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Stability and Statistical Properties of Second-Order
Bidirectional Associative Memory

Chi-Sing Leung, Lai-Wan CharMember, IEEE,and Edmund Man Kit Lai

Abstract— In this paper, a bidirectional associative memory 1) modifying the encoding methods [4]-{6] and 2) introducing
(BAM) model with second-order connections, namely second- second-order connections to form the second-order bidirec-
order bidirectional associative memory (SOBAM), is first re- tional associative memory (SOBAM) [7]-[9]. The memory

viewed. The stability and statistical properties of the SOBAM . . .
are then examined. We use an example to illustrate that the capacity of the SOBAM has been empirically studied [7] but

stability of the SOBAM is not guaranteed. For this result, we the theoretical memory capacity has not yet been derived. The
cannot use the conventional energy approach to estimate its SOBAM has also been proven to be stable during recall [7].
memory capacity. Thus, we develop the statistical dynamics  This paper describes the stability and statistical properties
of the SOBAM. Given that a small number of errors appear of the SOBAM. Contrary to Simpson’s works [7], we demon-

in the initial input, the dynamics shows how the number of s - .
errors varies during recall. We use the dynamics to estimate the strate that the stability of the SOBAM is not guaranteed during

memory capacity, the attraction basin, and the number of errors  recall. We also point out a mistake in [7]. This mistake has
in the retrieved items. Extension of the results to higher-order led to the wrong conclusion that the stability of the SOBAM

bidirectional associative memories is also discussed. is guaranteed_ Hence, we cannot use the energy approach []_0]
Index Terms—Associative memory, BAM, neural network, sta- {0 estimate the statistical properties of the SOBAM, especially
bility. the memory capacity and the attraction basin. In this paper,

we are interested in knowing whether each pattern pair can

attract all the initial inputs within a certain distance from it.

_ . ~If so, we can obtain the attraction basin. Another important
SSOCIATIVE memories [1], [2] have been intensivelyerformance index is memory capacity, i.e., the maximum
studied in the past decade. An important feature of assfumber of pattern pairs that can be stored in the SOBAM

ciative memories is the ability to recall the stored items froms attractors. Also of interest is the number of errors in the

partial or noisy inputs. One form of associative memories igtrieved pairs. The question now is: given aaig)n errors in

the bivalent additive bidirectional associative memory (BAMpe initial input (an arbitrary error pattern wig”n errors in

[3]. It is & two-layer heteroassociator that stores a prescribgg intial input), how does the number of errors vary during

set of vector pairs. We will refer to these pairspasiern pairs  recall? To answer this question, we develop the statistical

two layers of neurons in which laydry hasn neurons and of errors in the retrieved pairs, the attraction basin, and the
layer Fy hasp neurons. The recall process of the BAM is afiemory capacity can be estimated.

iterative one starting with a stimulus pair ifiy and Fy. After  section Il reviews the SOBAM and discusses its stability.

anumber _Of iterations, th? patternsily andFy converge 10 The statistical dynamics of the SOBAM is developed in

a fixed point which is desired to be one of the pattern pairssection |11, using the theory of large deviation [10]. Section IV

The BAM has three important features [3]. First, it performgiscusses the way to estimate the memory capacity, the attrac-
both heteroassociative and autoassociative data recalls: 488 basin, and the number of errors in the retrieved items.

the final state infy represents the heteroassociative recalioy the results can be generalized to higher order bidirectional
Second, the initial input can be presented in any one of thgsociative memories (HOBAM's).

two layers. Last, the BAM is stable during recall.

I. INTRODUCTION

To encode the pattern pairs, Kosko used the outer-product Il. SOBAM AND STABILITY
rule [3]. However, with the outer-product rule the memory There aren pattern pair§(Xy, Y1), -+, (X, Yin)}, where
capacity is very small if the pattern pairs are not orthogonat,, = (a1, ,z.0)7 and Vs, = (yin, -, ypn)t. The

Several modifications have been proposed to improve tbemponents ofX; and Y; are bipolar {1 or —1). The
memory capacity. These modifications fall into two categorieSOBAM encodes the pattern pairs in two matrices. The first
_ ed S e 16, 195 od a1 199 matrix, U, is an x n x p lattice that holds the second-order
Manuscript received September 19, 1994, revised May 31 1995, May : : ;
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The matrix V = [v;1] is given by With the initial state X(® = (-1,-1,1,-1,1,1)¥ and
Y© = (1,1,-1,1,1,1)7, the following states can be ob-

Ukl = Z.’Ejh yrrnyin VI&k=1,.---,p, andj =1,-.-,n. tained, shown in the equation at the bottom of the page.
h=1 Clearly, the network converges to a limit cycle. Thus, the
. @ _ (D) )y~ Stability of the SOBAM is not guaranteed.
The Fiy state at timet is denoted as('") = (z;°,- -+, )" Simpson [7] used an energy function to explain the stability

