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Abstract: A technique is proposed for removing 
impulse noise in images, called the recursive 
minimum-maximum method. Statistical analysis 
of this method indicates that it is good at 
preserving fine details and suppressing impulse 
noise at the same time. Experimental results show 
that the technique is robust and produces better 
restored images under various impulse noise 
conditions than other median filter-based 
methods. 

1 Introduction 

Owing to the imperfections of sensors and communica- 
tion channels, most images are degraded during the 
processes of recording and transmission. The original 
images are often contaminated by a mixture of Gaus- 
sian and impulse noise. In this case, conventional 
image restoration methods using the Wiener filter or 
the Kalman filter [l] usually produce poor results. Sev- 
eral robust image restoration methods have been pro- 
posed. For example, Kashyap and Eom [2] developed a 
robust technique for estimating image model parame- 
ters, and Belaifa and Schwarty [3] proposed a robust 
method for estimating the original image intensity by 
using a reduced updated Kalman filter (RUKF). How- 
ever, these methods perform well only where there is a 
very low probability of impulse noise. 

Various forms of nonlinear techniques have also been 
introduced to solve the problem [4-1 I]. Among them, 
the median filter seems to offer better performances in 
terms of preserving edge information and removing 
impulse noise. However, one of the problems of the 
median filter is its fixed window size which limits its 
performance. A large window leads to good impulse 
noise suppression but tends to smooth the whole 
image, whereas a small window cannot adequately 
remove the noise. More seriously, the median filter also 
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destroys fine details, and produces streaks and blotches 
in restored images. Its variants, the centre weighted 
median filter (CWMedian) [5] and the multistage 
median filter [4, 61, improve performance. However, 
they still fail to suppress impulse noise effectively while 
preserving details of the image, especially where there is 
a high probability of impulse noise. 

In this paper we propose a technique called the 
recursive minimum-maximum method, for removing 
impulse noise in images. It involves two steps: impulse 
detection and nonlinear filtering. It optimally uses 
neighbourhood information and works effectively even 
when there are high probabilities of impulse noise. This 
proposed technique can act as a preprocessor and be 
combined with other restoration techniques for blurred 
images. 

The minimum-maximum method is introduced 
below, followed by a discussion on its statistical prop- 
erties. Results on applying the method to noisy images 
are also presented. Throughout this paper, comparative 
studies are carried out between the proposed technique 
and the median filters [4], the CWMedian filter [5] and 
the multistage median filter [4]. 

2 Minimum-maximum method 

In the following discussion, the noise model is given by 
< ( i , j )  = u ( z , j )  with probability /3 (1) 

where v(i, j )  is an outlier process and /3 is a constant. 
The outlier may take on one of three forms: positive 
impulse noise, negative impulse noise, and combined 
positive and negative impulse noise (also called salt- 
pepper noise). A pixel corrupted by outlier noise 
appears as either a white or a black spot in the image 
[4]. This means that the value of the outlier pixel is usu- 
ally much larger or smaller than its neighbours. The 
motivations of the recursive minimum-maximum 
method are to reduce unnecessary blurring, and to 
optimally make use of neighbourhood information 
around the detected outlier to estimate the grey level of 
the pixel and replace it with the estimation. It consists 
of two steps: 
(i) detection of outlier pixels 
(ii) estimation of the original grey levels of the blurred 
pixels. 

2.1 Outlier detector 
The first step is the detection of outliers. A simple 
impulse detector determines whether any intensity 
value is at one of the two extremes of its local intensity 

IEE Proc.-Vis. Image Signal Process., Vol. 145, No. 4, August 1998 264 



distribution. However, this method does not work 
when an impulse appears in a high gradient image. In 
addition, it may not work when the impulse is more 
than one element wide. Nevertheless, we can still make 
use of thle simple characteristics of the outlier, i.e. it 
appears as either a white or black spot in the image. 

