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Stability, Capacity, and Statistical Dynamics 
of Second-Order Bidirectional Associative Memory 

Chi-Sing Leung, Lai-Wan Chan, and Edmund Lai 

Absfruct-Bidirectional Associative Memory (BAM) is used for storage 
of bipolar library pairs. Second-order BAM is an enhanced version of 
BAM. The stability, capacity and statistical dynamics of second-order 
BAM are presented here. We first use an example to illustrate that the 
state of second-order BAM may converge to limited cycles. When error 
in the retrieved pairs is not allowed, a lower bound of memory capacity is 
derived. That is O(min( &, e)), where 71 and p are the dimensions 
of the library pairs. Since the state of second-order BAM may converge 
to limited cycles, the conventional method cannot be used to estimate its 
memory capacity when small errors in the retrieval pairs are allowed. 
Hence, the statistical dynamics of second-order BAM is introduced: 
starting with an initial state close to the library pairs (there are some 
errors in the initial state), how the confidence interval of the number of 
errors changes during recalling. From the dynamics, the attraction basin, 
memory capacity, and final error in the retrieval pairs can be estimated. 
Also, some numerical results are given. Finally, extension of the results 
to higher-order BAM is discussed. 

2 2  

I. INTRODUCTION 
Associative memory is one of the major research issues in neu- 

ral networks with a wide range of applications such as content 
addressable memory and pattern recognition [ 11, [2 ] .  Bidirectional 
Associative Memory (BAM), which is a generalization of the Hop- 
field network [3], proposed by Kosko [4]. It is a heteroassociative 
memory that stores bipolar library pairs, ( X f L .  Y,, 1, h = 1.. . . . m ,  
where X,, E { + l ,  -1)" .  Y,, E {+l. -l}p, and m is the number 
of the library pairs. There are two layers in BAM. Layer F l  has n 
neurons to hold the vector X and layer FI has p neurons to hold 
the vector Y. 

The connection matrix W, proposed by Kosko, is 
m ... 

w = c Y k x :  
/ A  = 1 

T whereXI, = ( . P l h . . r 2 h . " ' . S , h ) T  andYf,  = ( Y I ~ . Y P ~ , : . . .  y p h )  . 
The retrieval process is an iterative process starting with a stimulus 
pair (X(o ' .Y(o) )  in F,\- and Fl.. The vector Y('+l) in Fl- is 
generated by using W (the superscript ( t )  is the iteration index) 

y('+') = sgn [wx(')] ( 2 )  

where sgn is the sign operator 

s > o  

state unchanged, s = 0 
sgn(.r) = {Ti: s < o .  

Then Y('+') is fed backward to generate the new state of F x  

X('+') = sgn[W"y('+')]. (3) 

Kosko [4] proved that the sequence (X(') .Y('))  converges to one of 
the fixed points ( X f , Y f )  in a finite number of iterations. Usually, 
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this fixed point is desired to be one of the library pairs. A fixed point 
(Xf,  Yf ) has the following properties 

Yf = sgn(WXf) and Xf = sgn(WTYj). (4) 

Obviously, a library pair can be retrieved only if it is a fixed point. 
Unfortunately, with Kosko's encoding method, the memory capacity 
of BAM is very small [5]-[7]. To improve the memory capacity, 
several encoding methods have been developed. These methods fall 
into two categories: either by they modify the connection matrix 
[5]-[7], or they introduce higher-order connections [SI (also called 
higher-order BAM). In [8], Simpson has empirically studied the 
memory capacity of second-order BAM. But the theoretical memory 
capacity and the statistical dynamics have not been given. 

In the first portion of this paper, we will review second-order BAM 
with an example to demonstrate that the state of second-order BAM 
may converge to limited cycles. In the remainder of this paper, we 
theoretically estimate a lower bound of memory capacity of second- 
order BAM when no error in the retrieval pairs is tolerated. Under 
the assumption that m = f in2,  we have developed the statistical 
dynamics of second-order BAM. With such statistical dynamics, we 
can estimate the memory capacity when small errors in the retrieval 
library pairs are allowed. Additionally, the attraction basin and final 
error in the retrieval pairs can be estimated. Finally, we will discuss 
how to generalize the above results to higher-order cases. 

11. SECOND-ORDER BAM 
Second-order BAM encodes library pairs into two separate matrices 

[8, IO]. The first matrix, U, is a 7 1  x n x p lattice that holds the 
second-order connections from F\ to Fy . The second matrix, V, is 
a p x 11 x n lattice that holds the connections from Fk to F A .  The 
matrix U = [ o k J , ]  is constructed according to the correlation rule 

,n 

l f k ~ , = ~ Y k l r . r , h x r ) r  f o r j = 1 ; . . , n ,  ) = l ; . . . n  . 
h = l  

(5 ) and k = l , . . - , p .  

Note that O J k l  = u J i k  and i l k J z  = U k z J .  The recalling process of 
second-order BAM works in the same fashion as first-order BAM. 
That is 

/ n  n \ 

There is another definition of second-order BAM. The connections 
of this new model are 

m 

7 1 k J , = ) : Y k h S J h S , h  f o r k = l , . . . , p ,  j = l : . . , n - l .  
I ,  = 1 

and i = ,j + l;.. . ? I .  (9) 
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and 
m 

7J3ki = x S 3 , c y b h ? / l h  forj = I , . . . . ?& I ; =  l ; - . . p -  1, 
h=l 

and I = I; + 1.. . . , p .  (10) 

The corresponding recalling rules are 

To distinguish the two different models, the first model is called 
total-order-connection second-order BAM. The other is called partial- 
order-connection second-order BAM. Although the two models are 
different, their statistical behaviors are similar. These will be shown 
in Sections IV and V. 

