5 XXX
O1,2 9 2 2
O1,3 XXX 6 3

J2 O2,1 6 5 XXX
O2,2 3 3 5
For job assignments in the EMS industry, printed
circuit boards (PCB) generally go though four main
centers: Auto Insert center (AI), Surface Mount
Technology center (SMT), Manual Insert center
(MI), and Independent Component Test center
(ICT) [19]. A process flow model of PCB assembly
is illustrated in Fig. 1.

The processing of a lot (or job) which contains a
batch of identical PCBs begins when the full-kit of
materials is ready and released to the shop floor.
Each lot has to be processed on a given set of
machines in a predefined route that depends on
the lot type. It can be processed on the AI center
or go directly to the SMT center. For the former
route, one of two machines AI1 or AI2 can be
selected. For the latter route, one of five machines
can be chosen to process it. The MI center has three
lines where two are configured for water-based
PCBs and one is for non water-based PCBs. There-
fore, if a lot belongs to water-based PCBs, it can
select one of two machines MI1 or MI2, otherwise,
it can only be processed on one non-water based
line. Finally, it is processed on one of three
machines of the ICT center. After the ICT center,
PCBs go through some manual processes (e.g. qual-
ity assurance, visual inspection) before undergoing
packaging. Observe from the constraints of lots
assigned to machines in the assembly line, that the
job assignment task in the EMS is well modeled as
a FJSP. Moreover, when a two-sided PCB is sched-
uled to go through the system twice and visit a
machine in a center more than once, this latter sce-
nario can be better modeled as a FJSP with
recirculation.

3. Previous works

EAs have been widely used to solve optimization
problems [20]. Among the approaches used, the
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FJSP is one that has been tackled effectively by
appropriate choices of chromosomal representa-
tions [13–16,21,22]. Recently, EAs that integrate
some form of learning has encouraged further study
in evolutionary computation [8–12]. In this section,
we review recent EA approaches for chromosome
representation as a means of understanding what
type of knowledge can be learnt, followed by a
review of approaches to integrating such knowledge
into an evolutionary learning framework so as to
motivate the design of LEGA.

3.1. Chromosomal representations for genetic

evolution

Better efficiency of EA-based search can be
achieved by modifying the chromosomal representa-
tion and its related operators so as to generate fea-
sible solutions and avoiding the use of a repair
mechanism. For example, the canonical EA often
creates a number of infeasible schedules in each gen-
eration as it performs crossover and mutation on
randomly selected genes. If the chromosomal repre-
sentation is well designed, no infeasible schedules
will be produced after recombination, and the algo-
rithm can expect to be more efficient. Moreover, the
relationship between chromosomal representation
and its related operators should also be taken into
consideration. The operators are only meaningful
in the context of a given representation. To evaluate
the performance of some reported chromosomal
representations [13–16] and their recombination
operators, we consider the twin criteria of time
and space computational complexity of the EA’s
operators, and the need to maintain solution
feasibility.

Mesghouni et al. [13] proposed a chromosomal
representation for FJSP known as parallel job rep-
resentation. In this representation, a chromosome
is represented by a matrix where each row consists
of a set of ordered operations of each job. The dis-
advantage of this representation is described as fol-
lows. After doing crossover, the starting times of
each operation on each machine could become
invalid. Therefore, the offspring requires a repair
mechanism to recalculate the starting times for all
operations. Due to the complexity of decoding
the representation, this algorithm incurs significant
computational cost to achieve even near-optimal
results. Chen et al. [14] uses an A–B string repre-
sentation. This representation divides the chromo-
some into two parts: A string and B string. A
string contains a list of all operations of all jobs
and the machines selected for the corresponding
operations while B string contains a list of opera-
tions that are processed on each machine. The
crossover and mutation operators are costly as
the B string has to be checked to ensure that oper-
ations in the B string consist only of those opera-
tions that are assigned to machine Mk by A

string. In addition, this chromosome representation
has to consider the order of operations that is
processed on the same machine so that when a
disjunctive graph is used to decode it, a deadlock
situation does not occur. Therefore, a repair mech-
anism to maintain feasibility is required. Kacem
et al. [15,16] use an assignment table representa-
tion. It is more efficient than those described previ-
ously because all schedules that are generated after
applying crossover and mutation remain feasible.
Another important feature is the application of
domain knowledge in the mutation operation;
achieved with a table which specifies promising
machines for operations to be processed on (for
instance, in terms of processing times). Unfortu-
nately, this knowledge is static. We have extended
this feature in LEGA so that the knowledge is
dynamic and learnt over each generation. The
genetic operators are directed by this knowledge
as well. Another drawback of the assignment table
is its space complexity. For instance, in the case of
P-FJSP, one operation can be processed on a sub-
set of the machines in system. However, a data
structure of the assignment table must necessarily
describe the set of all machines. This increases the
overall time complexity due to the presence of
redundant assignments.

The lessons learnt from the above representa-
tions motivate some seemingly disjoint features for
a possible integration of evolution and learning,
they are presented here to motivate the eventual
design of LEGA. They are:

1. The use of a chromosomal representation (and its
related operators) that only creates feasible
space-efficient offspring schedules when apply-
ing operators. Our proposed chromosomal repre-
sentation in LEGA will be discussed in Section
4.3.

2. The use of genotypic knowledge that is dynami-
cally acquired during the search process, and to
in turn direct future explorations. We will see
how this knowledge can be learnt in the following
section.
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3. The use of an operation assignment based com-
posite dispatching rule algorithm instead of being
just job assignment based.
Population Generator 
Module

Evolutionary Algorithm 
Module

send

Schemata Learning 
Module

modify

initialize train 

Fig. 2. The proposed LEGA architecture.
3.2. Learning for evolution

There are several works reported on the applica-
tion of the interaction between evolution and learn-
ing [8–12]. The general approach taken is to keep
good and/or bad features of previous individuals to
improve the fitness of individuals and/or avoid infea-
sibility in the current generation. This subsection will
review some prominent classes of learning schemes
applied to EA that have been reported in literature.