The Fy state at timet is denoted a&"® = (1, -+, 55")".  of the SOBAM. The energy function is expressed as
The recall process is

Ey = (Eoy + Eax)

(t+1) _ Shy 20 o) m m
= son| D 0 et © = = S FXPOEY) = Y PXEX) ()
== h=1 h=1
for k = 1,.--,p, where
+1 >0 where (X,Y) are the current stateskry = —3
sgn(z) = { —1 7 <0 (XTX) (Y;,I'Y) represents theFy energy, andE,x =

T (IY)?(XF X) represents thé'x energy. According

state unchanged = = 0. . . .
to the recall process, eithdfy or Fy is updated first. IfF'x

Similarly is updated first, the change in energy is
=+ _ (t+1) (H-l) m
x; T =sgn Ujkl Yy, 4)
J <kzllz; ! ) AFE, = Ab)x = — Z(Y}:‘FY)Q(X}:LF AX) (6)
for j = 1,.--,n. Equations (3) and (4) imply that the initial h=1
input X© recalls Y); Y recalls XY and so on where AX = X" — X and X™* is the new state iF.

The SOBAM is a finite-state autonomous system whoggonversely, ifF%y- is updated first, the change in energy is
state converges to either a stable state or a limit cycle.

Unlike the original BAM, the stability of the SOBAM is not
guaranteed during recall. To illustrate this, we use a SOBAM
network to store the following pattern pairs:

AB = ABy = - S (XEXPOFAY) (@)
h=1

where AY = Y% — Y andY"™*? is the new state idy .
(-1,1,-1,1,1,-1)7 Simpson showed that the values AfF>x and AEyy are
1111 -1 either negative or zero. He then claimed that the SOBAM
(-1,1,1,-1,1,-1)" is always stable [7]. However, from our previous counter

= (1717 1,- ,17—1) example, it can be seen that the stability is not guaranteed.
:( 1,— 1)T This discrepancy is due to the omission of some terms on the
Xy = (—1,— 11 _1)T right-hand side of (6) and (7). Actually, iy is updated first,

’ T the total change in energy is
Ys=(-1,-1,1,-1,-1,1)7 . .
Xy=(- 1,1, -1,1,-1)% AE, ==Y (WYX AX) =) (XEAX)P (YY)
Yy=(1,-1,-1,-1,1,-1)T h=1 h=1

X =(1,1,-1,1,1,1)7 = 2 XTAX) X AX)(YEY). (8)
Ys=(1,1,-1,1,-1,-1)7. h=1

Y® = sgn(-8,0,8,—8,—8,—-8)7 = (-1,1,1,-1,-1,-1)T

XM© = sgn—8,32,-40,-8,40,—40)7 = (=1,1,-1,-1,1,-1)T

Y® = sgn(-12,-52,12,-84,20,-52)7 = (-1,-1,1,—-1,1,-1)T

X@ = sgn(8,48,-56,8,56, —24)T = (1,1,-1,1,1,-1)F

Y® = sgn(-12,12,12,-20,-12,-52)7 = (-1,1,1,-1,-1,-1)T

X® = sgn(—8,32,-40,-8,40,-40)7 = (-1,1,-1,-1,1,—1)7

YW = sgn-12,-52,12,-84,20,—-52)7 = (-1,-1,1,-1,1,—-1)7

X®W = sgn(8,48,-56,8,56, —24)T = (1,1,-1,1,1,-1)7

Y® = sgn(-12,12,12,-20,-12,-52)7 = (-1,1,1,-1,-1,-1)T

X0®) = sgn(—8,32,-40,-8,40,—-40)T = (-1,1,-1,-1,1,-1)T

Y© = sgn(—12,-52,12,-84,20,-52)7 = (-1,-1,1,-1,1,-1)T

X©® = sgn(8,48,-56,8,56, —24)7 (1,1,-1,1,1,-1)T
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In this equation, the first term on the right-hand side is the » Given thatp = rn andm = an?, P* is the probability

change inE>x due to a change of thé'y state. The other that for each pattern paifX;,Y;) and for any error
two terms, which represent the changeis- due to a change pattern with p{’n errors in Fyy in the present state

of the Fx state, are either negative or positive. Hence, we  (4(Xx, X®) = pgpn), the number of errors iy in

cannot draw any conclusion regarding the stability based on the next state is less thanp (d(Y3,, YD) < pyp). It

the energy function proposed by Simpson [7]. should be noticed that the phrase “for any error pattern
The above discussion is valid for layer-synchronous re-  ith (" errors inFy” in the definition of P reflects

