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Stability and Statistical Properties of Second-Order
Bidirectional Associative Memory
Chi-Sing Leung, Lai-Wan Chan,Member, IEEE,and Edmund Man Kit Lai

Abstract— In this paper, a bidirectional associative memory
(BAM) model with second-order connections, namely second-
order bidirectional associative memory (SOBAM), is first re-
viewed. The stability and statistical properties of the SOBAM
are then examined. We use an example to illustrate that the
stability of the SOBAM is not guaranteed. For this result, we
cannot use the conventional energy approach to estimate its
memory capacity. Thus, we develop the statistical dynamics
of the SOBAM. Given that a small number of errors appear
in the initial input, the dynamics shows how the number of
errors varies during recall. We use the dynamics to estimate the
memory capacity, the attraction basin, and the number of errors
in the retrieved items. Extension of the results to higher-order
bidirectional associative memories is also discussed.

Index Terms—Associative memory, BAM, neural network, sta-
bility.

I. INTRODUCTION

A SSOCIATIVE memories [1], [2] have been intensively
studied in the past decade. An important feature of asso-

ciative memories is the ability to recall the stored items from
partial or noisy inputs. One form of associative memories is
the bivalent additive bidirectional associative memory (BAM)
[3]. It is a two-layer heteroassociator that stores a prescribed
set of vector pairs. We will refer to these pairs aspattern pairs.
A BAM network is very similar to a Hopfield network but has
two layers of neurons in which layer has neurons and
layer has neurons. The recall process of the BAM is an
iterative one starting with a stimulus pair in and . After
a number of iterations, the patterns in and converge to
a fixed point which is desired to be one of the pattern pairs.

The BAM has three important features [3]. First, it performs
both heteroassociative and autoassociative data recalls: the
final state in represents the autoassociative recall, while
the final state in represents the heteroassociative recall.
Second, the initial input can be presented in any one of the
two layers. Last, the BAM is stable during recall.

To encode the pattern pairs, Kosko used the outer-product
rule [3]. However, with the outer-product rule the memory
capacity is very small if the pattern pairs are not orthogonal.
Several modifications have been proposed to improve the
memory capacity. These modifications fall into two categories:
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1) modifying the encoding methods [4]–[6] and 2) introducing
second-order connections to form the second-order bidirec-
tional associative memory (SOBAM) [7]–[9]. The memory
capacity of the SOBAM has been empirically studied [7] but
the theoretical memory capacity has not yet been derived. The
SOBAM has also been proven to be stable during recall [7].

This paper describes the stability and statistical properties
of the SOBAM. Contrary to Simpson’s works [7], we demon-
strate that the stability of the SOBAM is not guaranteed during
recall. We also point out a mistake in [7]. This mistake has
led to the wrong conclusion that the stability of the SOBAM
is guaranteed. Hence, we cannot use the energy approach [10]
to estimate the statistical properties of the SOBAM, especially
the memory capacity and the attraction basin. In this paper,
we are interested in knowing whether each pattern pair can
attract all the initial inputs within a certain distance from it.
If so, we can obtain the attraction basin. Another important
performance index is memory capacity, i.e., the maximum
number of pattern pairs that can be stored in the SOBAM
as attractors. Also of interest is the number of errors in the
retrieved pairs. The question now is: given any errors in
the initial input (an arbitrary error pattern with errors in
the initial input), how does the number of errors vary during
recall? To answer this question, we develop the statistical
dynamics of the SOBAM. From this dynamics, the number
of errors in the retrieved pairs, the attraction basin, and the
memory capacity can be estimated.

Section II reviews the SOBAM and discusses its stability.
The statistical dynamics of the SOBAM is developed in
Section III, using the theory of large deviation [10]. Section IV
discusses the way to estimate the memory capacity, the attrac-
tion basin, and the number of errors in the retrieved items.
Numerical examples are given in Section V. Section VI shows
how the results can be generalized to higher order bidirectional
associative memories (HOBAM’s).

II. SOBAM AND STABILITY

There are pattern pairs , where
and . The

components of and are bipolar ( 1 or 1). The
SOBAM encodes the pattern pairs in two matrices. The first
matrix, , is a lattice that holds the second-order
connections from to . The second matrix, , is a

lattice that holds the second-order connections from
to . The matrix is given by

and

(1)
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The matrix is given by

and

(2)
The state at time is denoted as .
The state at time is denoted as .
The recall process is

sgn (3)

for , where

sgn
state unchanged

Similarly

sgn (4)

for . Equations (3) and (4) imply that the initial
input recalls ; recalls and so on.