The idea of cultural evolution by Reynolds [8,9] is
typically implemented by an external memory that
preserves the beliefs encoded in individuals said to
represent good traits from each generation. In a cul-
tural-based EA (which we call CEA), domain knowl-
edge is represented, stored and transmitted from one
generation to the next. Though the quality of sched-
ules improve, our initial experiments show that large
amounts of processing time is incurred as learning is
applied on every generation. Similarly, Branke [10]
uses a memory to keep good individuals. Whenever
the environment changes, the new population is
created by merging the old population and the indi-
viduals in the memory. Louis and McDonnell [11]
introduce case-based reasoning methods to select
individuals from the case-based memory to be
injected into the current generation by using a similar-

ity measure. More recently, Michalski [12] presents
Learnable Evolution Model (LEM), a learning
scheme that uses Darwinian-type evolutionary re-
combination to generate offspring, where machine
learning is used purely to generate a new population.
In the current version of LEM, the AQ-type learning
system is used to generate the inductive hypotheses.

The above approaches for integrating learning
into the evolution of job-shop schedules reveal an
interaction between evolution and learning that is
implemented in three different ways based on spe-
cific problems. In general, they have used version
space [8], case-based memory [11] or an AQ-learn-
ing system [12]. The common and retaining feature
of these approaches is the use of good and/or
nogood individuals from previous generation/popu-
lation(s) to train a learning module or to simply
populate a memory. The reported performance
results indicate that these approaches can signifi-
cantly outperform the standard EA on the same
benchmarks.
4. Integrating genotypic knowledge, learning

and population evolution

The canonical EA has been applied successfully
to solve many applications [20]. However, the pro-
cesses are based on random natural selection and
recombination. By starting each generation without
considering conserved schematic parts of good
traits, it may take a long time to converge to the
global optimum. As seen earlier in Section 3.2, an
integration of proper genotypic knowledge repre-
sentation, learning methodology and population
generation (through an operation-based assignment
scheduling approach) can yield significant improve-
ments in schedule quality and overall computational
time. We therefore propose the LEGA architecture
for solving the FJSP. Section 4.1 describes the archi-
tecture. Section 4.2 presents the population genera-
tor module and its instantiation. Section 4.3
introduces the EA module and our proposed chro-
mosomal representation for FJSP. The SL module
and how it integrates with the other modules are
discussed in Section 4.4. In particular, changes to
the recombination operators are presented in Sec-
tions 4.4.3–4.4.5.

4.1. The proposed LEGA architecture

The proposed LEGA architecture is functionally
divided into three modules; namely, a Population
Generator module, EA module and a SL module
(see Fig. 2).

The results of the Population Generator module
are used to improve the quality of an initial popula-
tion for subsequent evolution in the EA module.
They are also employed to train the SL module. In
the GENACE instance of LEGA [21], the CDR pop-
ulation generator algorithm (CDR-PopGen) is used
to generate a set of s schedules, which are subse-
quently encoded into s chromosomes. In Section 5,
half of the initial population was generated by
CDR-PopGen, the remaining half was generated
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randomly. The representational structure of these
chromosomes ensures solution feasibility under
recombination (selection, crossover, and mutation).
During genetic evolution, the SL module will modify
offspring schedules to improve their fitness (or
makespan) values based on a memory of conserved
schemas resolved from sampled schedules sent

dynamically from the EA module.
In the GENACE instance of LEGA, we use a

simple k-nearest neighbor method (k-NN) [26] for
the dynamic learning of schemas. The idea is to find
the k most similar solutions to a solution and clas-
sify the latter based on a majority vote. The struc-
ture of the SL module is shown in Fig. 3. Unlike
the previous approaches in [8,11] where knowledge
is extracted at every generation, we reduce the com-
putational time and avoid the same good chromo-
somes that may appear in each generation by
updating the SL module only after k generations.
Predefined numbers of best chromosomes (like
High-group in [12]) after every kth generation are
selected to be inserted to a set of elite chromosomes.
The knowledge from these chromosomes is then
extracted to update the Chromosomal Memory
and Operational Memory. The remaining sub-sec-
tions will provide algorithmic details on each mod-
ule of the LEGA architecture.

4.2. A CDR-based population generator

In this section, we introduce the CDR-PopGen
algorithm as the Population Generation module
(in LEGA) used to generate good initial candidates
for evolving into fitter flexible job-shop schedules.
Its preliminary results are compared with other
methods, and the integration with the EA module
and the SL module is also discussed.

4.2.1. The CDR-PopGen algorithm

The localization approach by Kacem et al. [15]
uses the order of jobs to generate new schedules.
It is quite similar to the first-in-first-out (FIFO) rule
Schemata Learning Module 

Current best chromosomes 

 Chromosomal 
Memory

 Operational 
Memory

update

Fig. 3. Structure of the schemata learning module.
[24] where each job is assigned one at a time to
machines following a predetermined order. How-
ever as mentioned earlier, this job assignment may
not be efficient because it assigns all operations of
one job at a time. For instance, if job Jm precedes
job Jn in the predetermined order, all operations
of the former job Jm are assigned to the machines
before all the operations of the latter job Jn. There-
fore, Jm has more available machine choices with
short processing times and finishes necessarily ear-
lier than the latter. In the CDR-PopGen algorithm,
an operation-based assignment is used instead to
build a schedule. Fig. 4 gives the CDR-PopGen
algorithm.

With reference to Fig. 4, note that by the end of
Step (0), all first operations of each job would be
scheduled. From Step (1), the last operation Oi,j

on the machine Ms (with earliest stop time) is
selected to be evaluated. Note that in Step (1), the
machine with minimum processing time for Oj,k+1

is not necessarily the selected machine. It will
depend on the total time that this operation has to
wait to be processed in the worst case. Therefore,
the workloads of the machines are reduced by
balancing operations to be assigned. In the current
version of LEGA, at Step (2), three basic dispatch-
ing rules are used: shortest processing time (SPT),
longest processing time (LPT), or first-in-first-out
(FIFO). With one random array J and three basic
dispatching rules, we can generate three different
schedules. Each of the rules is applied to one ran-
dom array J at a time. This algorithm can also be
extended by using other dispatching rules that are
described in [23,24]. The algorithm terminates when
all operations are scheduled. The result is a Gantt
chart that satisfies all constraints of the FJSP. In
Fig. 4, operations are selected one at a time to be
scheduled. Therefore, it has a complexity of
O(nm), n being the total number of operations of
the problem, and m the total number of machines.