call process in which all neurons in a layer are updated he concept ofworst case errors

simultaneously. Since layer-synchronous recall process is & Gijven thatp = rn andm = an?, P%* is the probability

special case of asynchronous recall processes whereby the ihat for each pattern paifX;,Y;,) and for any error

neurons in a layer are updated sequentially, the stability of (t+1)

the SOBAM i ’ teed under both | h pattern with p;, " ~’p errors in Fy in the present state
aned as nchréic?t?s ?(lejc?arlﬁn (rac?cessneser Ot TAYBISYNCATONOUS —(y(y;,, y ¢+ = ™)), the number of errors iy in

y P : the next state is less thann (d(X;, X*Y) < p.n).
Ill. STATISTICAL DYNAMICS

. The number of errors id’
The error rate inf'xy = X

A. Notations and Outline n

This section outlines how the statistical dynamics is derived.
We first define some terminologies and state the assumptions . The number of errors iy
used in the rest of the paper. The error rate ity = p )

* p = rn, Wherer is a positive constant.

* m = an?, whereq is a positive constant.

¢ The dimensionsp and p, are large. This assumption is
often used [10]-[15].
For analytical purposes, we assume that each component
of the pattern pairs is a1 equiprobable independent
random variable. Though this assumption is not always
being satisfied in most real-life data, it is difficult to
analyze associative memories without making such an . ®
assumption. In fact, this assumption has been widely used SM:{X € {-+1,-1}" such thatl(.X, X;,)=p; ”} )
[10]-[15].

» To estimate the value dfy*, we first introduce the event
EAy 4. It is the event that

d(Y(H—l) Yn) < pyp

for a given pattern paif.Xy, Y7) and for a given present
state X € Sy, ,, where

« The Hamming distance between two bipolar vectdfs, The indexg refers to a particular error pattern. For a
and X', is denoted agi(X, X"). given pi, the number of error patterns {8., ). Thus,
Pa ' M

Attraction Basin It is required that each pattern pair is  the range ofy is from one to(", ). Also, EAy,, is the
stored as a stable state (or at least there is a stable state atcomplement event offA,, .. It %s'the event that

a small Hamming distance). Otherwise, the pattern pairs "9
cannot be recalled. Besides, we expect a SOBAM network
to have the following error correction property. If the
ngt)work is started at a_Staﬂé(O) whered(X,,, X(©) < for a given pattern paifX;,Y;) and for a given present
pz 'n, the Fx state will reach a stable state within state X)) € Sy, ;.

a distance ofp{n from the stored patter; after a .

d(Y(t+l)7Y}L) > Pyl

* In the above, each eveit4;, , only refers to an error

sequence of state transitions wher > pf (the Iy pattern and a pattern pair. To consider each pattern pair

state should also reach a stable stat(e)wnhm a distance of anq all the possible error patterns, we need to introduce
0 1

pip from the stored patterl;, wherep;’ > pf). We are the eventEA which is the intersection of all possible

interested in knowing whether each pattern pairis ableto g4, s

attract all the initial inputs ©) within a distance 0p(©)n ¢

for some positive constang®. The maximum value of EA=()EA,.
suchp(®) denotes the attraction basin of each pattern pair. h.g

Also of interest is the number of errors in the retrieved

. . . i It is the event that
items. This number measures the quality of the retrieved

items. Since we are considering “all possible initial inputs Ay y;,) < pPyD
within a certain distance,” the above definition of the ) ®
attraction basin is foworst case errorsin the rest of the for each pattern paitX,,,Y,) and for anyX'" € Sy, ;.

paper, the term “attraction basin” refers to the attraction AlSO, £A is defined as the complement eventfft
basin for worst case errors Instead of estimating the L

attraction basin directly, we will estimate the number of FA= U EA,.

errors after each state transition. h,g
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From the definitions of£A and F* asM, N — o, is
Pi* = Pro(EA) =2 < 2872 (52 ,)E, (15)
=1—ProbEA) &
= 1—Prol:(U EA ) From Lemmas 1 and 2, we first estimate a bound on
h.g ProbE£A4,, ).
Cw ) Lemma 3:
mo Py
>1- Prol(£ Ay 1). (10) — pyrn(l — 2o
hz::l gz::l ProlEA, 1) < exp < mnh(p,) — %a)

In Part B, we will first estimate the values #f* and P;*
(Lemmas 4 and 5). From the two lemmas, an upper bound
the error rate in the next state is obtained (Corollaries 2 and <

%rnovided that

4). Based on Corollary 2, given th,af) is the upper bound on
the error rate inf'x at timet¢, we can derive an upper bound
PV on the error rate inFy at time (¢ -+ 1). Similarly, from
Corollary 4, we can estimatg,' ™ from p{/t%). As a result,
two sequence$p§f)} and {p§}>} are constructed to represent
the statistical dynamics of the SOBAM. In Section IV, we
will discuss how to use the features of these two sequen
to estimate the memory capacity, the number of errors in t
retrieved pairs, and the attraction basin.