111. STABILITY OF SECOND-ORDER BAM 

Since the number of states of second-order BAM is finite and the 
next state only depends on its present state, both models of second- 
order BAM belong to the class of finite-state autonomous systems. 
One can easily verify that the state of a finite-state autonomous system 
either converges to fixed points or limited cycles. 

Unlike first-order BAM, the state of second-order BAM may 
converge to limited cycles. That means that the sequence (X(t),  Y(t ) )  
may not converge to fixed points. Let us see the following example. 

Consider the following library pairs 
T 

T 
XI = (-1.1. -1.1.1, -1) 
Y1 = (-1,l. 1. -1,1, -1) 
x* = (1.1. -1. -1,1, -1) 
Yz = (-1. -1,1, -1, -1, -1) 
x3 = (-1, -1. -1. -1.1, -1) 

Y3 = (-1. -1,1, -1. -1,l) 

xq = (-1,1.-1,-1,1,-1) 
Yq = (1,-1.-1.-1,1,-1) 

xs = ( l , l , - l , l , l , l )  
Ys = (1 ,1,  -1,1, -1, -1) 

r 
T 

T 

T 

T 

T 

T 

7 

and the initial state is 
'I x(0) = (-1, -1,1, -1,1,1) 

y ( 0 )  = (1 ,1,  -1,1,1,1)T. 

When the total-order-connection second-order BAM is used, the 
following sequence can be obtained 

T Y") = sgn( -8 ,O.  8. -8. -8. -8) 
T = ( -1 ,1,1,  -1, -1, -1) 

= (-1,1,  -1, - l , l ,  -1) 

= (-1, - 1 , l ,  - 1 , l ,  -1) 

= (1 ,1,  -1,1,1. -1) 

= (-1,1,1,  -1, -1. -1) 

x(') = sgn( -8.32, -40. -8.40, -40)T 
T 

y ( 2 )  = sgn( -12. -52.12, -84.20, -52)' 
7 

X(*) = sgn(8,48, -56,8.56, -24)' 
r 

Y ( 3 )  = sgn(-12.12.12, -20, -12, -52)T 
T 

x(3) = sgn( -8,32, -40, -8.40. -40)T 

= (-1,1, -1, -1,1, -1) T 

= (-1, -1,1, -1,1, -1) T 

= (1,1, -1,1,1,  -1) T 

= (-1,1,1,  -1, -1, -1) T 

Y(4) = sgn(-12, -52.12, -84,20, -52)' 

x(4) = sgn(8,48, -56,8,56, -24)' 

y ( 5 )  = sgn(-12,12,12, -20. -12, -52)T 

X(5) = sgn(-8,32, -40, -8,40. -40) 

Y(6) = sgn(-12, -52,12, -84,20, -52)T 

X(6) = sgn(8,48. -56,8,56, -24)T 

T 

T = (-1,1, -1. -1 , l .  -1) 

= (-1, -1,1, -1,1, -1) T 

= ( l , l , - l , l , l , - 1 )  T 

Clearly, the sequence (X(t),  Y(t ) )  converge to a limited cycle. In the 
partial-order-connection case, we get the following sequence 

Y(') = sgn(-1,3,1,5,-1,5) T 

= ( -1 ,1,1,1,  -1, l)T 

= (-1,1, -1, -1.1, -1) 

= (-1, -1,1, -1 ,1 ,1)  

T X(l) = sgn(-l7,7,  -5, -17,5, -11) 

Y(') = sgn( -3. -23.3. -33,13,17) 

X(') = sgn(7,15, -13,7,13, -3)T 

T 

'I 

T 

= ( 1 , l .  -1,1,1,  -l)T 

= (-1,1,1,  -1, -1, -1) 

x ( ~ )  = s g n ( - l . i , - 5 , - 1 , ~ , - 1 1 )  
= (-1,1, -1, -1,1, -1) 

Y(4) = sgn(-3. -23,3, -33.13, 17)T 
= (-1, -1,1, - 1 , l ,  1) T 

X(4) = sgn(7,15, -13,7,13. -3)T 
= (1,1, -1,1,1,  -1) T 

Y@) = sgn(-3,9,3, -1, -3, -17)T 
= (-1,1,1. -1, -1. -1) 

x(j) = sgn(-1,7, -5, -1,5, -ll)r 
= (-1,1, -1, -1 , l .  -1) T 

y ( 6 )  = sgn(-3, -23,3, -33,13. 17)T 
= (-1. -1,1, -1 .1 , l )  T 

X(6) = sgn(7,15, -13,7,13. -3)T 

= (1.1. -1,1,1, -l)T 

T Y(3) = sgn(-3.9,3. -1, -3, -17) 
T 

T 

T 

T 

This sequence also converges to a limited cycle. We can thus 
summarize that the state of second-order BAM may converge to 
limited cycles. 

IV. LOWER BOUND OF MEMORY CAPACITY 

In the field of associative memories, one of interesting topics is 
the maximum number of library pairs/pattems that the model can 
handle such that all the library pairdpattems are stored as fixed points. 
The above gives us a non-rigorous sense about the definition of the 
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memory capacity. Without any assumption on the library pairs, from 
the above definition of the memory capacity, we will easily get some 
depressing results about the Kosko’s encoding method: the memory 
capacity of BAM with Kosko’s encoding method is about 2 or 3 only 
even for very large p and n (Examples can be found in [7]). 