4.2.2. Empirical performance of the CDR-PopGen

algorithm

In order to test the effectiveness of the CDR-
PopGen algorithm, some benchmark T-FJSPs and
P-FJSPs were selected from [13,15–17]. In each
instance, 20 random orders of jobs were generated.
By applying three dispatching rules SPT, LPT, and
FIFO to one order of jobs, three different sched-
ules were obtained. Therefore, we have a total of
60 schedules. Another 60 random schedules were
also generated to compare to the results from the



Step 0) Initialize:
a) Create an array for a random job order J (e.g. J2 J3 J1).
b) Create a Gantt chart data structure G to insert operations. 
c) Assign the first operation Ox,1 of each job to a suitable machine following the 

order specified in J to G (e.g. O2,1, O3,1, then O1,1). This machine is selected 
by calling Step 1) b) to process Ox,1. Note that when calling Step 1) b), Ox,1
is assigned directly to the selected machine. If there is no operation 
assigned to the selected machine, Ox,1 starts from time 0. Otherwise, it starts 
from the stop time of the last operation on the selected machine.

Step 1) Find a suitable machine to process an operation:
a) Identify the machine with earliest stop time Ms in G and the last operation 

Oi,j on Ms. If more than one machine satisfied, a random machine of them is 
selected. Let t be the stop time of Ms.

b) Find a suitable machine to process Oi,j+1 by the following procedure: 
Identify all the machine that can process Oi,j+1: P(Oi,j+1)
Calculate the waiting time of each machine Mk ∈ P(Oi,j+1): if Mk doesn’t
process any operation at time t, it is equal to processing time of Oi,j+1
on Mk. Otherwise, it is processing an operation Oz,y. Its waiting time is 
equal to total processing times of operations on Mk’s waiting list + 
(remaining time of Oz,y on Mk) + processing time of Oi,j+1 on machine Mk.
The machine with shortest waiting time is chosen to process Oi,j+1. If this 
machine doesn’t process any operation at time t, assign Oi,j+1 to it to be 
processed. Otherwise, add Oi,j+1 to the waiting list of this machine. 

Step 2) Find a suitable order of operations on a machine: from Step 1) a), we 
identified Ms and Oi,j, then assign next operation Oi,j+1 to an appropriate 
machine. Now we find an operation on the waiting list of Ms to be processed on 
Ms. If there is a number of operations on the waiting list of Ms, select one of 
them depending on one of the following dispatching rules: Shortest Processing 
Time (SPT), Longest Processing Time (LPT), or First In First Out (FIFO). 

Step 3) Return to Step 1)

Fig. 4. The CDR-PopGen algorithm for initial population generation in LEGA.
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CDR-PopGen algorithm. The best, average make-
span results and average processing times of 50 runs
of the CDR-PopGen algorithm on a Pentium IV
running at 2 GHz are compared.

Table 2 compares the results that were obtained
by [13,15,16], random schedule generation, and the
CDR-PopGen algorithm. The values in bold-face
identify those instances in which the CDR-PopGen
algorithm is observed to fare better than the others.
The first column presents the size of each problem
instance. The second column shows the best
makespans obtained from [13,15,16]. Note that the
makespans from [15] are obtained by considering
a single-criterion objective while the makespans
Table 2
CDR-PopGen for solving small sized T-FJSPs and P-FJSPs instances

Job · Mach Best
results

Taken
from

Random

4 · 5 16 [16] 11
10 · 7 15 [16] 16
8 · 8 14 [15] 20
10 · 10 7 [13,15] 9
15 · 10 23 [16] 15
collected from [16] are the best makespans among
all the multi-objective results for each instance.
The third column identifies where the instance is
taken. The fourth column presents the best make-
span of the shortest schedule out of 60 schedules that
were generated randomly in 50 runs. The fifth col-
umn shows the best makespans obtained by the
CDR-PopGen algorithm in 50 runs. In the next col-
umn, the best makespan of each run is collected. The
average result of 50 runs is then reported. The last
column shows the average computational times in
50 runs. For the following tables, the method to cal-
culate the average result and the average processing
time for each instance is similar to that in Table 2.
CDR-PopGen
best

CDR-PopGen
avg.

Avg. time
(second)

11 11.00 0.002
11 11.00 0.006
16 16.00 0.005
8 08.00 0.006

12 12.24 0.011
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We can see that the CDR-PopGen algorithm works
well on T-FJSPs. It achieves better results than [16]
on 3 instances. In the 10 jobs · 10 machines, in
which they obtained the best value of 7 unit times;
CDR-PopGen gets a near-optimal value of 8 unit
times. In the 8 jobs · 8 machines, CDR-PopGen
obtains 16 unit times while the best value from [15]
is 14. In these small problems, the makespans of
the best random schedules are near to the makespans
of the schedules obtained by the CDR-PopGen algo-
rithm. By using a simple Gantt chart structure, this
algorithm can be extended to solve the P-FJSP with
constraints of start date and due date of each job and
machine maintenance periods.

Table 3 compares the results obtained by
Brandimarte [17], random schedule generation and
the CDR-PopGen algorithm. The results show that
when the problem size increases, CDR-PopGen gets
better results than schedules generated randomly.
For instance, random generation and CDR-Pop-
Gen obtain 49 and 42 unit times, respectively, in
solving 10 jobs and 6 machines whereas the results
are 338 and 234 unit times in solving 20 jobs and
15 machines. However, in some problems, such as
the 20 jobs and 10 machines problem, CDR-Pop-
Gen still cannot achieve better results than the Tabu
Search algorithm by Brandimarte [17].

The results in Table 3 show that CDR-PopGen
obtains reasonable results for large-sized P-FJSPs.
A weakness of the CDR-PopGen algorithm is its
localized consideration of each machine apart from
its surroundings. This has worked well for small-
sized problems that are T-FJSPs or P-FJSPs. How-
ever, in practice, most scheduling problems are
P-FJSPs and they have large sizes. Thus, we believe
that the CDR-PopGen algorithm should be cast as
an input to other methods to further improve the
results.
Table 3
CDR-PopGen for solving big sized P-FJSPs instances

Name Job · Mach Brandimarte
[17]

Random

Mk1 10 · 6 42 49
Mk2 10 · 6 32 36
Mk4 15 · 8 81 147
Mk5 15 · 4 186 235
Mk6 10 · 15 86 102
Mk7 20 · 5 157 217
Mk8 20 · 10 523 587
Mk9 20 · 10 369 455
Mk10 20 · 15 296 338
4.3. Evolutionary algorithm module

4.3.1. Chromosomal representation

The canonical EA [20] often creates infeasible
solutions during each generation after doing ran-
domized crossover and mutation. Therefore, the
effort to enforce feasibility must tradeoff against
search efficiency. In the evolutionary computation
community, the definitions of genotype and pheno-

type are used to distinguish between heritable and
non-heritable (or behavioural) traits. EA’s recombi-
nant operations are applied to the genotype and the
result maps to a phenotype that allows the calcula-
tion of a fitness value. However, this is not a bijec-
tive mapping from genotype to phenotype. In the
classical JSP problem, many mapped instances pro-
duce infeasible, redundant and inactive schedules
[27]. Therefore, additional computational effort is
required to convert them to feasible ones. To avoid
this complexity, we design a chromosomal represen-
tation for solving the FJSP that not only creates
feasible chromosomes after genetic recombination
but also generates active schedules upon decoding.
We had earlier seen that Mesghouni et al. [13] used
a parallel machine and parallel job representation,
Chen et al. [14] used A–B string representation,
while Kacem et al. [15,16] used an assignment table

(described in Section 3). We now present our pro-
posed chromosomal representation for the FJSP.
The objectives of our design are primarily:

• To ensure feasible solutions that remain feasible
under crossover and mutation.