Gonzalez [9] introduced the point detector that com- 
putes the difference between the value of a pixel and 
the average value of its neighbours. That particular 
pixel is classified as an outlier if this difference is 
greater than a threshold value. A suitable choice of the 
threshold is critical, Generally speaking, the point 
detector may fail to recognise an impulse noise if the 
threshold is set too high. On the other hand, it may 
misclassify a legitimate pixel as an outlier if the thresh- 
old is set too low. 

Fig. 1 Window used to process and detect outliers 

In our method, we use the following algorithm for 
outlier detection. 
1. Form a 3 x 3 window centred at the test pixel, as 
shown in Fig. 1. 
2. Calculate D, and S,,, where 

D, d, - dg, i = 1, . . . , 8  

s d ,  = sign(d, - dg) ,  z = 1,. . . ,8, where 
1, z > o ,  

-1, z < o  
3. Arrange the absolute values of D, (ID,\) in ascending 
order of magnitude to obtain { D ,  8, i = 1, . . ., 8). Then 
calculate 

D 4 : S  + a:* A D =  

4. A pixel value i s  classified an outlier if (AD > 7‘) A 

(Z Sdj = -8 v Z Sdi = 8). Otherwise, consider it as part 
of local image structure. Here T is a non-negative 
threshold. 
In our outlier detector, we have introduced the neces- 
sary condition that an outlier must either be larger or 
smaller than the value of any of its neighbouring pixels. 
The value of the threshold establishes the relative dif- 
ference in grey level that classifies the pixel under con- 
sideration as an outlier. (The effects of the choice of 
threshold1 on a restored image are discussed in Section 
2.3.) 

2.2 M,inim um-maxim um estimator 
When an outlier is detected, the minimum-maximum 
estimator is then used to estimate the grey level of the 
corrupted pixel, based on neighbourhood information. 
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The algorithm for this estimator is as follows. 
1. Form the sets 
L = { L ,  i = 1, . . ., 4) where Li = max(d,, d9-J 
E = {E,, i = 1, . . ., 4) where Ei = mzn(di, 
2. Set 
Pma, = max(E1, . . ., 
Pmi, = min(L1, . . ., L4) 
3 .  Replace the outlier pixel value by 

Note that if there are three identical outliers along one 
direction within the window, then the output of the 
minimum-maximum estimator is largely influenced by 
the outlier noise. In this case, either P,,, or P,,, i s  
equal to the level of outlier noise. 

However, in the detection window shown in Fig. 1, 
{d,, d2, d3, d4} are, in practice, the previous outputs of 
the filter, instead of the original degraded image data. 
Thus, the output of the recursive minimum-maximum 
estimator is derived from the last four outputs and the 
present five inputs in the window. Based on our obser- 
vations, the recursive minimum-maximum method 
introduces a very small amount of blurring into the 
restored image but suppresses the impulse noise effec- 
tively. 

The statistical properties of the minimum-maximum 
method are discussed in Section 3 .  The method also 
has the following properties which are trivial to prove. 
(i) It is scaling and translation invariant; i.e. if y(Z, j )  is 
the output produced by the method for input x(1, j ) ,  
then for input k ,x ( l ,  j )  + k2 the output is k,y(l, j )  + k2. 
(ii) It preserves a constant signal. 
(E) It preserves step edges and ramps. 

2.3 Choice of threshold values for the outlier 
detector 
The threshold T in the outlier detector has a certain 
relationship with the attributes of the image and the 
outlier occurring probability. Two images are chosen as 
examples to investigate this phenomenon; ‘baboon’ and 
‘pepper’, as shown in Fig. 2. The ‘baboon’ image has a 
lot of fine details, whereas the ‘pepper’ image has more 
smooth regions and step regions. 

The recursive minimum-maximum method is used to 
process the images that are corrupted by outlier noise. 
The effect of the choice of threshold value on the mean 
square error (MSE) of the output of the recursive min- 
imum-maximum method is examined. This effect is 
studied with different noise probabilites. The results are 
shown in Figs. 3 and 4. They show that a threshold 
value between 30 and 45 gives better performance in all 
situations. Moreover, the MSE values are still accepta- 
ble even with a threshold T = 0. 

