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Abstract: T. Kohonen  has described an algorithm for fitting a k-dimensional  grid of  points to a set of  points taken from a 
k-manifold in ~n, for k<~n. The algorithm is inspired by a neural model and bears some of  the marks of  its ancestry. In this 

paper we show that if the process converges, it converges to a locally 1-1 mapping  of the grid onto the manifold.  Hitherto 
this result has only been proved for the case where k =  1. 

O. Introduction 

The analytic process of  parametrising manifolds 
is well known to Mathematicians and Physicists, 
[1] and is becoming increasingly familiar to Engi- 
neers concerned with, for example, robot  manip- 
ulator trajectories [2]. The numerical equivalent 
does not appear  to have been much studied, except 
in special cases. 

Suppose we have a finite set of  points in En and 
we wish to fit a manifold to them. There are two 
special cases of  note, the first is the case of  fitting 
a 1-manifold, a curve, to a set of  points in R 2. 
We may  be concerned with choosing a curve that 
passes through all the points, as is commonly  done 
with low order splines, or we may suppose there 
is some random variation and we wish to satisfy 
some goodness of  fit criterion such as least squares, 
together with some simplicity criterion such as a 
bound on the degree of  a polynomial.  The second 
special case is where we have a set of  points in R n 
and we wish to find the hyperplane of  dimension 
k which contains most of  the variation of  the data. 
The well-known Karhunen-Lo~ve expansion ac- 
complishes this last [3], and there are algorithms 
for the one-dimensional curve-fitting case, and 
also for the two-dimensional case. In all cases, the 

manifold is constrained globally by all the data 
points. 

The problem of finding the 'best  fit manifold ' ,  
and assessing the goodness of  fit, is then a generali- 
sation (to the non-linear and to higher dimensions) 
o f  a standard problem. It is reasonable to want to 
(a) smooth  data, (b) interpolate data and (c) reduce 
the effective dimension of  data, without the con- 
straints on dimension on the one hand or linearity 
on the other. It is necessary to tackle this problem 
locally, unlike the case of  least squares best fitting 
of  graphs of  functions, since the global topology is 
unknown.  We cannot therefore expect to emerge 
with one function, but must finish with at best a set 
of  local 'char ts ' ,  maps f rom the unit k-cube into 
~n. For  obvious reasons, we shall call this process 
the numerical parametrisation of the underlying 
manifold  f rom which the points are drawn. 

The direct approach is to choose some 'small '  
neighbourhood and try to fit a graph to it. This is 
essentially what is done in some existing routines 
which use higher-dimensional splines. Another  
possibility, which we have not seen discussed in 
the literature, would be to find local co-ordinate 
charts for the manifold by trying to minimise a 
least squares criterion and also a 'st iffness '  or cur- 
vature measure. An algorithm which seems to have 
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some affinities with this last approach but is still 
different, is that of  Kohonen [4]. In this paper we 
shall consider the Kohonen algorithm; we shall 
note its features and show that, when it converges, 
it can accomplish such a numerical parametrisa- 
tion. The algorithm implements a philosophy of  
turning the data into a space of  attractors, repre- 
senting an essentially traditional approach to nu- 
merical solutions going back to Newton's method, 
but the details are new. 

1. The Kohonen algorithm: overview 

The Kohonen algorithm [4, 5], takes a k-dimen- 
sional grid of  points in A n and moves them to- 
wards the points on the set as they are selected in 
some sequence. It allows the points to be selected 
non-uniformly from the manifold which is as- 
sumed to have dimension k. We shall refer to the 
points selected from the (putative) manifold as at- 
tracting points or attractors, and the points of  the 
k-dimensional grid as grid points. Then we may 
think of  the points of  the manifold as attracting, or 
calling, the grid points from some initial position 
which may be randomly selected and pulling the 
grid points until they are on the manifold. The 
Kohonen algorithm gives a 'law of  motion '  which 
tells how to move the grid points in response to the 
choice of  a particular attractor. It is claimed that 
this law of  motion leads, after some presentation 
sequence of  attractors, to a convergent state in 
which the grid is wrapped around the manifold, 
thus giving what we have called a 'numerical pa- 
rametrisation'  of  the manifold. There is no pro- 
cedure for testing goodness of  fit, something with 
which we shall be concerned subsequently. The 
procedure for moving the grid towards the attract- 
ing points on the manifold is as follows: the grid 
point closest to the attracting point is found. A 
grid neighbourhood of  points is chosen; this grid 
neighbourhood is defined by the topology of  the 
grid, usually a rectangular array, and a size param- 
eter, W. Thus if the grid dimension were 2 and the 
size parameter were 3 and the selected point was 
specified as G(7, 5), then all the points G(x, y) with 
4~<x~< 10 and 2~<y~<8 would be in the grid neigh- 
bourhood (regardless of  their location in ~n). Each 