• To facilitate knowledge update in the SL module.

Our chromosomal representation (called OOMS)
has two components: operation order and machine
selection (see Fig. 5).
CDR-PopGen
best

CDR-PopGen
avg.

Avg. time
(second)

42 42.00 0.009
30 30.00 0.010
68 68.00 0.014

179 179.30 0.017
69 69.20 0.024

153 153.88 0.017
527 528.44 0.035
326 328.78 0.039
234 236.12 0.042



Chromosome = Operation Order Machine Selection 

Fig. 5. Structure of proposed OOMS chromosome.
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• Operation order component. We adopt the opera-
tion order representation from [27–29]. Consider
the problem in Table 1. Job 1 (or J1) has 3 oper-
ations O1,1,O1,2,O1,3; job 2 (or J2) has 2 opera-
tions O2,1,O2,2. One possible schedule could be
(O2,1O1,1O2,2O1,2O1,3), where Oi,j is the operation
of job i with order j (decoding the string by read-
ing the data from left to right). However, if we
apply GA’s operators to this chromosome, we
may receive an infeasible solution. For instance,
(O2,2O1,1O2,1O1,2O1,3) is an infeasible schedule
because it violates the precedent constraint; that
the second operation of job 2 (or O2,2) is to be
processed before the first operation of job 2 (or
O2,1). To avoid creating an infeasible solution,
an individual is obtained from this schedule by
replacing each operation by the corresponding
job index (see Fig. 6). By reading the data from
left to right and increasing operation index of
each job, a feasible schedule is always obtained.

• Machine selection component. We use an array of
binary values to present machine selection. For
the problem in Table 1, one possible encoding
of the machine selection part is shown in Fig. 7.

A boolean value denotes machine selection. For
example, M2 is selected to process O1,1 because
the value in the M2 is a unit value. Only one machine
can be selected per operation. For example, opera-
tion O2,2 can be processed on 3 machines M1,
M2,M3, so the valid values are 001, 010 or 100. This
O2,2 O1,1 O2,1 O1,2 O1,3

 J2 J1 J2 J1 J1

2 1 2 1 1

Fig. 6. OOMS: operation order component.

   O1,1 O1,2 O1,3 O2,1 O2,2

M1 M2 M1 M2 M3 M2 M3 M1 M2 M1 M2  M3

0 1 0 0 1 1 0 0 1 0 1 0

Fig. 7. OOMS: machine selection component.
demonstrates a FJSP with recirculation if more than
one operation of the same job is processed on the
same machine. For instance, O1,1 and O1,3 belong
to J1 and they are processed on the same machine
M2. Note that the machines that can process
an operation are not redundant as in [15]. For
instance, O1,1 (in Fig. 7) can select to be processed
on one of two machines M1 or M2. Therefore, the
OOMS representation is flexible enough to encode
the FJSP. It can also represent two problems, T-
FJSP and P-FJSP, with the same structure. This
property improves the search process by requiring
less memory space and ignoring unused data. Practi-
cal results of this representation can be found in [21].
Its empirical performance in comparison to other
representations has also been shown to be very good
[22].

4.3.2. Decoding an OOMS chromosome to a

feasible and active schedule
Schedules are often categorized into three classes

[18]. A semi-active schedule is a feasible schedule
where no operation can be started earlier without
changing the order or violating the constraints on
any one of the machines. An active schedule is a fea-
sible schedule where no operation can be started
earlier without delaying at least one other operation
or violating the constraints on any one of the
machines. Finally, a non-delay schedule is a feasible
schedule where no machine is kept idle while an
operation is waiting for processing. It has been ver-
ified in [18] that active schedules are a subset of
semi-active schedules, non-delay schedules are a
subset of active schedules, and active schedules also
contain optimum solutions. Therefore, instead of
searching the large search space of feasible sched-
ules or semi-active schedules, in our decoding algo-
rithm, only active schedules will be constructed.
Since active solutions contain both non-delay and
optimal solutions, our decoding algorithm reduces
the search space size and still guarantees that an
optimal solution can be found.

Fig. 8 gives the algorithm for decoding an OOMS
to a feasible and active schedule for a FJSP. Notice
that in Step (1) (d), a left-most time gap is detected
between two operations processed on the same
machine so as to insert a new operation where pos-
sible. Therefore, an active schedule is always created
when applying this algorithm. Otherwise, a semi-
active schedule can be generated by simply inserting
the operation to the end of the last operation on the
same machine. But the semi-active schedule does



Step 0) Initialize: Generate a Gantt chart data structure G to insert operations.
Step 1) Build active schedule: 

For each integer value reading from left to right in operation order part:
a) Identify its corresponding operation Oi,j.
b) Refer to machine selection part to know the machine Mk that processes Oi,j

and its processing time pi,j,k on Mk.
c) Let t1 be stop time of previous operation of Oi,j (that is Oi,j-1) and let t2

be the stop time of the last operation so far on Mk in G. If Oi,j is the 
first operation (i.e. Oi,1), set t1 to be 0. If Mk hasn’t processed any 
operation, set t2 to 0.

d) If t2 is smaller or equal to t1 (i.e. Mk is idle at t1), assign Oi,j to Mk
starting at t1. Otherwise, from time t1 to time t2 on Mk, find time gap 
between two consecutive operations. The time gap is identified by the stop 
time of the first operation and the start time of the second operation. If 
this time gap is equal or larger than pi,j,k, assign Oi,j to this time gap 
starting from the left of the time gap. If Oi,j cannot insert to any time 
gaps from t1 to t2, insert Oi,j to the end of the last operation on Mk (i.e.
it starts at t2).