VP (L = 2 )2
N <

forg=1,---,(", )andh =1,---,m
pa’m

3
2

Proof of Lemma 3:Without loss of generality, we as-
e that all the components of the pattern paiy,,Y;,) are
gsitive: X, = (1,---, )T andy;, = (1,---,1)T. Let J be
e set of indexes at WhIClX(t) and X, differ. For a given
X(t) € Sy, there is only oneJ and|.J| = p{'n. Let K be
a set of indexes ot’® where |K| = p,p. Note that there
re( ) such sets. Event 4, ;, implies that there is at least
one K such that

B. Construction of the Dynamics

To estimate the values afy* and P3*, we make use of
Stirling’s formula and the theory of large deviation [10]. Here;,

" Lorma LSiringfs Asymptoti Formula for Factriatet S el <o,
n be a large integer anél € (0,0.5). Then k€K j=1i=1
(3,) ~ exp {nh(6)} Hence
where Prob(EA, 1)
h(6) = —6logé — (1 — 6)log(1 — 6). < Prob <there is at least on& , where|K| = p,p , such that

¢ n
Lemma 2—Newman’s Lemm&uppose  x1,n, X2,N, Z Z Unji azgt) 29 <o
are, for eachXV, independent, identically dlstnbuted anfEy =1 =1 !
symmetric random variables satisfying.

D < (ﬁyp)Pro SN wia” 2l <0 for a givenk
lim Var ) =02 € (0,00). 11 heK =1 =1
Al (x1,5) (0, 00) (11) (16)
2) For some real > 2 andt, > 0, Let
limsup{E[exp(to | x1,n 2/L)}} < oo (12) .
N—oo
—Prob uggi 2 2t < 0 for a givenk
where E[-] is the expectation operator. ,;A;; ! !
For any~y € (0,00) and 17)
5 From (1), we have
v
R=— 13
557 (13)

P" = Prob| p,p(1 — 20{)2n2
a sufficient condition for <pyp( px’)

2

M L—2 1 m
Prob<M‘1 ZXS:N 2 ’VM_m> S exp (_mML__l) + Z Z Yk Za:jh' - ijh' < 0). (18)

s=1 (14) h#£h ke K JigJd ied
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One can easily find that
2
E Z Ykh/ Z-Tjh’ - Z-Tjh’ =0
kEK jgJd jeJ

and
2

2
E Z Yih (Z wjhf—z wjhf) =pyp(3n®—2n).

ke K jeJ jed
Hence
/"o 1 i i
h/#h
where
L= VAT 20(0)20(5/2) o0
V302 = 2n(m — 1)/4)
and
Eke[{ Ykn (EJ€J .’L'jh/ — EjEijh’)Q
Xh' = ' (21)

(3n2 = 2n)(pyp)

Asn andp —

- (t)y2
- /0yl — 2px
mn 1—>a andy — P p’) .
n V3a3/9

By substituting Lemma 2 (puk = 3) into (19), we obtain

. 9. (®a
P < exp {_M} 22)

6

provided that

4
Vo= 2007\
NI < <l

for some reat, > 0. From the Appendixt, must be less than

2-2/331/3 To obtain a valid value of,, we have

Vot =262\
V3a3/4

AN
bl w

271

Recall that

m (Péﬂn)

Pir>1- Z Z ProbEA, 1,).

h=1 g=1

(24)

From Lemma 3
. (t)y4
> 1 — . oy By A AR )
Pir>1 m(pi”n) exp {7nh(py) o
25)
With Lemma 1, we can immediately obtain the boundigtt
as Lemma 4 below.

Lemma 4:

Pir>1- exp{nh(pg)) + logan? + rnh(py)

. (t)\4
T — 205
provided that
4
/(1 — 202 _3 27
V3a3/4 2

o

Let p;; be the minimum value of, such that the right-hand
side of (26) tends to one (as— oc). From Lemma 4pj is
the minimum value ofp, such that

pyr(1l = 2p§ct))4

R(p®) + rhi(p,) — 0. 28
(pac ) + 1 (py) Gor < (28)
Let p), be the intersection of the line
_ 9,4 (t)
Y T

and the curve

CL:y="hpy). (30)
Then

Py=pyte

The procedures for checking whethgy, satisfies the two wheree is an arbitrary small positive constant. Apparently,
conditions (11) and (12) are provided in the Appendix. Bfor a given,l € [0,0.5), p; can be solved numerically (see

substituting (22) into (16), we obtain

(t)\4
I y (1l — 2p;
ProllEA4, ) < (ﬁyp) exp {_%} (23)

From Lemma 1, we have

. 9. (M\a
Prot(EA, 1) < exp {mwy) _ f’<16—2p>} 0
(8%

Fig. 1). Hence, for each pattern pgiX},Ys) and for any
error pattern withp{n errors inX® (d(X;, X®) = p'n),

the probability that the number of errors ¥(*t1) is less
than pip (d(Ys, YD) < pip) tends to one (as — o).