3 Statistical properties of minimum-maximum 
method 

The robustness of an estimator subject to impulse noise 
is indicated by the breakdown probability. The break- 
down probability is the probability of an impulse 
occurring at the output of an estimator. In this Section, 
the breakdown probability of the minimum-maximum 
method is derived. This is compared with the median 
filters and its variants; the CWMedian filter [5] and the 
multistage median filter (bidirectional) [6]. 
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Fig. 2 Images or mvestzgatzng thresholds for the recursive minimum- 
maximum methodf 
a 'Baboon' 
b 'Pepper' 
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Fig. 3 Variation of MSEs of recursive minimum-maximum method with 
respect to the threshold and probability of impulse noise for 'baboon' image 
-x- probability = 0.2 
-0- probability = 0.1 
-+-.. probability = 0.05 

-.O-. probability = 0.01 
n With positive impulse noise 
h With negative impulse noise 
c With salt-pepper noise 

c threshold 

Fig. 4 Variation of MSEs of recursive minumum-maximum method with 
respect to the threshold and probability of impulse noise for Pepper' image 
-x- probability = 0.2 
-0- probability = 0.1 
...+--- probability = 0.08 
--O-. probability = 0.01 
a With positive impulse noise 
b With negative impulse noise 
c With salt-pepper noise 

Let {x(n): (n: (i, j )  E (0, ..., N - 1))) be an independ- 
ent identically distributed (i.i.d) discrete random 
sequence with probability measure function F&). x(n) 
is quantised to one of the k values (0, 1, ...? k - 1), i.e 
k-level quantisation. 

For the minimum-maximum method, the probability 
measure functions FL and Fs of the sets L and S, 
respectively, are as follows: 

F L ( ~ )  = P {max(di, < j }  
= P{d,  < j } P { d g - ;  < j }  

= p 2  {z(n) < j }  = ~ . ( j )  ( 3 )  
F s ( j )  = P {min(d;, dg-;) < j }  

1 1 - P {min(di, d 9 - i )  > j }  
= 1 - P { d i  > j } P { d , - i  > j }  
= 1 - p 2  {z(n) > j }  

= 1 - (1 - P {z(n) < j } l 2  
(4) 

= 1 - [l - F X ( j ) l 2  
The probability measure function F,,,(j) of P,, is 
given by 

Fmaz(j) = P (max(S1,. . . ,S4) < j }  ( 5 )  
Since {x(n)} is i.i.d, it is obvious that {Si) is also i.i.d. 
Therefore 

Fmax ( j )  
= P { S 1  < j } P { S 2  < j } P { S Q  < j ) P { S d  < j }  

= ~ g j )  = { 1 - [I - F ~ ( J ) I ~ > ~  
(6) 

Similarly, the probability measure function Fm,(j) of 
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Now if p is the probability of an impulse occurring at 
the input, then the breakdown probability of the maxi- 
mum part P,,,, and the breakdown probability of the 
minimum part P,,, are 

4 P,,, = (1 - [I - } = [ p p  - p)14 ( 8 )  

(9 1 4 P,,, = 1 - [l - p2]  

According to eqn. 2, the breakdown probability P, for 
the minimum-maximum method is 

PT = PTmaz Pwnzn 
= p4(2 - 11)4 [I - (1 - p2)41 (10) 

The breakdown probabilities of the median filter and 
its variants (CWMedian filter and multistage median 
filter) with the probability of impulse occurrence p are 
given by 15, 6, 111 
median filter: 

where 2L + 1 = (2N + 1)(2N + 1) and 2N + 1 is the 
window size. 
CWMedian filter: 

where kl  = L + 1 - k, k2 = L + 1 + k and k is the 
number olf centre weight. 
Multistage median filter: 

Table 1 compares the numerical values of the break- 
down probabilities of the above methods for different 
values of p and different window sizes. It shows that 
with a larger window ( 5  x 5 or larger) the median filter, 
the CWMedian filter and the multistage median filter 
all give a better performance in suppressing impulse 
noise. This is not suprising since the larger the window 
the more data are involved. However, also note that 
with a larger window these filters destroy the fine 
details in the image and the computational require- 
ments are higher. When the input probability p is 
higher, the minimum-maximum method performs bet- 
ter than the other filters. 