Fig. 8. Decoding an OOMS chromosome to a flexible and active schedule.
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not guarantee to obtain optimal results and its
makespan is still larger or equal to the active one.
The active schedule decoding algorithm has a com-
plexity of O(n2) while the semi-active decoding algo-
rithm has a complexity of O(n), n being the total
number of operations.

4.3.3. Integrating CDR-PopGen to the evolutionary

algorithm and schemata learning modules

The CDR-PopGen results are used in LEGA to
generate the initial population for the EA module.
The characteristics of the initial population will
determine the diversity of promising subspaces in
our search for optimality. Therefore, to increase
the diversity of the first generation, we combine
the results of the CDR-PopGen algorithm with ran-
domly generated chromosomes via random permu-
tation of operations and random assignment of
machines to each operation. Our tests on different
proportions of these combined schedules found 0.5
to be a suitable ratio. This ratio was used through-
out the experiments reported in Section 5. The
results from the CDR-PopGen algorithm are also
selected to train the SL module upon system initial-
ization. The promising machines that process oper-
ations to obtain good schedules are extracted to
update the operational memory while good sched-
ules are chosen to update the chromosomal mem-
ory. A detailed structure of the SL module and
how to update it will be described in Section 4.4.

4.4. Schemata learning module

Based on the OOMS chromosome, we now
describe how to update the chromosomal memory
and the operational memory (as seen in Fig. 3).
An instantiation of the LEGA architecture named
GENACE is given in Fig. 9. The communication
between the SL module and the EA module is
shown by Step (2), Step (4) and Step (5). First of
all, the CDR-PopGen algorithm is used to generate
an initial population (the process that encodes from
a CDR-PopGen result to an OOMS).

In each generation, chromosomes in the chromo-
somal memory that are similar to the best chromo-
somes will survive to the next generation. After
performing crossover, the knowledge in the opera-
tional memory will influence the mutation operator
towards improved results. To reduce computational
time and to avoid reusing the same good schedules,
the SL module is updated only after every qth step
using an elitist strategy. The structure of the SL
module of LEGA is described in the following
subsections.

4.4.1. Chromosomal memory

The schemata theory [20] implies that building
blocks are used to create good chromosomes which
derive from bit patterns in the schemata. The
schemata of a binary code 11*10* can instantiate
four chromosomes; 110100, 110101, 111100 and
111101. We use a similarity template when perform-
ing crossover on these chromosomes; as a result,
chromosomes with enduring characteristics of
higher fitness are more likely to survive into the next
generation. In order to inherit the similarity tem-
plate of these chromosomes and influence the cur-
rent population; a predefined number of good
chromosomes in the current generation are selected.
Each selected chromosome is then compared to the



Step 0) Initialize:
a) Generate the initial population: ½ individuals by CDRs and ½ individuals by 

random.
b) Initialize Chromosomal Memory by m best individuals in the initial 

population.
c) Initialize Operational Memory by the machines that process an operation in 

the shortest time.
Step 1) Selection: Apply Stochastic Universal Sampling method to the current 

population.
Step 2) Influence the population by Chromosomal Memory: select n best chromosomes from 

current population. Each of them is compared to those in the Chromosomal Memory 
to find k similar chromosomes. The procedure to compute similarity between two 
chromosomes and those in the Chromosomal Memory will be described in Section 
4.4.1. Then these k chromosomes are inserted to the current population by 
replacing the k worse ones. 

Step 3) Crossover: apply crossover operator to the population. 
Step 4) Mutation: influence mutation operator by Operational Memory. 
Step 5) Update: update Chromosomal Memory and Operational Memory after every qth step. 
Step 6) Stop condition: the algorithm terminates if it exceeds number of generations. 

Otherwise, go to Step 1). 

Fig. 9. GENACE: an instantiation of the LEGA architecture.
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k-nearest neighbor chromosomes in memory. Two
chromosomes (when k equals to 2) with the highest
similarities in the memory are then copied to the
current generation. Hence, the chromosomal mem-
ory is constructed with a list of m good chromosomes
from the initial population. It will be updated by m

good chromosomes from the population after every
qth step.

We define the similarity between two chromo-
somes based on the difference in their operations.
In this respect, the similarity between two schedules
depends on the genotype of the chromosome, not
the phenotype of the chromosome. The similarity
can be calculated by following function:

SðChm1;Chm2Þ ¼
Xn

i¼1

Opt1ðiÞ � Opt2ðiÞ

þ
Xm

j¼1

Mch1ðjÞ �Mch2ðjÞ;

where Chm1 and Chm2 are two chromosomes, Opt1

and Opt2 are operation order parts of Chm1 and
Chm2, Opt1(i), Opt2(i) and n represents are the val-
ues at position i and length of operation order part,
respectively. Similarly, Mch1 and Mch2 are machine
order parts of Chm1 and Chm2, Mch1(j), Mch2(j)
and m are the values at position j and length of ma-
chine order part. The operator � returns 0 if two
values are equal, otherwise it returns 1. The value
of S is the Hamming distance, the number of values
that are different. If the value of S is small, two
chromosomes Chm1 and Chm2 are close. This mea-
sure takes O(n + m) computational time. In order to
save computational time, in Section 5, we set the
number of chromosomes in chromosomal memory
to 5, the number of the best chromosomes in the
population to compare to the memory to 3.

4.4.2. Operational Memory

We saw how the CDR-PopGen algorithm finds
a good schedule by selecting the most suitable
machine that can process an operation. In order
to improve the mutation operation to achieve this,
we control it by using the operational memory. This
mutation operator helps to guide the search process
towards the promising schedules. The integration
between the mutation operator and the operational
memory will be described in detail in Section 4.4.5.
The operational memory contains a set of possible
machines to process an operation of a job and there-
fore constrains the mutation operator to create a
better chromosome. The structure of the opera-
tional memory is an array of bits. In Step (0) (c)
in Fig. 9, the machines that process an operation
with the shortest processing times are selected. Their
corresponding positions with these operations in the
operational memory are then set to 1. The remain-
ing positions in the operational memory are set to
0. The other suitable machines to process an opera-
tion can be updated after the qth step by a set of n

best chromosomes (q and n are two predefined
parameters). Fig. 10 shows the construction of an
operational memory for the example given in Table
1. A machine’s suitability for processing the corre-
sponding operation is denoted by a value of 1 and
a 0 for the contrary. Consider operation O1,2. It



1 0 1 0 0 0 1 1 0 0 1 0

1 0 0 0 1 0 1 0 1 0 1 0

Parent 1 

Parent 2 

Fig. 11. An example of two machine selection parts of two
parents.