As ¢ can be any small positive constant, one can restate the
above statement as: the probability that the number of errors
in Y1) is less than or equal tpp (d(Y2,Y 1) < p)p)
tends to one (a:s — oc). Furthermore, according to the
feature ofL; andC}, the following corollary can be obtained.
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y provided that

1 o (D) 4
< par(L— 29} >2> < (32)

V3a3/4

[ \J N

¢

From Lemma 5, we can estimate the error rgtén Fy in
the next state (given the error rate iy in the present state)
by considering the intersection of the line

1
_ per?(1—2py Y

Ly iy o

— rh(ptY)  (33)

and the curve

P Cy : y = Mpa). (34)

Hence, Corollaries 3 and 4 are obtained.

Corollary 3: If pitY < pU) < 0.5, theng,, < pls.

&

Corollary 4: Given thato!, is the intersection oL, andCs
[see (33) and (34)], for each pattern palf;(, Y;,) and for any
Y #+D) such thatd(Y;,, Y +D) < pi T, the probability that
d(Xp,, X)) < pl o tends to one (ag — o).

R RPN ¢ _ .

Corollary 1: 1f p,{ < pgy < 0.5, thenpy; < pjp. Corollary 4 shows that if the error rate fy- in the present

% , _state is less than or equal 1+, the error rate infy in
Proof of Corollary 1: From (29) and (30) (see Fig. 1), if e next state is less than or equaldp. Thus, o/, defines

t o\ . .
the value ofp;_) € (0,0.5) is reduced, the lind., shifts up 4 ypper bound on the error rate A in the next state. We
and its slope increases. Hence, the intersection shifts towﬁ%ote this upper bound aét+1)_
left and a smallep;, is obtained.

The above corollary implies that a smallgy is obtained
if the value of o) is reduced. Thus, givep!’ € [0,5),
for each pattern pairX,,Y;) and for any X(®) such that
Y < ; ;
.d(Xh’X ) S pan (th((at)error rate mF?(. in the present state rates. Given arbitrar;og;o)n errors in the initial input, if the
is less than or equal t@;’), the probability that the error rate sequence @(t) @) ) converge tef and,!, respectivel
in Fy in the next state is less than or equalptgtends to one €4 ste="}, {ry”} g€ @z Py, TESP y

(asn — o). We capture the above statement as Corollary é\{vherepéo) > pf), the noisy version of the desired pattern pair
Corollary 2: Given thatp/, is the intersection ofL; and €an be recalled. Besides, in the retrieved item, the number of
C1 [see (29) and (30)], for each pattern pak,( Y;) and for €TOrs inFx and the number of errors ifry- are less than

any X® such thatd(X,, X®) < p(t)n the probability that pfn and pgjp, respectively. If a few errors are allowed in the
1 g e retrieved pairs, we can use the above dynamics to estimate
d(Y,, YD) < pl p tends to one (as — o). P y

o the memory capacity, the attraction basin, and the number of
errors in the retrieved pairs.

Fig. 1. Graphical implication of solvin@’y.

By solving o, (i.e., pi ") and ) (i.e., p{ *V)) iteratively,
we can construct two sequencépt”} and {p{’}. Fig. 2

shows an example of them. These sequen{:pg)ﬂ», {pgf)})
form the statistical dynamics of the upper bounds on the error

It follows from Corollary 2 that, if the error rate i’y in
the present state is less than or equabf& the error rate

in Fy in the next state is less than or equalpt@ ThUS,p; IV. ESTIMATION OF STATISTICAL PROPERTIES
defines an upper bound on the error rateFin in the next
state. We denote this upper boundpéts“). A. Memory Capacity

Similarly, we can easily obtain the lower bound £* as

Clearly, if the sequence§{p$”}, {p{"’}), with somep”,
converge to two small numbers individually, each pattern pair
can attract all initial inputs within a certain distance. In other
words, each pattern pair or its noisy versions can be stored as
a stable state. Therefore, we can use the following method to

Pr>1 - exp{ph(pét-l—l)) + loga(g)Q + gﬁ(px) estimate the memory capacity.