member inside the grid neighbourhood is moved 
along the straight line joining the grid point to the 
attracting point; the fraction moved is determined 
by a move parameter A. Both A and W are re- 
duced, according to some schedule, from some in- 
itial value to zero at termination time T, the time 
at which all the points have been presented to the 
grid, possibly with repetitions. 

The application described in [5] and based on 
the so-called tonotopic map of  [4], is to the case of 
speech data. Speech is sampled and the spectrum 
measured, either by giving energy levels in a bank 
of  filters or by LPC coefficients, or by some other 
procedure. Thus an utterance becomes a trajectory 
(discretised) in R n, for some n (the number of  fil- 
ters or LPC coefficients). It is asserted that there is 
reason to suppose that no matter what n is, and no 
matter what the set of  measurements made (pro- 
vided only that they resolve the data), the trajec- 
tories will lie on some two-dimensional surface 
embedded in IR n. Changing from LPC coefficients 
to filter bank values will change the embedding but 
not the dimension of the 'speech space' which con- 
tains all the trajectories. Thus by presenting time 
samples of  speech to a 2-grid and applying the 
Kohonen algorithm, the speech space itself will be 
found. Moreover, the fact that the points will be 
selected from the speech space non-uniformly will 
not affect convergence, it will indeed assign grid 
points in greatest numbers to the regions of  highest 
density of  the attracting points. This allows the 
grid points to be selected as centres for so-called 
vector quantisation, meaning that the trajectory 
can now be discretised into a symbol string, where 
the symbols are simply the grid point names, and 
we assign a region of  a trajectory to the nearest 
grid point. The result of  the Kohonen algorithm, it 
is claimed, is to have highest resolution in the re- 
gions of  the space where the highest density of  at- 
tracting points occurs. This, it is further claimed, 
is desirable. 

The arguments given in [5] for believing that the 
speech trajectories lie on a manifold and that the 
dimension of  the manifold is 2 are of  uncertain 
force. It would clearly be desirable to have some 
experimental confirmation of  the rather striking 
theory that the dimension has to be 2. 

It is also clearly desirable that the terminal con- 
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verged state which assigns the grid points to the 
manifold,  and which hence allows us to interpolate 
points and to smooth them, should constitute a 
discrete approximat ion to a locally 1-1 map.  It 
would be acceptable if the grid were wrapped 
around the manifold with some overlap, as for ex- 
ample when the points are on a circle or a sphere 
or a torus, but the mapping should not contain 
folds or wrinkles. 

Kohonen,  in [4], claims that the grid points ' tend 
to be ordered according to their mutual  similarity' 
and that the asymptotic local point density of  the 
grid points is a continuous monotone  function of 
the probabil i ty density function of  the attracting 
points (Proposit ion 5.1). The former phrase ap- 
pears to mean that when the attracting points are 
selected f rom a manifold,  the terminal converged 
state assigns the grid points to points of  the mani- 
fold in such a way that they give a discrete approx- 

imation to a 1-1 map.  In the case when the grid 
and the manifold are one-dimensional,  both the 