   O1,1 O1,2 O1,3 O2,1 O2,2

M1 M2 M1 M2 M3 M2 M3 M1 M2 M1 M2   M3

0 1 0 1 1 0 1 0 1 1 1 0

Fig. 10. An example of a schemata learning module’s operational
memory.

1 0 0 0 1 0 1 0 1 0 1 0

1 0 1 0 0 0 1 1 0 0 1 0

Child 1 

Child 2 

Fig. 12. Two machine selection parts of two offspring.
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can be processed on machine M1 within 9 unit
times, machine M2 within 2 unit times or machine
M3 within 2 unit times. The unit values at column
M2 and M3 indicate that M2 (2 unit times) or M3

(2 unit times) can be selected to process O1,2 to cre-
ate a shorter schedule rather than select M1 (9 unit
times). The other suitable machines are updated
after qth step by setting its suitability value to 1.
Therefore, in later generations, an operation will
have more suitable machines for selection.

4.4.3. Selection operator

After decoding all chromosomes in the current
population to obtain fitness values, linear scaling
and stochastic universal sampling are used to select
efficient individuals [20].

4.4.4. Crossover operator

As described in Section 4.3, the representation of
the chromosome has two parts. Therefore, cross-
over is applied on each part of the chromosome.

Operation order part: two-point crossover is
applied [29]. To explain its operation, consider two
parents: (2 1 2 1 1) and (1 1 1 2 2). A substring is
selected randomly from parent 1: (2 1 2 1 1).
Reading the string from left to right, we know that
operations in the selected substring are the first
operation of job J1 (O1,1), the second operation of
job J2 (O2,2), and the second operation of job J1

(O1,2). The corresponding positions of the charac-
ters in this string are then found and deleted in
the second parent: (1 1 1 2 2). The substring is
inserted to the second parent at the same position
in the first parent to create a new child: (1 1 2 1 2).

Machine selection part: two random numbers (for
the two loci) are selected: 2 6r1 6 r2 6 (n � 1), (n is
the length of machine selection part). Two partial
parts of the parents between the two loci are
exchanged. For example, consider two machine
selection parts of two parent chromosomes in Fig. 11.

If two random numbers r1 = 2 and r2 = 4 are
generated, then the two parts of two parents
between position 2 and position 4 are exchanged
(see Fig. 12).
4.4.5. Mutation operator

Similar to crossover, mutation is also performed
on two parts of a chromosome.

Operation order: two random numbers r1 and r2

are selected such that 2 6 r1 6 r2 6 (m � 1), where
m is the length of the operation order part. The values
in substring in between two positions are inverted.
For instance, consider an operation part of a chro-
mosome: (1 2 2 1 1). Two random numbers are gen-
erated: r1 = 2 and r2 = 4. The substring between
position 2 and 4, (1 2 2 1 1), are converted. The result
is (1 1 2 2 1).

Machine selection: the mutation operator is influ-
enced by the operational memory according to the
algorithm given in Fig. 13.

Step (1) (b) in Fig. 13 shows how to find a suitable

machine to process an operation. If there are more
than one machine suitable to process operation
Oi,j, the mutation operator would select a machine
that is different from the current machine. This
increases the chances of finding better results by
exploiting other promising parts of the search space.
To illustrate this process, consider an example of an
operational memory of the current generation and
the machine selection part of a chromosome as given
in Fig. 14.

Consider the operation O1,1 processed by
machine M1. From the operational memory, this
operation can be processed by machine M1 or
machine M2. Therefore, machine M2 is selected by
mutation operator to process this operation. Apply-
ing similar step to O1,2, O1,3, O2,1, O2,2, we obtain
the result after applying mutation in Fig. 14. The
above algorithm takes O(n) where n is total number
of operations. An advantage of our proposed chro-
mosomal representation is that it always produces
feasible offsprings when performing crossover and
mutation operations, thereby removing the need
for costly repairs.



   O1,1 O1,2 O1,3 O2,1 O2,2

M1 M2 M1 M2 M3 M2 M3 M1 M2 M1 M2  M3

M1 1 1 0 1 0 1 1 0 0 1 1

1 0 1 0 0 0 1 1 0 0 1 0

0 1 0 0 1 0 1 1 0 0 0 1

The Operational Memory 

Before applying mutation 

After applying mutation 

Fig. 14. An example of influence of operational memory on mutation operator.

Step 0) For each operation Oi,j in machine selection part of a chromosome:
a) Identify machine Mk that is currently selected to process Oi,j.
b) Identify a set of machines that can process Oi,j: P(Oi,j).
c) Identify a set of suitable machines in Operational Memory that can process 

Oi,j: PM(Oi,j).
Step 1) Generate a random number r ∈ [0,1]: 

a) If r is equal or smaller than 0.5, apply random mutation operator: select a 
random machine in P(Oi,j) (except Mk) to process Oi,j.

b) Otherwise, influence mutation operator: if PM(Oi,j) contains only Mk, then 
still keep Mk to process Oi,j. Otherwise, select a random machine in PM(Oi,j)
(except Mk) to process Oi,j.

Step 2) Go to Step 0). 

Fig. 13. Influence of operational memory on mutation operator.
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5. Experimental results

Two sets of sample problems are used to analyze
this instantiation. Test sample I includes both T-
FJSP instances taken from [13,15,16] and randomly
generated T-FJSPs. Test sample II includes both the
P-FJSP instances taken from [17] and randomly gen-
erated P-FJSPs. The dimensions of the problems
presented in literature typically range from 4 jobs · 5
machines to 20 jobs · 15 machines. In addition, we
examine the current instantiation in solving large
randomly generated FJSPs; ranging from 40
jobs · 15 machines to 200 jobs · 20 machines for
each test sample. The number of operations for each
job ranges from 20 to 40. The processing time for
each operation ranges from 10 to 100 unit times.
In the P-FJSP random instances in Test sample II,
less than 50% machines are randomly selected to
process an operation. Furthermore, in practice, the
difference in processing times between two machines
that can process an operation is small due to similar
configurations of machines that belong to the same
group. Therefore, we set the maximum deviation of
two machines to process one operation to be 5 unit
times. As mentioned earlier, although partial flexibil-
ity makes the problem more difficult, one approach
is to convert it to the T-FJSP [15]. This can some-
times lead to larger time and space complexities,
however, in our experiments, the performance for
solving the P-FJSPs is not affected because the chro-
mosomal representation for partial flexibility always
matches the P-FJSPs. The current instantiation was
implemented in C++ on a Pentium IV running at
2 GHz and experiments described below were the
best and average results obtained after 50 runs.
The average computational times after 50 runs were
also reported.