The SOBAM is a finite-state autonomous system whose
state converges to either a stable state or a limit cycle.
Unlike the original BAM, the stability of the SOBAM is not
guaranteed during recall. To illustrate this, we use a SOBAM
network to store the following pattern pairs:

With the initial state and
, the following states can be ob-

tained, shown in the equation at the bottom of the page.
Clearly, the network converges to a limit cycle. Thus, the

stability of the SOBAM is not guaranteed.
Simpson [7] used an energy function to explain the stability

of the SOBAM. The energy function is expressed as

(5)

where are the current states,
represents the energy, and

represents the energy. According
to the recall process, either or is updated first. If
is updated first, the change in energy is

(6)

where and is the new state in .
Conversely, if is updated first, the change in energy is

(7)

where and is the new state in .
Simpson showed that the values of and are

either negative or zero. He then claimed that the SOBAM
is always stable [7]. However, from our previous counter
example, it can be seen that the stability is not guaranteed.
This discrepancy is due to the omission of some terms on the
right-hand side of (6) and (7). Actually, if is updated first,
the total change in energy is

(8)

sgn
sgn
sgn
sgn
sgn
sgn
sgn
sgn
sgn
sgn
sgn
sgn
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In this equation, the first term on the right-hand side is the
change in due to a change of the state. The other
two terms, which represent the change in due to a change
of the state, are either negative or positive. Hence, we
cannot draw any conclusion regarding the stability based on
the energy function proposed by Simpson [7].

The above discussion is valid for layer-synchronous re-
call process in which all neurons in a layer are updated
simultaneously. Since layer-synchronous recall process is a
special case of asynchronous recall processes whereby the
neurons in a layer are updated sequentially, the stability of
the SOBAM is not guaranteed under both layer-synchronous
and asynchronous recall processes.

III. STATISTICAL DYNAMICS

A. Notations and Outline

This section outlines how the statistical dynamics is derived.
We first define some terminologies and state the assumptions
used in the rest of the paper.

• , where is a positive constant.
• , where is a positive constant.
• The dimensions, and , are large. This assumption is

often used [10]–[15].
• For analytical purposes, we assume that each component

of the pattern pairs is a equiprobable independent
random variable. Though this assumption is not always
being satisfied in most real-life data, it is difficult to
analyze associative memories without making such an
assumption. In fact, this assumption has been widely used
[10]–[15].

• The Hamming distance between two bipolar vectors,
and , is denoted as .

• Attraction Basin: It is required that each pattern pair is
stored as a stable state (or at least there is a stable state at
a small Hamming distance). Otherwise, the pattern pairs
cannot be recalled. Besides, we expect a SOBAM network
to have the following error correction property. If the
network is started at a state where

, the state will reach a stable state within
a distance of from the stored pattern after a
sequence of state transitions where (the
state should also reach a stable state within a distance of

from the stored pattern where ). We are
interested in knowing whether each pattern pair is able to
attract all the initial inputs within a distance of
for some positive constants . The maximum value of
such denotes the attraction basin of each pattern pair.
Also of interest is the number of errors in the retrieved
items. This number measures the quality of the retrieved
items. Since we are considering “all possible initial inputs
within a certain distance,” the above definition of the
attraction basin is forworst case errors. In the rest of the
paper, the term “attraction basin” refers to the attraction
basin for worst case errors. Instead of estimating the
attraction basin directly, we will estimate the number of
errors after each state transition.

• Given that and is the probability
that for each pattern pair and for any error
pattern with errors in in the present state
( ), the number of errors in in
the next state is less than ( ). It
should be noticed that the phrase “for any error pattern
with errors in ” in the definition of reflects
the concept ofworst case errors.

• Given that and , is the probability
that for each pattern pair and for any error
pattern with errors in in the present state
( ), the number of errors in in
the next state is less than ( ).

•

The error rate in
The number of errors in

The error rate in
The number of errors in

• To estimate the value of , we first introduce the event
. It is the event that

for a given pattern pair and for a given present
state , where

such that (9)

The index refers to a particular error pattern. For a
given , the number of error patterns is . Thus,

the range of is from one to . Also, is the
complement event of . It is the event that

for a given pattern pair and for a given present
state .