The conventional definition of the memory capacity of associative 
memories is the maximum number of library pattems (or pairs) that 
the model can handle such that all library pattems (or pairs) are 
stored as fixed points with high probability [9]. The assumption on 
the library pairs is that each component of the library pairs/patterns 
is a *1 equiprobable independent random variable. 

Following the conventional definition of the memory capacity (no 
error in the retrieval pairs), we will show that the memory capacity 
of second-order BAM is lower bounded by 

Similar to first order BAM, in second-order BAM a library pair 
( X h , Y k )  can be retrieved only if it is a fixed point. For the total- 
order-connection second-order BAM, each library pair is a fixed point 
if and only if 

/ w  D \ 

and 

In the partial-order-connection case, each library pair is a fixed 
point if and only if 

and 

/ n - 1  n \ 

In this section, the following assumptions and notation are used. 
p = i - t i ,  where i- is a positive constant. 
Each component of the library pairs ( Xtt, YtL) is a f l  equiprob- 
able independent random variable. The dimensions (n and p )  
are large. 
For the total-order-connection second-order BAM, 

-EW;lt is the event 

and J!?tt;k is the complement of EtvJ,,. 
-EZkt, is the event 

- 
and EZ,} ,  is the complement of EZkt, 

Similarly, for the partial-order-connection second-order BAM 

is the event 

and EW;, is the complement of EW;It .  
-EZLh is the event 

- 
and E Z ; ,  is the complement of EZ;,,.  

With the above assumptions, we can deduce the following theorems. 
Theorem 1:  For the total-order-connection second-order BAM, if 

the number of library pairs m is less than or equal to 

min(- n2 - 
181og n’ 18logp 

then the probability that each library pair is a fixed point tends to 
one, as n -+ rx? and p -+ cx). 

Theorem 2: For the partial-order-connection second-order BAM. 
if the number of library pairs m is less than or equal to 

p 2  1 min(- n ~ 

12 log n ’ 12 log p 

then the probability that each library pair is a fixed point tends to 
one, as n -+ x and p + ,x. 

From Theorems 1 and 2, the memory capacity of second-order 
BAM i\ lower bounded by O(min(  &. &)). 

Proof of Theorem I :  
Lemma I :  The probability Prob(EW>I,) is 

for j = 1 , . . . , 7 ~  and h = l , . . . . m  . Also, &(:) is defined as 

P r o o j  We define 

Without loss of generality, we consider the library pair ( X I , .  Y I ,  ) 
having all components positive: X I ,  = ( l . . . ‘ , l ) T  and YI,  = 
(1 .... . l ) T  (This consideration is usually used [12, 141 and does 
not affect our results. We can easily verify this by use of conditional 
probability.). Substituting (6) into (13), lU jh  becomes 

m D W  

= p 2  + N .  

Clearly, N is a sum of ( m  - 1) identically independent random 
variables. Also, 

and 
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where E[.] is the expectation operator. Hence, N is a random variable 
with zero mean and variance ( m  - 1)(3p2 - 2p) .  According to 
central limit theorem, for large m the distribution of 

d ( m - 1 ) ( 3 p 2 - - 2 p )  
approaches standard normal. Then, the probability that 'U!lh < 0 is 

N 

for j = l;.. . p  and h = l , . .  . , m. Note that in the proof we neglect 
the case wJ{,  = 0. For large m,  the distribution of 

approaches standard normal. Thus, neglecting the case will not affect 
the result. For a standard normal density function, 

N 
J( n z -  1)( 3 p 2  - 2 p )  

Q.E.D. 
Similarly, Lemma 2 can be obtained. 
Lemma 2: The probability Rob( EZklr 1 is 

4J ( m  - 1)(3n2 - 2n) 

~ 

71 

for j = l : . . ,n  and k = l:...nz . 
Let the probability that all library pairs are fixed points be P, 

Note that 

because the events ETi;,,'s and E Z k h ' s  are not mutually indepen- 
dent. That can be easily observed when m = 2. 

From the inequalities 

n2 
( m  - 1 ) ( 3 n 2  - 2n) 

and 

and the lemmas, (14) becomes 

Letting PB = mnQ( $f==) and PA = n p & (  z), we get & 

P* 2 I - P B - P 4 .  

If 2 is large [ I l l  

which is quite accurate for z > 3. Using the approximation (18) 

n2 n logm + l o g p  - - - log - - 
6m & 

- log 27r 
2 

n2 1 - + $ o g r + - l o g 3 -  
6m 2 

(19) 

Considering the first two terms, if we set m = &, P.4 will 
become 

exp{ - E log( 1810g n)  + constants . 

Moreover, as n -+ 00, PA + 0. Since, PA is an increasing function 
of m, we can conclude that as n + 00 and m 5 &, PA + 0. 
Similarly, we can get that as p + 3c, and m 5 &, PB -+ 0. 
To sum up, for large n and p ,  if m 5 min( -, A), then 
P, + 1 (end of the proof of Theorem 1) .  