grid and any set of  attracting points f rom the man- 
ifold can be ordered, and if the grid points actually 
converge to attracting points (and not to some in- 
termediate points), the meaning is simply that the 
map  defined at convergence should be monotone.  
In this one-dimensional case, if the grid points are 
allowed to converge to the manifold (but not nec- 
essarily to the attracting points), then the simplest 
way to express the 'ordering according to mutual 
similarity'  is to point out that a map defined on a 
totally ordered set of  r +  1 elements into [R n deter- 
mines a unique piecewise affine map f rom the in- 
terval [0, r] in ~ which takes the integer j to the 
( j  + 1)th point of  the grid after convergence. Then 
we require this map to be monotone.  For higher 
dimensions, not treated in [4], there are some 
problems; there are also problems when the mani- 
fold is compact .  What  the p roof  in [4] actually 
does is to show that for an attracting manifold 
consisting of  a line segment, the algorithm operat- 
ing on a linear array of  points converges to a mon- 
otone map.  Thus it is not valid for circles, for 
example, and the generalisation is not immediately 
apparent .  For this reason a proof  of  the general 
result, that we can obtain numerical parametrisa-  
tions of  any manifold would have some interest. 
Experiments running simulations are also of  in- 

terest. The main result of  this paper  is to give the 
generalisation for any dimension: we prove that 
the map  which represents convergence and puts a 
k-cube onto the manifold in R n is an immersion, 
that  is to say, it is locally 1-1. 

2. Features of the Kohonen algorithm 

As a numerical parametrisat ion algorithm, there 
are some features which are marks of  its ancestry. 
In particular, the serial presentation of the points 
taken f rom the manifold to the grid makes for an 
algorithm which does not need to store a large 
quantity of  data. Since it is abstractly a model of  
a certain kind of  learning, this is natural enough. 
Also, it is inherently parallel, with only limited 
non-local interactions. This makes it possible to 
run the algorithm on a network with an architec- 
ture which does not seem to have been much in- 
vestigated, one with a small blackboard but 
otherwise similar to a systolic array. Finally, an 
aspect of  the algorithm which has been mentioned 
above is that it will preserve the density of  the fre- 
quency distribution of the points, or at least give a 
numerical approximation to it. 

We shall not discuss here the origins of  the algo- 
r i thm in neural modelling nor the extent to which 
it is plausible as such a model. 

The algorithm, as has been stated above, re- 
quires for its complete specification, a schedule of  
how to decrease the move size and the neighbour- 
hood size. (This is strongly reminiscent of  the an- 
nealaing schedule used in the simulated annealing 
algorithm for non-convex optimisation [6].) As 
was discussed above, while experiments suggest 
that for any low-dimensional manifold which satis- 
fies certasin broad conditions there are schedules 
which work, they also suggest that for any sched- 
ule there are manifolds for which the schedule will 
fail to work. Indeed, as stated, the Kohonen algo- 
r i thm need not have the grid converged to the man- 
ifold at all. 

Experimentally, one finds that if the manifold is 
embedded as a non-convex set, one gets a kind 
of  'convex approximat ion '  to the manifold. The 
point is illustrated in [4]. It is not clear whether this 
is a significant defect, nor on how it is changed as 

315 



Volume 11, Number 5 PATTERN RECOGNITION LETTERS May 1990 

the number  of  grid points increases, nor  how it de- 
pends on the shrinking schedule. For small num- 
bers of  points and low dimensions it is often the 
result which agrees with naive intuitions. 

Kohonen gives no way of  measuring the 'good-  
ness of  fit '  of  the terminal converged state of  the 
grid to the manifold.  In [4] some qualitative obser- 
vations are made on the degree of  folding which 

ensues in the case where one tries to fit a grid of  
dimension 1 or 2 to a manifold of  dimension which 
is greater than that of  the grid, but no measure- 
ment  of  this is proposed.  Consequently, using 
Kohonen ' s  algorithm to confirm the dimension of  
a set is impractical; one may come away with one 's  

convictions intact, but one has no quantitative jus- 
tification for so doing. There is no independent 
way of  deciding on the dimension of  the manifold 
f rom which the set has been taken, a notoriously 
difficult problem. See [7]. 