• In the above, each event only refers to an error
pattern and a pattern pair. To consider each pattern pair
and all the possible error patterns, we need to introduce
the event which is the intersection of all possible

’s

It is the event that

for each pattern pair and for any .
Also, is defined as the complement event of
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From the definitions of and

Prob

Prob

Prob

Prob (10)

In Part B, we will first estimate the values of and
(Lemmas 4 and 5). From the two lemmas, an upper bound on
the error rate in the next state is obtained (Corollaries 2 and
4). Based on Corollary 2, given that is the upper bound on
the error rate in at time , we can derive an upper bound

on the error rate in at time . Similarly, from
Corollary 4, we can estimate from . As a result,
two sequences and are constructed to represent
the statistical dynamics of the SOBAM. In Section IV, we
will discuss how to use the features of these two sequences
to estimate the memory capacity, the number of errors in the
retrieved pairs, and the attraction basin.

B. Construction of the Dynamics

To estimate the values of and , we make use of
Stirling’s formula and the theory of large deviation [10]. Here,
we restate them as the following two lemmas.

Lemma 1—Stirling’s Asymptotic Formula for Factorial:Let
be a large integer and . Then

where

Lemma 2—Newman’s Lemma:Suppose
are, for each , independent, identically distributed, and
symmetric random variables satisfying.

1)

Var (11)

2) For some real and ,

(12)

where is the expectation operator.

For any and

(13)

a sufficient condition for

Prob

(14)

as , is

(15)

From Lemmas 1 and 2, we first estimate a bound on
Prob .

Lemma 3:

Prob

provided that

for and .

Proof of Lemma 3:Without loss of generality, we as-
sume that all the components of the pattern pair are
positive: and . Let be
the set of indexes at which and differ. For a given

, there is only one and . Let be
a set of indexes of where . Note that there

are such sets. Event implies that there is at least
one such that

Hence

Prob

Prob there is at least one , where , such that

Prob for a given

(16)

Let

Prob for a given

(17)
From (1), we have

Prob

(18)
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One can easily find that

and

Hence

Prob (19)

where

(20)

and

(21)

As and

and

By substituting Lemma 2 (put ) into (19), we obtain

(22)

provided that

for some real . From the Appendix, must be less than
. To obtain a valid value of , we have

The procedures for checking whether satisfies the two
conditions (11) and (12) are provided in the Appendix. By
substituting (22) into (16), we obtain

Prob (23)

From Lemma 1, we have

Prob

Recall that

Prob (24)

From Lemma 3

(25)
With Lemma 1, we can immediately obtain the bound on
as Lemma 4 below.

Lemma 4:

(26)

provided that

(27)

Let be the minimum value of such that the right-hand
side of (26) tends to one (as ). From Lemma 4, is
the minimum value of such that

(28)

Let be the intersection of the line

(29)

and the curve

(30)

Then

where is an arbitrary small positive constant. Apparently,
for a given can be solved numerically (see
Fig. 1). Hence, for each pattern pair and for any
error pattern with errors in ( ),
the probability that the number of errors in is less
than ( ) tends to one (as ).
As can be any small positive constant, one can restate the
above statement as: the probability that the number of errors
in is less than or equal to ( )
tends to one (as ). Furthermore, according to the
feature of and , the following corollary can be obtained.
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Fig. 1. Graphical implication of solving�0

y
.

Corollary 1: If , then .

Proof of Corollary 1: From (29) and (30) (see Fig. 1), if
the value of is reduced, the line shifts up
and its slope increases. Hence, the intersection shifts toward
left and a smaller is obtained.

The above corollary implies that a smaller is obtained

if the value of is reduced. Thus, given ,
for each pattern pair ( ) and for any such that

(the error rate in in the present state
is less than or equal to ), the probability that the error rate
in in the next state is less than or equal to tends to one
(as ). We capture the above statement as Corollary 2.

Corollary 2: Given that is the intersection of and
[see (29) and (30)], for each pattern pair ( ) and for

any such that , the probability that
tends to one (as ).

It follows from Corollary 2 that, if the error rate in in
the present state is less than or equal to, the error rate
in in the next state is less than or equal to. Thus,
defines an upper bound on the error rate in in the next
state. We denote this upper bound as .

Similarly, we can easily obtain the lower bound on as
Lemma 5.

Lemma 5:

(31)

provided that

(32)

From Lemma 5, we can estimate the error ratein in
the next state (given the error rate in in the present state)
by considering the intersection of the line

(33)

and the curve

(34)

Hence, Corollaries 3 and 4 are obtained.
Corollary 3: If , then .

Corollary 4: Given that is the intersection of and
[see (33) and (34)], for each pattern pair ( ) and for any

such that , the probability that
tends to one (as ).