Remark: Equations (14) and (15) mark the difference between our 
approach in this paper and the approach in [15]. Amari et al. [I51 
neglected the dependence among the random variables. If we directly 
use the approach in [15], we will get the following wrong statement 

1 

P, = (Prob(  EW, (Prob( E211 ) )"' 

Here, we use (14) and obtain a lower bound of the capacity only 
instead of the actual capacity. 
Proof of Theorem 2: 
Lemma 3: The probability Prob(Efiy,z) is 

for j = l , . . . , n  and k = l:..,m. 
Proof: We define 

Similar to Lemma 1, we assume that the library pair ( & , Y h )  has 
positive components all. Substituting (10) into (2O), u i h  becomes 

1 

h ' f h  k = l l > k  

-AT' is a sum of ( m  - 1) identically independent random variables. 
Also 

P-1 P 

E [xjh' Y k h f Y i h r ]  = 0 
k=l i>k 

and 
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Hence, X' is a random variable with zero mean and variance 
( m - l ) $ P - l ) .  For large m ,  the distribution of the normalized N' 

Ai ' 4- 
approaches standard normal. It then follows that the probability that 
UJ; ,~  < 0 is 

q-). 2(m - 1) 

Hence, Prob( ET%';, ) is 

Q ( P 9  2 ( m  - 1 )  

for j = 1,. . . , p and h = 1.. . . , m.  Q.E.D. 
Similarly, one can easily get Lemma 4. 
Lemma 4: The probability P r o b ( K )  that Sgn(C;=, ~ ~ > ,  

I ( A I r S J t t J ' t h )  # Y k h  is 

Q(JH) 
for j = k,...,p and h = l , . . . , m  . 

partial connection second-order BAM. Then 
Define P: be the probability that all library are fixed points for the 

P: 2 1 - m n P r o b ( m )  - mpProb(-). (21) 

With Lemmas 3 and 4, (21) becomes 

Define PA = mn&( J/-) and P i  = m p Q (  d-). Then 

P: 2 1 - PA - PA. (23) 

Similar to the proof of Theorem 1, we can also prove that if 
m 5 min(&&, A), then Pi + 1 as n and p tends m. 
(end of the proof of Theorem 2). 

V. CONFIDENCE DYNAMICS 
It is known that if small number of errors is allowed in the retrieval 

pattem, the memory capacity of the higher-order Hopfield network 
can be proportional ang,  where g is the order of the network and n is 
the number of neurons [12]. However, the results of the higher-order 
Hopfield network in [12] is based on the stabilization of the network 
during recalling. Since the stabilization of second-order BAM is not 
guaranteed, we cannot use the approach in [ 121 to estimate its memory 
capacity when small number of errors is allowed in the retrieval pairs. 

In this section, we present the statistical dynamics of second-order 
BAM: Starting with an initial state close to the library pairs (there 
are some errors in the initial state), how the confidence interval of the 
number of errors changes during recalling. If the confidence interval 
converges to a small value, then the library pair can be recalled with 
small number of errors. The final value of the confidence interval 
represents the upper bound of the number of errors in the retrieval 
pairs. The maximum number of errors in the initial state such that the 

confidence interval converges to a small value represents the lower 
bound of attraction basin of the library pairs. Also, the maximum 
number of library pairs such that the confidence interval of the number 
of errors converges to a very small value represents the lower bound 
of the memory capacity. 

Dejinition I: Given that p = rn and m = an2, P:.* is the 
probability that the fraction of errors in FY in the next state is less 
than py (Le. the Hamming distance between Y h  and y( t )  is less 
than p y p ) ,  for every library pair ( X h , Y h )  and for any pt'n errors 
in Fx in the present state (Le., the Hamming distance between x h  

and X ( t )  is equal to p:'n). 
We first estimate a lower bound of P;'. Then we can find out the 

minimum value of p y ,  denoted as p ; ,  such that P;.* tends to one. 
The above means that given p v ) ,  the probability that the fraction of 
errors in Fk- in the next state is less than p; tends to one. 

Dejinition 2: Given that p = rn and m = a n 2 ,  P,:? is the 
probability that the fraction of errors in FX in the next state is less 
than p., for every library pair ( xtL, Y h  ) and for any p(yf+')p errors 
in F y -  in thc present state. 

Also, we can find out the minimum value of p., denoted as p:, such 
that P,:-* tends to one. From pz and p i ,  we can construct a dynamic 
curve about the confidence interval of the fraction of errors. One 
can easily use the above dynamics to predict the memory capacity, 
attraction basin, and final error in the retrieval pairs when error in 
the retrieval pairs is allowed. The notations and assumptions used 
here are: 

p = ~ n ,  where T is a positive constant. 
Each component of the library pairs ( & ,  Y h  ) is a f 1 equiprob- 
able independent random variable. The dimensions ( n  and p )  
are large. 
TI? = o n 2 ,  where (I is a positive constant. 

is the event 

d ( Y ( ' + ' ) , Y h )  < p y p  

for a given library pair (&, Y h )  and a given present state X ( t )  
which is an element of the set 

Sh,t = { X  E {+I, -I}" such that d ( X , X h )  = py 'n}  

where d ( . ; )  is the Hamming distance between two bipolar 
vectors. Note that the number of elements in the set Sh,t is 

Also, 

EAh,,  is the complement event of EA!, , ,  

'' ). Thus the index g has the range from 1 to $pn 

d ( Y ( ' + ' ) ;  Y h )  2 pyp. 

E A  is the event that 

d ( Y ( * + l ) > Y h )  < pyp. 

for every library pair ( X t t , Y t c )  and every X ( t )  E Sh,t, Also, 
E A  is the complement event of E.4. Hence 
- 

EA+%. 
t i , ,  

and 

P;* E Prob(EA). 

Lemma 5: For large n and p (i.e. n. + m. p --+ cm) 

P r o b ( G )  
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where 

f i b )  = -PlogP - ( 1  - p) log( l -  P )  

for g = l.-..,(aii,,) and h = l , . . . , m  . For total connection 
second-order BAM, c is 6. For partial connection second-order BAM, 
c is 4. 