Lemma 5.
Lemma 5:

For a givenr, let o, be the maximum value af such that

perp(l 2p(t+1))4} the sequences(4}, {p$"’1) with somep{” converge top{
— il - Y

o (31) and p/, respectively (where'” > pf). Thus,a,n? can be

Ty .
considered as a lower bound on the memory capacity.
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) for r = 1 and o = 0.01

Dynamics of p{

273

Another error correction index is the attraction basin for
random errors In this case, we need to find out if a stored

107" 7 — =0 item can attract “an” initial input within a certain distance.
. = 0 — 0.005 The terms “an” and “every” mark the difference betweerst
0= Pz case errorsandrandom errors It should be noticed that using
10-3 4 AN L simulations to study the attraction basin feorst case errors
] is impractical. The reason is that the number of error patterns
P 1074 is very large (for examplg3°°) ~ 5 x 10°). Simulations
can only reflect the properties of models in the presence of
107° 7 random errors
10-5 - In the case ofandom errors if the number of the pattern
7 pairs is less than
-7 : 4,2 2
1 0 10 20 30 40 min <(1 —2p)"n ) 4 ) (35)
Iteration index ¢ 18 IOg n 18 Ing
@ an initial input (in Fx) within distancepn from X, will be
attracted to the desired pattern pair in two recall steps with
. ¢ o _ high probability. The proof of the above behavior is based
Dynamics of pg) for r =1 and o = 0.01 on the theory of large deviation (see [19, Lemma A.7]). As
107" 7 =0 this paper is mainly concerned witlhorst case errorsthe
10-2 4 P = 0.005 behavior_of the models in the presencerafidom errorswill
. . not be discussed further.
1073 ] Teel L -
A g D. Approximations op/ and p/
7 It is not difficult to see the following relationship between
107° 1 pi and pf.
L0 Corollary 5: If the sequences{p’}, {»{"} ) converge to
1 small p/ (<< 1) and smallp/ (<< 1), respectively, then
10-7 - T T T T 1
0 10 20 30 40

Iteration index ¢

(b)

Fig. 2. The statistical dynamics of the SOBAM where= 0.01 andr = 1.

pg; ~rpl. (36)

%
Proof of Corollary 5: From (29), (30), (33), and (34), we

The initial conditions areoi.o) = 0 and0.005. (a) The dynamics 0p-(t) have
and (b) the dynamics of,(t). Since all sequences converge, the attraction

basin at least equal$.0057. ; pgj(l _ 2p£)4 h(pg)
Mey) = 6o o
B. Number of Errors in the Retrieved Items plr2(1 —2pf)*
By g0 hpl) = =———2 _rh(pd).
As the sequenceq 4" },{py’}) reflect the upper bounds ¥ 6 y
on the number of errors during recall, the final values of the
sequencesyf,, pgj) reflect the upper bounds on the number ofhus
errors in the retrieved pairs.
P p(1—2pf)*

J(1—2p0)4
C. Attraction Basin pz( y)

=T

Given arbitrary p{”'n errors in the initial input, if the As the values ofpf and p/ are small

sequences converge tp/( pJ) wherepl” > pf, the desired

pattern pair can be recalled with no more thafin and

pgjp errors inFx and Fy respectively. Hence, the maximum
value ofpg;o), with which the sequences converge, correspoan
to the lower bound on the attraction basin. We denote the

of ol

maximum value ag,,q.ini:- The phrases “for an ® such V€ have Y Y

thatd(X;,, X®) < pn” in Corollary 2 and “for anyy (++1) of mexpl—— " +1- " logr! and (37)
(t+1) (t+1) ; ? (14 7r2)6a 1472

such thati(Yy,,Y ) < py ' ’p”in Corollary 4 lead directly

to the fact that the estimated attraction basin refersidost oy

case errorsin this case, we need to find out if the stored item
can attract “every” initial input within a certain distance. &

72 1
r ~ - 1 1 T .
Py exp{ (14 7r2)6a Tt 1472 0g7}

O

Similarly, we can easily obtain Corollary 6, which can be
sed for the direct estimation @f and p;.
Corollary 6: If the values ofp/ andp/ are small €< 1),