Corollary 4 shows that if the error rate in in the present
state is less than or equal to , the error rate in in
the next state is less than or equal to. Thus, defines
an upper bound on the error rate in in the next state. We
denote this upper bound as .

By solving (i.e., ) and (i.e., ) iteratively,

we can construct two sequences and . Fig. 2
shows an example of them. These sequences ( )
form the statistical dynamics of the upper bounds on the error
rates. Given arbitrary errors in the initial input, if the
sequences ( ) converge to and , respectively

(where ), the noisy version of the desired pattern pair
can be recalled. Besides, in the retrieved item, the number of
errors in and the number of errors in are less than

and , respectively. If a few errors are allowed in the
retrieved pairs, we can use the above dynamics to estimate
the memory capacity, the attraction basin, and the number of
errors in the retrieved pairs.

IV. ESTIMATION OF STATISTICAL PROPERTIES

A. Memory Capacity

Clearly, if the sequences , with some ,
converge to two small numbers individually, each pattern pair
can attract all initial inputs within a certain distance. In other
words, each pattern pair or its noisy versions can be stored as
a stable state. Therefore, we can use the following method to
estimate the memory capacity.

For a given , let be the maximum value of such that
the sequences ( ) with some converge to
and , respectively (where ). Thus, can be
considered as a lower bound on the memory capacity.
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(a)

(b)

Fig. 2. The statistical dynamics of the SOBAM where� = 0:01 andr = 1.
The initial conditions are�(0)x = 0 and 0:005. (a) The dynamics of�x(t)
and (b) the dynamics of�y(t). Since all sequences converge, the attraction
basin at least equals0:005n.

B. Number of Errors in the Retrieved Items

As the sequences ( ) reflect the upper bounds
on the number of errors during recall, the final values of the
sequences ( ) reflect the upper bounds on the number of
errors in the retrieved pairs.

C. Attraction Basin

Given arbitrary errors in the initial input, if the
sequences converge to ( ) where , the desired
pattern pair can be recalled with no more than and

errors in and respectively. Hence, the maximum

value of , with which the sequences converge, corresponds
to the lower bound on the attraction basin. We denote the
maximum value as . The phrases “for any such
that ” in Corollary 2 and “for any
such that ” in Corollary 4 lead directly
to the fact that the estimated attraction basin refers toworst
case errors. In this case, we need to find out if the stored item
can attract “every” initial input within a certain distance.

Another error correction index is the attraction basin for
random errors. In this case, we need to find out if a stored
item can attract “an” initial input within a certain distance.
The terms “an” and “every” mark the difference betweenworst
case errorsandrandom errors. It should be noticed that using
simulations to study the attraction basin forworst case errors
is impractical. The reason is that the number of error patterns
is very large (for example ). Simulations
can only reflect the properties of models in the presence of
random errors.

In the case ofrandom errors, if the number of the pattern
pairs is less than

(35)

an initial input (in ) within distance from will be
attracted to the desired pattern pair in two recall steps with
high probability. The proof of the above behavior is based
on the theory of large deviation (see [19, Lemma A.7]). As
this paper is mainly concerned withworst case errors, the
behavior of the models in the presence ofrandom errorswill
not be discussed further.

D. Approximations of and

It is not difficult to see the following relationship between
and .

Corollary 5: If the sequences ( ) converge to
small and small , respectively, then

(36)

Proof of Corollary 5: From (29), (30), (33), and (34), we
have

Thus

As the values of and are small

Similarly, we can easily obtain Corollary 6, which can be
used for the direct estimation of and .

Corollary 6: If the values of and are small ( ),
we have

and (37)

(38)
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TABLE I
THE LOWER BOUND ON THE MEMORY CAPACITY OF THE SOBAM

Proof of Corollary 6: From (28), we have

Using the approximation “ for small positive
,” the corollary follows.
Remark: Since we are concerned with the conditions under

which the lower bounds on and tend to one (as
), we only obtain the bounds on the three statistical

properties: the memory capacity, the number of errors in the
retrieved pairs and the attraction basin. The actual values of
these three statistical properties considered in this section are
better than the estimated bounds. It should also be noticed
that during the construction of the sequences ( ),
we should check whether both conditions (27) and (32) are
satisfied.

V. NUMERICAL RESULTS

Numerical Example a:Based on the theoretical work pre-
sented in the previous section, we estimate the lower bound on
the memory capacity. The estimated results are summarized in
Table I. The lower bound increases withuntil where
it starts to decrease. Also

This symmetrical property means that inverting the ratio of the
dimensions (interchange and ) does not affect the overall
estimated lower bound.