ProoJ Without loss of generality, we consider the library pair 
(&, Y h )  having all components positive: xh = (1.. . . , and 
Yh = (1,. . . , l ) T .  Let J be the set of indices in which X ( t )  and 
Xf, differ. For a given Xft)  E S, there is only one J and IJi = p t ' n .  
Also, let IC be the set of indices of Y h  and Y ( t )  such that IKl = pyp. 
Note that there are (z,,) such sets of h-. 

For the total-order-connection second-order BAM, event EA,,h 
implies that there are at least one h-, where [IC1 = pyp, such that 

n n  

(24) y u k J , x / f ) x j * )  < 0. 
k€I< j= l  t=1 

Hence, we have 

Prob( EA,,h)  

are at least one li where lIil = p y p  

n n  

such that u k , , x ~ ' ) z ~ ' )  < 0) 
k € K  j=l  r = l  

/ n n  

(25) 

Let 

According to the assumption of the library pair (Xtt, Yh) having all 
components positive 

One can easily prove that 

and 

As CkEK y k h ' ( C y g J  xJhl x ,hI)* 's  are identically indepen- 
dent random variables, for large n and p (Le. m is large due to 
m = an2 we can apply central limit theorem to get 

Using the approximation ( 1  8), 

Note that the purpose of changing n to ( n  - 1) in (28) is to unify the 
result of total connection second-order and that of partial connection 
second-order BAM. 

Then 

P r o b ( G )  

By a standard use of Stirling's asymptotic formula for factorial, one 
can find that the binomial coefficient 

if p is large and py is constant between 0 to 1. 

totic formula, for the total-order-connection second-order BAM 
Replacing the binomial coefficient in (29) with Stirling's asymp- 

In the partial-order-connection case, event E"i,,h implies that there 
is at least one K, where Il</ = pyp,  such that 

n-1 n 

Then 

P r o b ( m )  

Similar to total-order-connection case, let 
r n n  

k € K  j = 1  Z > J  

f m  / 
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+ \h '  < 0}.  
h ' f h  I 

'i 

Also 
n ( n  - 1) I 

E[\,,!] = 0. and E [ & ]  = p,p- 2 '  Fig 1 
by finding out the intersection of CI and L1 

Graphical implication of solving p', The next state p', can be solved 
Applying the central limit theorem, 

p ' l  n ( l - - 2 p p ) 2 n ( n - - l )  

ia( \/p,rncrnz , - ) .  
Thus, for the partial-order-connection second-order BAM 

Prob(E.4,~~ ) 

(33) 

Q.E.D. 
From the definition of the event E A  

4' E Prob(E,-l) = 1 - Prob(E.li) 

h=1 g=i 

= 1 - m (;p)7,)Prob(%). (34) 

With Lemma 5 ,  we can immediately have the following theorem. 
Theorem 3: For large n and p 

For total connection second-order BAM, c is 6. For partial connection 
second-order BAM, c is 4. 

Let p'y be the minimum value of py such that P;* + 1 as n + co 
and p + 00. From Theorem 3, p; is the minimum value of p y  such 
that 

Apparently, for a given p(2t) E [0,0.5), p; can be solved graphi- 
cally as in Fig. 1. Let p', be the intersect of the line 

and the curve 

c1 : y = F 4 P u ) .  

p; = p: + z 
Then 

(37) 

where 5 is an arbitrary small positive constant. 
Note that f i ( p? ) )  is an increasing function of p y )  E [O, 5)  and 

(1 - 2~s . "  )4 is a decreasing function of ps.') E [0 ,5) .  From (36) and 
Fig. 1,  for a smaller p c )  E (0.0.5) (Thus, the line is shifted up and 
the slope of the line increases.), a smaller p ;  can be obtained. Thus, 
the following corollary can be obtained. 

Corollary I :  p y l  < p y i  < 0.5 implies that pLl  < p L 2 .  
From Theorem 3 and Corollary 1, as n + x and p - w, 

for every library pair ( & , , Y h )  and d(X/>,x( ' ) )  I p : ) r ~  (i.e. the 
fraction of error in the present state of FA is less than or equal to 
p. ), where p:) E [O. 5), the probability that the fraction of error 
in the next states of Fy is less than p& + c tends to one. As c can 
be any arbitrary small positive constant, one can restate the above 
statement as: 

Corollary 2: As n + x and p -+ K, for every library pair 
( X t L . Y I L )  and every X(') such that d(X/, .X(t))  5 p t )n  ( p f )  < 
0.5), the probability that d ( Y f , , Y ( * + ' ) )  5 0: tends to one, where 
pL is the intersect of L1 and C1 as shown in Fig. 1 .  

The above corollary means that if the fraction of error in the present 
state of FA being less than or equa! to p g ) ,  then the fraction of error 
in  the next states of FI is less than or equal to pb (denoted as p;+')). 
Using similar method, one can get that 

( 1 )  

Theorem 4: For large I I  and p ,  

- p,r(p - 1)(1- 2pf+1))4 
CCY 

For total connection second-order BAM, c is 6. For partial connection 
second-order BAM,c is 4. 

Let p: be the minimum value of p. such that P r  tends to one. 
Also, one can find out p: and p: by considering the intersect of the 
line 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25. NO. 10, OCTOBER 1995 1421 

and the curve 

c2 : y = t i ( p z ) .  (39) 

Then Corollary 3 and 4 are obtained. 
Corollary 3: p!:’) < p(Y;’) < 0.5 implies that pL1 < pL2. 

Corollary 4: As n + cc and p + co, for every library pair 
(Xh.Y,,) and every Y(t+’)  such that d ( Y h , Y ( t + l ) )  5 p:”) 
( p t ” )  < 0.5), the probability that d(Xh,X(t+l)) 5 p: tends to 
one, where p: is the intersect of LZ and C,. 