Finally, there is a serious absence of  theory. The 

convergence theorem which Kohonen gives applies 
only to the one-dimensional case of  a grid along a 
line and the attractors selected f rom an interval, 
and in any case is not argued very rigorously. The 
existence of  very badly embedded manifolds is not 
considered. Since there are some monsters which 
are well known to topologists, the generalisation is 
far f rom trivial and the formal  machinery for do- 
ing so is not present in [4] or [5]. We conclude 
f rom these observations that the algorithm is not 
yet in a fully developed form, but that it is impor-  
tant  enough to merit further development.  This is 
quite aside f rom any value it may have as a neural 
model,  which suggests other, quite different, rea- 
sons for developing it. 

3. A n  immersion theorem 

We shall assume in what follows that we know 
k, the dimension of  the manifold.  To avoid some 
of  the technical difficulties which arise f rom pre- 
mature  discretisation, we shall consider the case 
where the grid is replaced by a unit k-cube. Then 
a p roof  that the attraction of  a sequence of  points 
f rom the manifold induced a map  f rom the k-cube 
to the manifold would certainly leave us with the 
result for the discrete approximation of  a grid. It 

would also relieve us of  the need to consider alter- 
native grid geometries and allow us to use the ma- 
chinery of  analysis. The immediate problem then 
becomes to formulate Kohonen 's  law of  attraction 
in such a way that it reduces to the standard case 
when we restrict back to a grid, because if we simp- 
ly choose the points in a neighbourhood and move 
them alone, our mapping immediately becomes 
discontinuous. It is possible to give a rule for mov- 
ing the points of  the cube which is continuous and 
yield precisely the Kohonen rule under restriction 
to a grid, by putting a 'collar '  around the neigh- 
bourhood;  inside the neighbourhood points move 
according to the Kohonen rule, outside the col- 

lared neighbourhood they do not move at all, as 
with the Kohonen rule, and inside the collar, they 
move by an intermediate amount .  The collar can 
be made arbitrarily narrow, and the map can be 
continuous and indeed smooth.  This again yields 
the Kohonen rule when restricted to a grid. Our 
preference for smooth functions is based largely on 
a desire to be able to use traditional analytic ma- 
chinery in describing the system, and partly on a 
prejudice that nature seems to be that way. 

The smoothing of  the Kohonen function can be 
expressed much more simply than by such artifacts 
as 'collars ' .  We merely need to require that points 
of  the cube which are sufficiently close should be 
moved approximately the same distance, and that 
points close to an attracting point should be moved 
more  than those further away. The point do dwell 
on is that there are two different senses of  'close' ,  
one is 'close in IR n', and the other is 'close in the 
k-cube ' .  It is the function of  the Kohonen rule to 
ensure that these finally come to be the same. 

For our formal  treatment,  we observe that each 
attracting point operates in the same way as any 
other up to a translation, so we may consider the 
rule of  motion to be specified completely by saying 
what happens when the attractor is at the origin, 
and adding the obvious translation to handle the 
case when it is not. We also note that the attractor 
takes one smooth mapping of  a k-cube into •n and 
turns it into another.  Thus the sequence of mani- 
fold points determines a sequence of t ransforma-  
tions of  the space of  smooth mappings f rom D k, 
the unit k-cube, to ~n, usually written ~ ( D  k, Rn). 

We shall call this space S(k, n). Then the origin in 
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R n, regarded as a conveniently located manifold 
point,  acts as a map  

0 : S(k, n) ~ S(k, n). 

We now define a Kohonen Operator as such a 
t ransformat ion having the properties: 

(1) V f e S ( k , n )  VxeD k ~ a e [ - 1 , 1 ]  O ( f ) ( x ) =  

a f ( x ) ,  where a ¢ 0 ,  and a is a smooth function of 
x for every f 

(2) V f e  S(k, n) Vu, o ~ D k 

I o ( f ) ( u ) l  < IO( f ) (o) l  ¢~ v x e  n k 

( v y e  u ~ If(x)t ~< If(y) l  = I x -  u l ~< I x -  vl). 