Through experimentation, the parameter values
were chosen as follows: population size: 200, cross-
over probability 0.75, mutation probability 0.3,
number of generations 200, number of generations
to perform learning 5 (q = 5), number of best par-
ents copies to next generation 3, number of chromo-
somes in chromosomal memory 5, number of
chromosomes in the population to update chromo-
somal memory 5, number of chromosomes in the
population to compare to chromosomal memory 3,
number of chromosome to update operational mem-
ory 10. Some of these values are noticeably different
(by an order of magnitude) from those usually cho-
sen for binary encoded GAs; such as the mutation
probability.



Fig. 16. Individuals of 10 jobs · 10 machines FJSP at generation
200.
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5.1. Test sample I

The first test sample comes from [13]. The prob-
lem is a 10 jobs by 10 machines T-FJSP. The current
instantiation obtains the optimal result of 7 time
units after 20 generations (or 0.11 seconds). Mes-
ghouni et al. [13] also obtained this optimum result
but only after 1500 generations. The reason could
be due to the complexity of decoding their chromo-
some representation. It requires a repair mechanism
to recalculate the starting times for all operations
when a new chromosome is created. In our algo-
rithm, the new chromosomes are always feasible
after applying these operators. Furthermore, the
search process is guided by the learning module
towards optimal results. Therefore, our processing
time should be shorter. Fig. 15 shows the fitness dis-
tribution of all 200 generations. To emphasize the
fitness differences, only 50% of the best individuals
from each generation are selected to be visualized.
The colormapped and sorted fitness values (or
makespan values) are drawn along the vertical axis.
Darker colors indicate smaller fitness values. The
figure shows that the best-fit individuals increase
as part of the population as soon as generation 20.
As mentioned in Section 4.4, the SL module is used
to enhance the population of EA by updating the
similar templates of the best individuals. In order
to see how the good templates can influence the fit-
ness values of the schedules, the individuals in the
last generation are drawn in Fig. 16.

The fitness values of the individuals in Fig. 16
are sorted in descending order. Each individual is
drawn along the horizontal axis and each gene is
assigned a gray scale. Darker color indicates smaller
Fig. 15. Fitness distribution of 10 jobs · 10 machines T-FJSP
(50% best).
gene value. The figure shows that the best individu-
als contain similar blocks after gene 30. These posi-
tions visualize the machine selection part of the
individuals and indicate that good schedules contain
the same machine selection for each operation. This
result verifies the importance of assigning a suitable
machine to process an operation for solving FJSP
problems. The remaining genes of the individuals
from position 1 to position 30 that represents the
operation order parts of the individuals are not sim-
ilar. However, the fitness values of the individuals
are still good. This can be explained as follows. In
the classical JSP and the FJSP, the order of opera-
tions on each machine determines the fitness value
of each schedule. As described in Section 4.3, our
proposed representation has two parts: operation
order part and machine selection part. In the oper-
ation order part, the index of job is used to repre-
sent the individual. It is decoded by reading
the operation order part from left to right. There-
fore, the different operation order parts of individu-
als can be decoded to the same result if the order of
operations on each machine after decoding remains
unchanged. Table 4 shows the comparison between
the results of applying Kacem et al. [15] and
GENACE.

The dimensions of the problems range from 4
jobs by 5 machines to 15 jobs by 10 machines.
The first column is the number of jobs and the num-
ber of machines of each instance; the second column
shows the results from [15]; the next three columns
give the best, average results and standard deviation
of applying the corresponding algorithms to solve
instances in the first column. The sixth column gives
the relative improvement between the best result of



Table 4
Makespan of T-FJSP instances from Kacem et al. [15]

Job · Mach Kacem et al.
[15]

Best Avg. SD R.Improvement
(%)

Avg. time
(second)

4 · 5 16 11 11.00 0.0 31.25 1.226
10 · 7 15 11 11.00 0.0 26.66 2.610
10 · 10 7 7 7.56 0.501 0 2.803
15 · 10 23 12 12.04 0.197 47.82 4.948

Fig. 17. Individuals of 8 jobs · 8 machines FJSP at generation
200.
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[15] and GENACE for each instance (((2nd
column � 3rd column)/2nd column) · 100%). The
observation from Table 3 is that the quality of
GENACE is sufficient for solving some small-sized
T-FJSPs. The results also indicate that our algo-
rithm outperforms the algorithms of [15].

Unfortunately, we are not aware currently of
large T-FJSP benchmarks in literature. Hence, to
test for large problem instances, we randomly gener-
ated 6 large T-FJSP instances shown in Table 5.

Table 5 shows the best results of EA alone and
the combination of three modules: EA, CDR, and
SL in 50 runs. Similar to that in Table 2, the average
values of the best results of EA + CDR + SL in 50
runs for each instance are reported. Furthermore,
standard deviation values of the best results in 50
runs are also given. It is observed that the results
obtained by EA and CDR are better the results
obtained by EA and SL. The combination of three
modules gives the best ones. The reason can be
explained by the efficiency of CDR, it is used to
improve the results of GENACE by generating a
more diverse initial population. Additionally, the
SL module also helps to find the suitable assign-
ments of operations to machines.

5.2. Test sample II

For 8 jobs by 8 machines P-FJSP from [15]. The
current instantiation quickly obtains the result of 14
unit times after only 28 generations (or 0.3 seconds).
Table 5
Makespan of large T-FJSP instances

Job · Mach EA best EA + SL
best

EA + CDR
best

EA + C
SL best

40 · 15 5652 5499 4606 4559
60 · 15 7960 7912 7099 7045
80 · 15 9732 9635 8845 8796
100 · 20 9455 9373 8532 8463
150 · 20 13242 13135 12400 12336
200 · 20 17369 17274 16511 16474
This result is equal to the result of [15]. Similar to
the test sample I, Figs. 17 and 18 illustrate the fit-
ness distribution and individuals at generation 200
of the 8 jobs by 8 machines P-FJSP, respectively.
They indicate an increase in the number of new
best-fit individuals after 20 generations and that
the good individuals are composed of the same
building blocks.

Table 6 gives the results of applying GENACE to
solve the 9 P-FJSP problems taken from Brandim-
arte [17]. The dimensions of the problems in Table
6 range from 10 jobs by 6 machines to 20 jobs by
15 machines. The first and second columns give
the problem specifications; the third column shows
DR + EA + CDR +
SL avg.