That means that if the fraction of error in the present state of FY 
being less than or equal to p f + l ) ,  then the fraction of error in the 
next states of FX is less than or e ual to p: (denoted as p:”’). By 
iteratively solving p c f l )  and with a given initial fraction of er- 
rors being zero, we can construct two sequences, p v )  and p v ) .  These 
sequences are the statistical dynamics about the confidence interval 
of the fraction of errors. We can easily use the dynamics to estimate 
the memory capacity (errors are allowed in the retrieval pairs), the 
attraction basin, and the number of errors in the retrieval pairs. 

For example, if a = CY’ and initial fractions of errors (p?) = 
pmarinit) being nonzero, if the sequences converge to the small value 
(p:nal, p;nal) which are less than p?) ,  then the memory capacity is 
at least equal to cy‘n and the attraction region of all library pairs 
is at least equal to pmaxinitn.. Also, and pEnal reflect the 
upper bound of the number of errors in the retrieval pairs. In the 
following, we will use several numerical examples to illustrate how 
to estimate the memory capacity, the attraction basin, the final error 
in the retrieval pairs of the partial connection second-order BAM. 
That of total connection second-order BAM can also be studied in 
the same way. 

Numerical Example a: Here, we study the dynamics of the partial 
connection second-order BAM. The dynamics about (p:)? p t ) )  for 
(a = 0.01 and T = 1) and (CY = 0.02 and r = 2) are constructed. 
In Figs. 2 and 3, the sequences (pv),pf)) with different initial 
conditions p?) = 0 and 0.05 are plotted. From Fig. 2, we can 
conclude that the memory capacity of partial connection second-order 
BAM is at least equal to 0.01~1’ for r = 1. Also, the corresponding 
attraction basin is at least equal to 0.0571 and the final error in the 
retrieval pairs is less than or equal to 1.02 x 10P5n for T = 1. 
From Fig. 3, the memory capacity of partial connection second-order 
BAM is at least equal to 0.0271’ for T = 2 .  Also, the corresponding 
attraction basin is at least equal to 0.05n and the final errors in the 
retrieval pairs are less than or equal to 7.14 x 10P5n in F,Y and 
1.43 x 1Op4p in FF-. 

Numerical Example b: In this example, we study the memory 
capacity of partial connection second-order BAM for different values 
of r .  For a given T ,  let cy‘ be the largest value of Q such that the 
sequences with a large initial p(,“’ converge to small (pzna‘, pEnal) .  
Then a‘n’ can be considered as a lower bound of the memory 
capacity of partial connection second-order BAM. When we use 
the method of example a, Table I which summarizes the 0”s  for 
different values of T is obtained. From the table, the memory capacity 
increases with T .  Also, there are some symmetrical results about a’. 
For example, when r = 0.2, cy’ is 0.002 14. If we divide this value 
by 0.2’, the new value is similar to cy’ at T = 5 .  One can easily 
verify other cases by interchanging p and n, and putting r‘ = :. 

Numerical Example c: In example b, we do not show pmaxinit, 

pl. and when cy = cy’. It is because pmaxinit is only a little 
bit more than ptnal when the number of pair is equal to the lower 
bound n’ u 2 .  

In this example, we will study the attraction basin while r = 1 
and T = 2 .  For a given a, let pmaxinjt,r=k be the largest values 
of p?’ such that the sequences converge. Tables I1 and I11 give us 
the summary of the attraction basin at different values of a. When 

final 

10-1 ::::I 
Iteration index 1 

(a) 

10-5 ‘7 “f- 
10-9J , J  

20 40 60 80 100 

Iteration index 1 

(b) 

Fig. 2. The confidence dynamics of partial connection second-order BAM 
with two initial conditions ( p p )  = 0,0.05) for a = 0.01 and T = 1. (a) The 
dynamics of p ( t ) .  (b) The dynamics of p y ( t ) .  Since all sequences converge, 
the attraction basin is at least equal to 0.05n. 

r = 1, is same as pznal. When the number of pair is decreased, 
the attraction basin is increased and the final error in the retrieval is 
decreased. 

Remark: In [14] and [15], based on the law of large number 
[16], Amari has studied the dynamic behavior of first-order Hopfield 
network. The considerations of dynamics are “for a library pattern” 
and “for a error pattern.’’ However, in this paper the higher-order 
BAM is studied. Extension of general high-order is discussed in 
the next section. According to (34), the considerations here are “for 
every library pair” and “for every error pattern.” Thus, the dynamics 
presented here is under stronger conditions than that in [14], [15]. 

In [13], a more rigorous dynamic behavior of first-order Hopfield 
network has been studied based on the “energy landscape” (see back 
Section 4.1 in [ 131). Also, in [ 121 when error in the retrieval pairs is 
allowed, the memory capacity of general-order Hopfield network has 
been studied based on the “energy landscape” (see back Section 2 in 
[ 121). Unfortunately, the state of second-order BAM may converge 
to limited cycles. It means that the method of “energy landscape” 
cannot be used here. Moreover, when our formulation of P** is 
used, one can solve p :  and p’y by a simple numerical method. Thus, 
we can easily estimate the capacity, attraction basin, and final error 
for different value of r .  

On the other hand, according to our method, whenever p v )  > 0.5 
or pc’ > 0.5, the iteration must be stopped. No conclusion can be 
made. 