The first of  these requires that O should move 
curves no farther f rom the attracting point, and 
points move in directly along the radius, while the 

second says that  if  a point f ( u )  finishes up closer 
to the at tractor than a point f (o) ,  then it must be 
that  the closest point of  the curve to the origin (in 
the sense of  close in R n) is closer to u than to o (in 
the sense of  close in ~k). The reasons for writing 
this formally are plain. 

It is easy to see that the Kohonen rule satisfies 
these conditions when we restrict them to any grid. 

Suppose now that a sequence of  points, al, a z, 
a 3 . . . .  is taken f rom M, a manifold in ~", and that 
g : Z + --, IR + is a monotone  function satisfying: 

lim g(r) = O. 
r ~ o o  

Define a Kohonen Sequence as a sequence of  oper- 

ators, Tr by 

V f e  S(k, n) V x  e D k, 

Tr( f )  (x) = ar + g(r) O ( f  - Ar) (x), 

(where A r is the constant element of  S(k, n) send- 
ing everything to ar) which satisfies the condition: 

V f e S ( k , n )  V x e  D k V e e  [R + 

~ I N e Z  + V r e Z  +, 

r > N  = ( I f ( x ) -  Tr( f ) (x )]>O ¢~ 

~tye D k I x -  yl <e  & 

V z e  flk [ f ( y ) - a r [  < If(z) - a~l). 

This, when translated into English, is the neigh- 
bourhood  shrinking procedure. It ensures that out- 
side some e-neighbourhood of  the closest point, 

the operat ion does nothing, and ensures that e gets 
smaller as we go down the sequence. 

It is easy to see that the Kohonen rule is a finite 
approximat ion to this case, alternatively that we 
can approximate  the finite case arbitrarily closely 
by a Kohonen sequence of  operators.  The only 
problem is in the choice of  g, where a finite ap- 
proximation might go to zero after finitely many 
terms. 

Proposi t ion.  Suppose a sequence o f  points, a~, a 2, 
a 3 . . . .  is given and that these are dense and uni- 

f o r m l y  distributed in a smooth k-manifold M,  
k >  O, embedded in ~n. Suppose that the Kohonen 

sequence o f  operations converges f o r  some initial 

state fo, an embedding, to some non-constant f inal  

state f ,  both smooth maps f r o m  D k to M.  Then f 
is, with probability 1, an immersion f r o m  O k to M,  

i.e. it is locally 1-1. 

Proof .  We have to show that the derivate of  f has 
rank k everywhere. It is clear that f0 has full rank 
and that 0 preserves rank (and of  course smooth- 
ness), so we need examine only the limiting case. 

We take r ~ N  and ee[R + and two points b and 
c in I k which are both mapped to within e of  the 

manifold such that both f~ and the manifold may 
be taken to be affine in some ball. 

Consider now the effect on the line segment 
[fr(b),fr(C)], approximately the image of  the line 
segment [b, c] in D k, of  an attracting point a on the 
manifold.  Each point moves radially if at all to- 
wards a. Let the angle at a be called a and let the 
distance l a - f A b ) l  be called u, and the distance 
ja - f r (C)  t be called v. Suppose if w is the original 
distance, then the size of  the jump is written j (w) .  

Then the condition that the separation of  the 
points fr(b), fr(C) be increased by the action of  the 
attraction towards a is easily seen to be: 

2 u j ( u )  + 2v j (o )  - ( j (u))  2 - (j(o)) 2 
2 cos(a)  > 

u j (o)  + o j ( u )  - j ( u )  j (o)  

If, without loss of  generality, j (o)  is very small 
compared  with j (u ) ,  either by virtue of  the shrink- 
ing of  neighbourhoods or by virtue of  the details of  
the dynamic, this reduces to 

2 u - j ( u )  
cos(a)  > 

20 
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We note that there is an advantage then in having 
j(u) tend to 2u as u tends to zero, when the point 
moves almost as far to the opposite side of  the at- 
tractor,  as this maximises the angle for which the 
separation is increased. In this case, we have that 
a is at its maximum of  a right angle. We take then 
a hypersphere with centre the midpoint  of  f~(b) 
and f~(c), and radius half the separation. Then any 
point of  the manifold which lies inside the hyper- 
sphere contracts the line joining the two points 
when it becomes an attractor,  and all other points 
will not. The case where we have j (u )  samller than 
2u is slightly more complicated but in essence the 
same and we shall not consider it here. j(u)> 2u is 
evidently imcompatible with convergence. 