Note that these breakdown probabilities are for the 
non-recursive version of the minimum-maximum 
method. Better results should be expected when using 
the recursive method. This point is illustrated by the 
empirical results discussed below. The breakdown 
probability expression for the recursive minimum-max- 
imum method can be obtained by using a similar 
method as that described above. However, in this case, 
the probability measure function of {di, i = 1, . . ., 4} is 
no longer FJj )  but the last recursive output probability 
measure function. 

4 Simulation results 

Two simulation experiments were undertaken to dem- 
onstrate the performance of the proposed recursive 
minimum-maximum method. Comparisons are made 
with the median filters, the CWMedian filter and the 
multistage median filter (bidirectional). To provide 
consistent comparison, only the recursive versions of 
these filters are used. The objective quantitative meas- 
ure used for comparison is the MSE between the origi- 
nal and restored images, defined by 

1 N-l N-l 
M S E  = N2 [ f ( n )  - y(n)I2 (14) 

t=O 3=0 

where U(.)} and {y( . ) }  are the original and restored 
images, respectively. 

The first experiment is designed to study how well 
the various filters preserve structural information in the 
image while removing impulse noise. It is assumed that 
the impulse noise consists of impulses at a fixed 
(known) grey level. The filters only process those pixels 
that are detected as outliers. The ‘baboon’ and ‘pepper’ 
images are used as test images. 

Table 2 shows the statistical MSEs of the restored 
images, which are the MSEs averaged over a number 
independent trials. These results show that the median 
filter with a smaller window is better at preserving 
structural information, but fails to suppress the impulse 
noise when the probability of impulse occurrence is 
high. The median filter with a larger window has oppo- 
site characteristics, which agrees with previous theoreti- 

Table 1: Breakdown probabilities of median filters and their variants for different values of p 

CWMedian CWMedian Multistage Multistage Minimum- 
( 5 ~ 5 , 2 k + 1 = 5 )  (5x5 ,2k+1  =7)  median (5x5)  median ( 7 x 7 )  maximum Probability Median (3 x 3) Median (5 x 5) 

0.0625 9.7 x IOT5 5.64 x IO-’’ 4.93 x IO-& 5.0 x 1.09 10-4 4.94  IO-^ 3.34  IO-^ 
0.1 8.90 10-4 1.60 10-7 5.21 10-6 3.21 10-5 1.00  IO-^ 1.08  IO-^ 5.14 x 

0.2 1.95 10-2 3.69 10-4 2.52 10-3 7.23 10-3 2.20  IO-^ 7.70 x 1 0 - ~  2.53 x 

0.3 9.88 x 1.75 x 4.65 x 8.26 x IO-’ 1.07 x IO-’ 6.70 x IO-’ 2.13 x IO-’ 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.216 
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Table 2: MSEs of recursive median filters and their variants for 'baboon' and 'pepper' images with the outliers consid- 
ered as impulses at some fixed and known locations 

Multistage Minimum- Median (3 x3)  Median (5 x 5) CWMedian (5 x 5) median (5 5) maximum 
Probability Noise style 