EA + CDR +
SL SD

Avg. time
(second)

4585.12 11.98 37.304
7075.16 12.69 109.35
8818.62 12.13 174.57
8498.60 14.98 257.94

12356.66 12.30 602.89
16494.64 8.50 1110.33



Fig. 18. Fitness distribution of 8 jobs · 8 machines P-FJSP (50%
best).
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the results from [17]; the next three columns give
the best, average results and standard deviation of
applying corresponding algorithms; the next column
gives the relative improvement of [17] and
GENACE (((3rd column � 4th column)/3rd col-
umn) · 100%) and the last one shows the average
computational time. The test examples of P-FJSP
seem to be more difficult than the test example of
T-FJSP because P-FJSP is less flexible. The observa-
Table 6
Makespan of P-FJSP instances from Brandimarte [17]

Name Job · Mach Brandimarte
[17]

Best A

Mk1 10 · 6 42 40 4
Mk2 10 · 6 32 29 2
Mk4 15 · 8 81 67 6
Mk5 15 · 4 186 176 17
Mk6 10 · 15 86 67 6
Mk7 20 · 5 157 147 15
Mk8 20 · 10 523 523 52
Mk9 20 · 10 369 320 32
Mk10 20 · 15 296 229 23

Table 7
Makespan of large P-FJSP instances

Job · Mach EA best EA + SL
best

EA + CDR
best

EA +
+ SL

40 · 15 5261 5232 4588 448
60 · 15 7724 7675 6824 677
80 · 15 9878 9834 9079 900
100 · 20 9131 9076 8238 817
150 · 20 13351 13270 12571 1252
200 · 20 17888 17826 17170 1710
tion from Table 6 is that the relative improvement is
small compared to the results in test sample I. The
results indicate that GENACE can also obtain good
results and it outperforms Brandimarte’s approach
in 8 out of 9 problems. In the remaining one, GEN-
ACE obtains the same result with Brandimarte’s
algorithm.

In order to test larger P-FJSP instances, we gen-
erated 6 different P-FJSP problems at random.
Table 7 shows the results of applying GENACE
to solve them.

Similar to the results of solving the large T-FJSP
problems, the results of applying different types of
combination of three modules in LEGA are
reported. The results of EA and CDR are better
than the results of combining EA and SLM. The
combination of three modules also gives the best
results. However, because of fewer machine avail-
abilities in the P-FJSP, relative improvements
between them are small compared to the T-FJSP
benchmarks in test sample I.

6. Conclusions

The empirical results in Section 5 show that GEN-
ACE is more efficient than the other approaches for
vg. SD R.improvement
(%)

Avg. time
(second)

1.5 0.543 4.67 3.328
9.1 0.303 9.3 3.556
7.34 0.478 17.28 6.068
8.1 1.164 5.37 7.173
8.82 0.849 22.09 10.698
2.9 1.843 6.36 6.893
3.34 0.871 0 19.098
7.74 3.498 13.28 20.413
5.72 2.927 22.63 27.697

CDR
best

EA + CDR
+ SL avg.

EA + CDR
+ SL SD

Avg. time
(second)

0 4561.52 17.70 33.90
8 6806.56 9.70 103.94
1 9043.5 18.44 167.89
6 8210.7 12.59 234.18
2 12542.28 10.13 595.05
9 17133.1 15.14 1272.41



332 N.B. Ho et al. / European Journal of Operational Research 179 (2007) 316–333
solving the T-FJSPs and the P-FJSPs compared
with GA approaches by Kacem et al. [15,16], Mes-
ghouni et al. [13], and Tabu Search approach by
Brandimarte [17]. Some conclusions are drawn as
follows:

• The higher the flexibility (i.e. the number of
equivalent machines available to process an oper-
ation), the better the results. In our LEGA archi-
tecture, the SL module can help to find a suitable
machine to process an operation. If the set of
these machines is large, more selections and bet-
ter assignments can be made. Therefore, better
results can be explored.

• The performance of GENACE with a random-
ized initial population is poorer than GENACE
with an initial population partly created by the
CDR-PopGen module. By combining diverse
individuals with fit ones generated by the CDR-
PopGen module, GENACE is able to get better
results.

• The CDR-PopGen module is efficient in solving
the small FJSP instances. The experimental
results in Section 4.2 indicate that the CDR-Pop-
Gen can achieve better results than the other
approaches in almost all small problem instances.

• The chromosomal representation in GENACE is
able to express the FJSP in general form. It does
not require transforming the P-FJSP to the T-
FJSP as with the GA approaches of [15]. It also
does not require any repair mechanisms to main-
tain feasibility, such as in [13] or [14]. Therefore,
the computational time for solving P-FJSPs can
be reduced.

In this paper, the LEGA architecture that inte-
grates an EA, a SL module and a population gener-
ator is proposed. Past experience from previous
generations of schedules are examined, sampled
and stored in the SL module to influence the current
generation to obtain better schedules. The CDR-
PopGen algorithm was proposed to perform initial
population generation so as to solve FJSPs. It
assigns an operation to a suitable machine to reduce
the workload on each machine and minimize the
completion time of all operations. When applying
these rules to solve some benchmark problems, in
some situations, these rules can obtain near optimal
solutions. To incorporate a learning mechanism, a
new chromosomal representation is introduced.
Reviewed representations typically consume a large
amount of computing time for checking constraints
when performing crossover or mutation. The effi-
cient coding of our proposed chromosomal repre-
sentation not only satisfies the different constraints
of the FJSP, it also always creates feasible and
active schedules after genetic recombination, and
is adapted to learn good properties of the best chro-
mosomes. Experimental results show that the GEN-
ACE instantiation of the LEGA architecture
obtains better upper bounds for 11 out of 13 bench-
mark FJSP problems, with improvement factors of
2–48%. It validates the ‘no-free lunch theorem’
[30] that knowledge of the problem domain can help
the search process to get better results.

In GENACE, the SL module is simply a memory
keeping good features from previous generations.
Therefore, we intend to focus on enhancing the
LEGA architecture via explorations in machine
learning (such as truth maintenance system [31] or
AQ learner [32]) so as to improve the efficiency of
the SL module. Improvements in the population gen-
erator module will include an investigation into how
the rules can be automatically designed (via genetic
programming) to cater to specific properties of the
problems in question. In this paper, the single objec-
tive FJSP was discussed. The extension to multi-
objective FJSP will be investigated in the near future.
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