One should be aware that when the values ofand are
small, the bound may become meaningless. For example, if

and , the lower bound is about 1.28 (which
is less than ). However, for large and , the result
is different. For example, if and , the lower
bound is about (which is much greater than the
dimension ). For image processing problems [17], the
dimensions are usually greater than .

Fig. 3. The lower bound on the attraction basin wherer = 1; 2; 5; 10.

Numerical Example b:
Fig. 3 summarizes the lower bounds on the attraction basin

at . When the value of is small, the lower
bound first increases asdecreases. However, when the value
of is too small, the lower bound starts to decrease as
further decreases. This unnatural trend is due to the constraints
(27) and (32), which limit the searching range of .
However, it is rational to accept the claim that for a smaller

, a larger attraction basin is obtained. We take the maximum
point in the figure as the lower bound on the attraction basin
for small values of . Table II summaries the above claim.
From Fig. 3 and Table II, for a meaningful attraction basin,
the dimension should be larger than . The estimated
attraction basin is quite small. This is not surprising because
the estimated lower bounds refer toworst case error.

Figs. 4 and 5 show the behavior of and . From
the figures, the upper bound on the number of errors in
the retrieved pairs ( or ) decreases exponentially as
decreases (this feature matches Corollary 6). Also, the value
of is approximately equal to that of (as was indicated
in Corollary 5). Since it is desired that the number of retrieved
errors should be as small as possible, the estimated upper
bounds are more attractive.

VI. HOBAM’ S

Although we are mainly concerned with the properties
of the SOBAM, we can apply a similar method to analyze
HOBAM’s. The only required change in the assumptions is

(39)



LEUNG et al.: SECOND-ORDER BIDIRECTIONAL ASSOCIATIVE MEMORY 275

Fig. 4. The upper bound on the error rate inFX in the retrieved pairs where
r = 1; 2; 5; 10.

where is a positive integer. For the-order BAM, the
connections from to are

(40)

where ; ; and . The
connections from to are

(41)

where ; ; and . The
corresponding recall equations are

sgn (42)

and

sgn

(43)

We can obtain similar results for the-order BAM based on
the following lemma.

Lemma 6: Let be equiprobable indepen-

dent random variables and where is a positive
integer. As

(44)

Fig. 5. The upper bound on the error rate inFY in the retrieved pairs where
r = 1; 2; 5; 10.

TABLE II
THE LOWER BOUND ON THE ATTRACTION BASIN

OF THE SOBAM FOR SMALL VALUES OF �

Proof of Lemma 6:As , the distribution of
tends to be normal. Since theth moment of a normal random
variable [18] is

From Lemma 6, we can obtain the four corollaries for the
-order BAM.
Corollary 7: For every pattern pair ( ) and for any

such that , the probability that
tends to one (as ), provided that
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(54)

where

and is the intersection of and

Corollary 8: For every pattern pair ( ) and for any
such that , the probability that

tends to one (as ), provided that

where is the intersection of and

Corollary 9: If the sequences ( ) converge to
small and small , respectively, then

(45)

Corollary 10: If the values of and are small ( ),
we have

(46)

and

(47)

VII. CONCLUDING REMARKS

In this paper, we have studied several properties of the
SOBAM. An example has been given which shows that
the SOBAM may not be stable during recall. We have also
derived the statistical dynamics of the SOBAM. Based on
this dynamics, we have estimated the memory capacity, the
attraction basin and the number of errors in the retrieved
pairs. Numerical examples have also been presented. Last,
we have briefly discussed how our results can be extended
to HOBAM’s. One significant advantage of the methodology
presented is that we can analyze some associative memories
whose stability is not guaranteed.

APPENDIX

VERIFICATION OF THE CONDITIONS OF NEWMAN’S LEMMA

Here, we show the conditions under which the random
variable

satisfies (11) and (12), where ’s and ’s are equiprob-
able independent random variables. Clearly,is symmetric
and

(48)

Also, from Lemma 6

Var (49)

Hence, (11) is satisfied.
To check whether satisfies (12), we use an existing

result about the sum of equiprobable independent random
variables [19].

Lemma 7: Let be equiprobable indepen-
dent random variables. For and large

(50)

where is the gamma function

(51)

The above lemma is part of [19, Lemma A.6]. From Lemma
7, we have

(52)

Let , where is a positive integer and . Then

(53)
where is a positive constant. For large

and

Hence we have (54), shown at the top of the page.
For large , the th term of the sum

(55)
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decreases exponentially provided that and

. As converges to

it follows that

For the SOBAM, and .
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