Let B denote the ball o f  radius ~ with centre 
f~(b) and C that with centre f~(c). Let Q denote the 
ball centred at the midpoint  which has the points 
fr(c),fr(b) on its boundary.  Then the set of  points 
which lie on the manifold and inside B or C and 
also Q are those attractors which will shrink the 
line segment, and those in B or C but not Q will ex- 
pand it. Since the distribution is uniform, by hy- 
pothesis, the probabil i ty of  these events is given by 
the relative measures of  the two regions. It is easy 
to see that these tend to a ratio of  contracting to 
expanding which is less than or equal to one. This 
holds for all subsequent iterations, so the prob- 
ability of  the line segment contracting to a point 

subsequently is zero. This guarantees that f is lo- 
cally 1-1. The nonsingularity of  the derivative is 
marginally stronger, and follows f rom the observa- 
tion that the ratio of  the directional derivatives of  
consecutive operations on f tends to a non-zero 
constant.  

the law of  attraction and the shrinking law. 
It  then follows, via approximations which are lo- 

cally constant,  that if the points on the manifold 
come f rom a smooth density function then the pdf  
derived f rom f is a monotone  function of it, pro- 
vided only that the laws are invariant under the 
Euclidean Group on ~n. 

Remark. Note that there is nothing to prevent us 
wrapping I k around the manifold in such a way 

that the final map is not 1-1. We have not, of  
course, shown that convergence must occur, mere- 
ly that  if it does we must have an immersion, and 
we have supposed that the dimension is known. It 

is easy to see that when the dimension of  the mani- 
fold is less than that of  the disk being attracted, 

that the result above still holds; what happens is 
that convergence cannot now occur. In the case 
where the dimension of the disk is less than that of  
the manifold,  we can get both convergence and the 
immersion. 

Remark. The application to the case of  a finite set 
o f  points, is fraught with difficulties. It is plain 
that  a finite set of  points could have come f rom 
a lot of  different manifolds,  and that if there is a 
large amount  of  variation in the pdf  for the points, 
we may find our manifold can be approximated by 
something topologically very different. It is hardly 
surprising that topological invariants do not readi- 
ly survive numerical approximation,  what is sur- 
prising, as Dr. Johnson might have remarked,  is 
that they can survive at all: yet the human eye can 
and does pick out non-simply-connected manifolds 
f rom point sets. 

Remark. There is a probabili ty density function 
which can be obtained f rom the immersion f by 
taking the k-measure of  a neighbourhood of  a 
point in D k, the k-measure of  its image under f a n d  
taking the 'compression rat io ' .  It is easy to see that 
this is simply the absolute value of  the Jacobian 
determinant  at each point in the case where k =  n, 
and is more generally given via the Kronecker ten- 
sor. It is also clear f rom the above argument  that 
when the pdf  of  the points on the manifold is uni- 
fo rm we will get the induced pdf  of  f tending to a 
non-zero constant,  the value of  which depends on 

4. Summary and conclusions 

We have discussed the Kohonen algorithm for 
numerical parametrisat ion of  manifolds. We have 
shown that in the idealised case of  an infinite set of  
attracting points, dense in a k-manifold,  the result 
o f  an abstract Kohonen operation on any reason- 
able initial state is to produce an immersion onto 
the manifold of  a k-cube. By starting f rom several 
different initial locations we can therefore hope to 
cover the manifold with k-disks. This is done in 
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a way which is neither wholly local nor wholly 
global. 

Associated issues are (1) the degree of  goodness 
of  fit and measures of  it, (2) degrees of goodness 
of  agreement on any overlap and (3) the question 
of  whether the dimension of  the manifold really is 
the same as the dimension of  the k-disks fitted. 
These issues are evidently related, and will be ad- 
dressed elsewhere. Also pertinent is the stability of  
finite approximations, in which probability zero 
events are an everday occurrence. 
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