VI. EXTENSION TO HIGHER-ORDER BAM 
Although our results are mainly about second-order BAM, one 

can apply similar method to analyze the higher-order BAM or some 
associative memories with the limited cycle behavior. For example, in 
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1.36 x lo-' 8.19 x 

1.56 x 10-1 1.02 x 10-5 

10-2- 

10-3- 

20 40 60 80 100 
1 0 - 9 1  , 

Iteration index t 

I = 0 - , 
I 

pP' = 0.05 _ _ _ -  1 

Fig. 3. The confidence dynamics of partial connection second-order BAM 
with two initial conditions (p?) = 0.0.05) for a = 0.02 and T = 2. (a) The 
dynamics of p, ( t ) .  (b) The dynamics of p y ( t ) ,  Since all sequences converge, 
the attraction basin is at least equal to 0 . 0 5 ~ ~ .  

TABLE I 
THE MEMORY CAPACITY OF PARTIAL CONNECTION SECOND-ORDER BAM 

case of partial-order-connection g-order BAM, where g is a positive 
integer constant, the connections from F,l to FY are 

"I? 

uk t 1 , t ~ .  .ig = C Y k I ~ b i l h X i 2 h . . . x z , h  (40) 

where k = 1 , .  . . , p ,  il = 1,. . . , n -g+ 1. z 2  = i l + l , .  . . , n -g,. . ., 
and 2, = i g - l  + 1 , .  . . , n .  The connections from FY to FX are 

h = l  

m 

2'1 1 1 . 1 2 ,  I ,  = ~ ~ j h Y l l h y l Z h  " ' Y l , h  (41) 
h = l  

where J = 1, ... , n, ZI = 1.. .. , p  - g + 1, Z2  = l1 + 1, ... , p  - 9. 
. . ., and I ,  = lQp1 + 1,. . . . p .  The corresponding recalling rules are 

TABLE I1 
THE ATTRACTION BASIN AND THE FINAL ERROR IN THE RETRIEVAL 

FOR THE PARTIAL CONNECrrON SECOND-ORDER BAM WHEN r = 1 

10.014 1 1.16 x lo-' 1 3.70 x 1 

10.008 1 1.80 x lo-' I 4.51 X I 
10.006 I 2.06 X lo-' I 2.44 X lo-' I 

where 

;I = l , . . . , n - g +  1, i 2  = i,+ I , . . . , n  - g ; " " ' ,  

and i ,  = i,-, + 1,. . . , n 

and 

21 = 1 , .  . . , p - g + 1, 22 = i l  + 1,. . . , p - g.. . . . . . . 
and 2, = i,-l + 1,. . . ,p.  

Note that 

and 

Following the method presented in Section IV, one can estimate 
the lower bound of memory capacity of the partial-order-connection 
case. That is 

pg ). ng 
3gg! log n ' 3gg! log p 

min ( 
Also, if we follow the methodology of Section V and assume that 

m = rng,  we can obtain the following theorems for the partial- 
order-connection g-order BAM. 

Theorem 5: For large n and p 

PY~POlY, (n2g+l, pz ( t F )  
- 

czpoly, ( n 2 g  1 

poly, (., .) is a polynomial of n and p p )  in which the highest order 
term is c1n2g+1p(,)2g, where c1 is a function of g. Also, poly,(.) is 
a polynomial of n with degree 2g and c1 is a function of g. 
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1.80 x lo-’ 9.02 x 10-8 1.54 x 10-7 

1.9G x lo-’ 3.21 x 6.04 x 

TABLE 111 
THE ATTRACTION BASIN AND THE FINAL ERROR IN THE RETRIEVAL 

FOR THE PARTIAL CONNECTION SECONBORDER BAM WHEN T = 2 

0.009 

0.006 

I 0.016 I 1.51 x lo-’ I 5.82 x loW6 I 1.16 X lo-’ I 

2.15 x lo-’ 2.1G x lo-” 4.33 x lo-” 

2.3i x lo-’ 5.27 x 1.05 x 

I 0.014 I 1.65 x 10-I 1 9.75 x lo-’ I 1.95 x I 

where k is a positive integer. Also, let z,’s be independent standard 
normal random variables. Then, 

k is odd 
k is even. E[z:] = { O’ 1 . 3 . . . ( k  - I), 

Note that E:=, z ,  is a normal random variable with zero mean and 
variance n. 

Clearly 

for every k. 
Thus 

I I I I I 

Theorem 6: For large n and p 

poly,(., .) is a polynomial of p and p‘,) in which highest order term 
is c3p2g+1p(,t)2g. where c3 is a function of g. Also, poly,(.) is a 
polynomial of p with degree 29 and c4 is a function of g. 

Note that the above polynomials depends on g. For a given g, 
one can use the above two theorems to construct the dynamics of 
partial-order-connection g-order BAM. 

In case of the total-order-connection g-order BAM, the connections 
from F,Y to Fp are 

m 

Ilk 1 1 . 2 2 ,  , z g  = E y k h X t l h X t z h  ‘ “ X z g h  (47) 

where k = l , . . . , p ,  i l  = l ; . . ,n,  i z  = l , . . . , n  . ...,..., and 
i, = 1.. . . , R .  The connections from Fy to Fx are 

h=l 

m 

~ i . l i . l z l  , I g  x 5 i h Y l i h Y l z h  “ ’ Y l g h  (48) 
k = l  

w h e r e j  = l,....n,Zl = l,...,p,Zz = l , . . . , p , . . .  . ..., and 
I ,  = 1,. . . , p .  The corresponding recalling rules are 

We can obtain similar results for the total connection g-order BAM 
based on the following lemma. 