(38)
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TABLE | 0.007
THE LoweR BounDp oN THE MEMORY CAPACITY OF THE SOBAM
r Q, : : :
0.006 1 - . ............
10 | 0.0211 - :
b) 0.0226
0.005 -
2 0.0204
0.5 | 0.00510 —
0.2 | 0.00090 0.003 4
0.1 | 0.00021
0.002 -
Proof of Corollary 6: From (28), we have
Fr2(1 — 2pf ) 0.001
h(Pi) + 7’h(7’p£) ~ M
6
Using the approximationlég(1l — p) = —p for small positive . : : SN
p,” the corollary follows. O 0.004 0.008 0.012 0.016 0.020 0.024
Remark: Since we are concerned with the conditions under o

which the lower bounds o’y* and P¢* tend to one (as g
n — o), we only obtain the bounds on the three statistical
properties: the memory capacity, the number of errors in theNumerical Example b:
retrieved pairs and the attraction basin. The actual values ofFig. 3 summarizes the lower bounds on the attraction basin
these three statistical properties considered in this section ate: = 1,2,5,10. When the value oty is small, the lower
better than the estimated bounds. It should also be notidsalind first increases asdecreases. However, when the value
that during the construction of the sequenc{aétz},{pg)}), of « is too small, the lower bound starts to decreasexas
we should check whether both conditions (27) and (32) af@ther decreases. This unnatural trend is due to the constraints
satisfied. (27) and (32), which limit the searching range (", p{/).
However, it is rational to accept the claim that for a smaller
«, a larger attraction basin is obtained. We take the maximum
point in the figure as the lower bound on the attraction basin
Numerical Example a:Based on the theoretical work pre-for small values ofc. Table Il summaries the above claim.
sented in the previous section, we estimate the lower boundferem Fig. 3 and Table I, for a meaningful attraction basin,
the memory capacity. The estimated results are summarizedhia dimensionn should be larger than0?®. The estimated
Table I. The lower bound increases withuntil » = 10 where attraction basin is quite small. This is not surprising because

g. 3. The lower bound on the attraction basin where 1. 2,5, 10.

V. NUMERICAL RESULTS

it starts to decrease. Also the estimated lower bounds referwmrst case error
N Figs. 4 and 5 show the behavior @f and p;. From
o1 R —; the figures, the upper bound on the number of errors in
I

the retrieved pairsgf or pgj) decreases exponentially as

This symmetrical property means that inverting the ratio of trgiec;egses (this feature matches COVO'L;'”Y 6). Also, the value

dimensions (interchange and n) does not affect the overall Of p; IS approximately equal to that ep; (as was indicated

estimated lower bound. in Corollary 5). Since it is desired that the number of retrieved
One should be aware that when the valuesiaind p are  ©r7ors should be as small as possible, the estimated upper

small, the bound may become meaningless. For exampleP@unds are more attractive.

n=p=10 andr = 1, the lower bound is about 1.28 (which V. HOBAM' s

is less thamn = 10). However, for largen andp, the result ) ) ,

is different. For example, i, = 10° and+ = 1, the lower Although we are mainly concerned with the properties

bound is aboutl.28 x 10* (which is much greater than the©f the SOBAM, we can apply a similar method to analyze
dimensionn = 10%). For image processing problems [17], thd1OBAM's. The only required change in the assumptions is
dimensions are usually greater thad?. m = anf (39)
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1073 107 3
10 .......... F— T— — S 10
10'3; 10-3;
10‘4% 104;
Ph 10‘5; ol 105i
10‘6; 10-6;
10*7; 107;
10'8; 10-8;
L é' : : : 10—9: —t : : ;
0.004 0.008 0.012 0.016 0.020 0.024 0.004 0.008 0.012 0.016 0.020 0.024

(o7 o

Fig. 4. The upper bound on the error ratefii in the retrieved pairs where Fig. 5. The upper bound on the error ratefip in the retrieved pairs where

r = 1,2,5,10. r = 1,2,5,10.
where ¢ is a positive integer. For theg-order BAM, the TABLE I
connections fromFX to Fy are THE LOWER BOUND ON THE ATTRACTION BASIN
m OF THE SOBAM FOR SMALL VALUES OF «
Uk iy yin,oeyig — Z Ykh Livh Tigh """ Ligh (40)
he1 r Pmazinit,r
wherek =1,---,p; i1 =1,--+,n;---andigz =1,---,n. The

10 | 0.00478 ( @ < 0.00641
41) 5 | 0.00504 (o < 0.00701

connections fromlf'y to I’y are )
)
2 1 0.00546 ( « < 0.00814 )
)

m
Uj,ll,lz,“',lq = E xjh yllh ylzh t 'quh
h=1

Whel’ej:]_”n' 11:177]), andlq:]_”p The

corresponding recall equations are 1 |0.00587 ( @ < 0.00933
(t+1) _
Y =
sgn Z Uk ig o oeed 2920 g0 (42) ¢ e
= A B T tq Proof of Lemma 6:As n — oo, the distribution of S,
and e tends to be normal. Since tBeth moment of a normal random
LD _ variable [18] is1-3---(2¢ — 1)
! , Bl(S))"] = 1:3--(2g- 1)
sgn Z Uj7117127...71q yl(lH—l) yl(2t+1) R yl(j-i—l) . _ (2q)! 0
ly=1,lg_1=1,, ;=1 - 244! :