Lemma 6: Let z1 be k1 equiprobable independent random vari- 
ables 

where g is an integer. 

variance being n’. The kth moment of 2 [17] is 
Pro08 Let 2 be a normal random variable with zero mean and 

Q.E.D. 

VII. CONCLUSION 
We have studied several properties of second-order BAM. The 

We have given an example to show that the state of second-order 
BAM may converge to limited cycles. 
When error in the retrieval pairs is not allowed, the lower bound 
of memory capacity is 

properties are stability, capacity and statistical dynamics. 

When error in the retrieval pairs is allowed, we have introduced 
a methodology to estimate the dynamics of second-order BAM. 
Based on this dynamics, we can estimate the memory capacity, 
attraction basin and final error in the retrieval pairs. 

Following the methodology presented in this paper, we can analyze 
the properties of general higher-order BAM. The main advantage of 
the methodology is that we can analyze some associative memories 
which admit limited cycles. 
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Psychophysical 1-D Wavelet Analysis and 
the Appearance of Visual Contrast Illusions 

V. Sierra-Vbquez and M. A. Garcia-Perez 

Abstract-Psychophysical representations built by Gabor visual chan- 
nels described in complex analytic form are shown to be related to the 
wavelet transform of visual stimuli under empirically plausible bandwidth 
constraints. Analysis of the psychophysical wavelet representations of 
one-dimensional stimuli eliciting some visual contrast illusions (Mach 
bands and the Craik-Cornsweet-O’Brien illusion) reveals that qualitative 
aspects of the selective appearance of these illusions can be explained as 
a natural consequence of the functional characteristics of early visual 
processing. 

I. INTRODUCTION 
Since the work of Campbell and Robson [8], overwhelming psy- 

chophysical evidence has accumulated over the past quarter-century 
which suggests that early spatial visual processing is performed 
by a bank of two-dimensional (2-D) filters (or visual channels) 
each of which is selectively sensitive to a narrow range of spatial 
frequencies and orientations. These channels are conceived of as 
working locally and in parallel for the analysis of spatial patterns, 
in much the same way as cortical simple cells in cats [35] and 
monkeys [53] do. Since visual channels are the building block 
for a theoretical description of early visual processing, a complete 
characterization of this processing stage requires i) determining their 
structural and functional characteristics and ii) defining the nature 
of the early spatial representations that they produce. Besides the 
complete characterization of early visual processing, a satisfactory 
understanding of spatial vision requires the provision of late visual 
processing models stating how visual representations are further 
processed in order to achieve visual tasks [20]. 
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Although early visual processing has been modeled using a number 
of different approaches (e.g., coding by local features [3], coding by 
edges or Laplacian zero-crossings [37], multiscale analysis [55], cod- 
ing by pure spatial-frequency components [43]), the notion is widely 
accepted now that early visual processing produces a transformation 
of the input image which yields a joint spatialkpatial-frequency 
representation that is formally similar to those used in various fields 
of theoretical physics [32] and signal analysis [29]. The notion 
of a psychophysical joint representation has been commonplace in 
auditory research [34], [38], but it has taken much longer to settle 
with the vision research community. 

This paper analyzes the consequences of early visual processing on 
the appearance of some visual contrast illusions. Visual illusions are 
interesting to analyze because they should be explained as a result of 
the operation of the same mechanisms and processes which account 
for empirical data on nonillusory (or “veridical”) perception. There- 
fore, explaining the appearance of visual illusions is not a separate 
research problem, and the success (or lack thereof) at accounting 
for them may support (or reject) a specific formal characterization 
of visual processing. In Section 11, visual channels are described 
as Gabor filters in complex analytic form [15], [161, [201, [44]. 
Section 111 shows that, given some empirically plausible bandwidth 
constraints, the bank of visual channels comprise a family of affine 
coherent states and, therefore, the visual representation built by those 
channels is a transformation of the joint spatialhpatial-frequency 
representation known as wavelet transform. Section IV derives and 
analyzes the wavelet transform of some elementary nonstationary 
features (singularities and discontinuities). Finally, Section V shows 
that the wavelet transform of luminance profiles eliciting contrast 
illusions (Mach bands and the Craik-Cornsweet-O’Brien illusion) 
contain the signatures of the illusory features, thus explaining the 
appearance of these illusions as a necessary consequence of early 
spatial visual processing. 

11. FUNCTIONAL CHARACTERISTICS OF VISUAL CHANNELS 
Although the formal characterization of 2-D visual channels must 

be done in 2-D, a simpler one-dimensional (I-D) characterization 
will be sufficient for the purpose of this paper, where only images 
consisting of 1 -D luminance profiles (1-D images) will be considered. 
Under these circumstances, a 2-D visual channel is completely 
characterized by its sensor line-weighting function (LWF). Empirical 
constraints and theoretical considerations led several authors [ 11, 
[13], [25], [54] to propose that the LWF at spatial position s’ of 
the channel tuned to spatial frequency u‘ has the mathematical form 
of the elementary signal which Gabor [18] showed to minimize the 
space/spatial-frequency uncertainty relation. Expressed in complex 
analytic form, this LWF is 

(1) I/, u’ E R, u‘ # 0 

where the asterisk denotes complex conjugation, 7 ~ ‘  is the channel’s 
tuning frequency, y(u‘) is its gain, and ss > 0 is the standard 
deviation of the modulating Gaussian determining the spatial spread 
of the LWF (see Fig. l(a) and (b)). The 1-D transfer function of the 
u’ c/deg channel at location I’ is the Fourier transform of w ,  G, and 
is given by (see Fig. l(c)) 
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