(43) From Lemma 6, we can obtain the four corollaries for the
We can obtain similar results for theorder BAM based on ¢-order BAM.

the following lemma. Corollary 7: For every pattern pairX;,Y;) and for any
Lemma 6: Let {1, &, -+, &, be £1 equiprobable indepen- x (1) such thatd(X,, X®) < p{’n, the probability that
dent random variables arff), = % wheren is a positive d(Y;,, Y #+1)) < pyp tends to one (as — oc), provided that
integer. Asn — oo ; g\ 2
/\24 (29)! VP = 2p:) <M
E[(sn) } ~ S (44) A+ /20 2
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t’g wk — w —L)k w w J wk qw,€+1 Wk —k—
HE“ X | k] < Oy~ gt )e)/2=Dk (3 99 /2)\q/2)k (whk + 1) k)/Q(T)(q k)/2p—k=1/2 (54)
where APPENDIX
(20)! VERIFICATION OF THE CONDITIONS OF NEWMAN'S LEMMA
q).

Agq

- 24q!

and p; is the intersection of.,, and C,

(t)y2 (t)
G (1 — 2057 )% A px
L1,y Py( Pz ) (pz’)

2 g0 T
Ciq @y =T(py).
<

Corollary 8: For every pattern pairX;,Y;) and for any
YD such thatd(Y;,, Y (+D) < pip, the probability that
d(Xp,, X)) < o/ n tends to one (a8 — oc), provided that

2q
eV (1 = 2pf M e <M
\ /)\qa(q+1)/(2(1) 2

Here, we show the conditions under which the random
variable

R ) (g )
V pyp)‘qnq
satisfies (11) and (12), wheig's andz;'s are+1 equiprob-

able independent random variables. Cleaglyis symmetric
and

E[x]=0. (48)
Also, from Lemma 6
Var(x) = E[x*] = 1. (49)

Hence, (11) is satisfied.
To check whethery satisfies (12), we use an existing
result about the sum af1 equiprobable independent random

variables [19].
Lemma 7: Let &1,&5,- -+, &, be +1 equiprobable indepen-
dent random variables. Far> 0 and largen

where p/, is the intersection ofl,, and Cy,
_ par(1 — 2p5t+1))2q

L : - h ,(H—l) n z
2q y 2)\(]@ T (py ) E | Ei:l Sz | < 2Z/2+17r_1/21_,(2 + 1) (50)
Coq =y = h(pz). w2 ] 2
o where['(a) is the gamma function

Corollary 9: If the sequences{p{"’}, {p{"'} ) converge to

small pf(<< 1) and smallp/(<< 1), respectively, then I(a) = /00 29 L= dr. (51)
0
pgj ~riipl, (45) o
The above lemma is part of [19, Lemma A.6]. From Lemma
¢ 7, we have
Corollary 10: If the values ofp/ andp/ are small €< 1), Bl x ]
we have X sl g+ 1
.q z/24+1,_—1/2 © (gz+1)/2,_—1/2 © —z/2
pl ~ exp {——7 y1- logTq_l} (46) s2 I 2 )2 I 2 ) )
(1 =+ 7’(1)2)\(106 1 =+ 74 (52)

and . L
.q Let z = wk, wherek is a positive integer an@ > 0. Then

7o _ T 1 a1
Py ~ exp{ (1+7r9)2)« +14 1+ 74 log7* } (47) t’g . t’g2<<q+1>‘°‘k>/2 wk+1 qwk +1
1 EE[X ]SCO k! F( 9 )F( 9
VIl. CONCLUDING REMARKS where C,, is a positive constant. For large

In this paper, we have studied several properties of the k!~ V2me R tL2
SOBAM. An example has been given which shows that (Wk—i_l)%me—(wk-l—l)/Q(Wk—i_1)(wk+1)/2—1/2
the SOBAM may not be stable during recall. We have also 2 2
derived the statistical dynamics of the SOBAM. Based cend
this dynamics, we have estimated the memory capacity, thd?,(qwar 1) N m@_(qwrl)/?(qwar 1)(qwk+1)/2_1/2
attraction basin and the number of errors in the retrieve 2 - 2 )
pairs. Numerical examples have also been presented. Latnce we have (54), shown at the top of the page.
we have briefly discussed how our results can be extendear largek, the kth term of the sum
to HOBAM'’s. One significant advantage of the methodology o0 4k
§=2 Elx ] (55)
k=0

))\—qwk/Q

presented is that we can analyze some associative memories
whose stability is not guaranteed.
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decreases exponentially provided that= q—il and t, <
2-(@/(a+1) \}/(4+D) A5 5 converges to

E[exp {to | x |2/(q+l)H
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