'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 

0.1 salt-pepper 2.19 0.88 3.10 2.94 5.09 4.53 4.81 3.91 2.02 0.97 

positive impulse 2.00 0.69 3.70 2.75 4.94 3.83 4.83 3.15 2.12 0.94 

0.0625 salt-pepper 15.23 8.15 21.40 9.66 31.14 21.86 29.28 19.49 13.76 5.13 

positive impulse 19.07 16.88 21.56 12.27 33.09 30.24 32.33 27.82 13.36 5.87 

0.1 salt-pepper 27.31 16.25 23.86 13.51 52.33 39.09 49.88 34.59 22.70 8.92 

positive impulse 52.92 32.89 35.56 18.58 56.22 43.13 54.99 36.98 23.49 10.88 

0.2 salt-pepper 98.41 58.99 71.94 36.43 99.44 77.31 100.3 72.96 53.10 25.77 

positive impulse 371.60 334.15 80.20 60.72 148.4 146.45 169.5 148.83 62.07 35.70 

0.5 salt-pepper 1451 1791 271 204 378 381 456 475 245 188.1 
positive impulse 7390 8543 719 1039 8373 9473 4404 5004 1040 1338 

Table 3: MSEs of recursive median filters and their variants for 'baboon' and 'pepper' images compared with the 
recursive min-max method 

Median (3 x 3) 

'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 

Median (5 x 5) CWMedian (5x  5) Multistage median (5 5) Minimum- maximum Probability Noise style 

0.1 salt-pepper 154.2 32.1 285.3 91.8 190.1 57.7 184.3 62.6 30.78 8.40 

positive impulse 

positive impulse 
0.0625 salt-pepper 

0.1 salt-pepper 
positive impulse 

0.2 salt-pepper 

positive impulse 

0.5 salt-pepper 

positive impulse 

155.8 

165.4 
175.9 

184.1 

220.8 

255.6 

726.8 

2260 

11591 

33.1 

47.4 
55.1 

60.2 

88.9 

130.0 

611.0 

2296 

11517 

285.1 

288.1 
294.7 

300.7 

313.5 

232.4 

434.4 

573 

1 1903 

90.9 

104.5 
116.3 

112.7 

146.4 

140.9 

300.9 

469.9 

12970 

188.1 56.2 

208.85 75.9 

207.0 81.5 

224.7 93.4 

226.8 102.6 

263.1 133.8 

347.5 217.0 

482 452.0 

12783 13680 

182.0 61.0 

206.44 95.0 

208.8 97.4 

228.1 112.1 

236.2 127.1 

276.5 173.0 

377.8 297.0 

583 597.3 

6843 7638 

30.55 8.07 
43.35 21.10 

44.19 14.30 

54.78 23.48 

58.51 24.23 

94.59 40.31 

120.14 70.96 

368.68 313.4 

5493 5536 

Table 4: MSEs of non-recursive median filters and their variants for 'baboon' and 'pepper' images compared with the 
recursive min-max method 

Median (5 5) CWMedian (5 5 )  Multistage median Minimum- Median (3 x 3) 
Probability Noise style (5 x 5) maximum 

0.1 salt-pepper 

positive impulse 

0.0625 salt-pepper 

0.1 salt-pepper 

0.2 salt-pepper 

0.5 salt-pepper 

positive impulse 

positive impulse 

positive impulse 

positive i m w l s e  

'baboon' 

154.4 

154.7 

167.4 

176.2 

179.2 
219.8 
257.8 

728.6 

2167 

11666 

'pepper' 

33.00 

32.90 

48.06 

56.50 

59.56 
100.0 

139.5 

598.3 

2253 
12618 

'baboon' 

284.3 

284.6 

289.7 

294.1 

295.3 
313.5 

318.9 

430.5 
570.5 

12035 

'pepper' 

92.00 

91.73 

105.0 

114.8 

111.8 
146.4 

144.0 

300.9 
461.0 

12943 

'baboon' 'pepper' 'baboon' 'pepper' 'baboon' 'pepper' 

135.4 

134.7 

152.8 

154.4 

164.1 
180.0 

208.7 

468.9 
1560 

11717 

37.86 

37.63 

53.96 

62.33 

68.33 
91.43 

116.3 
381.4 

1605 

12773 

133.0 

133.2 

157.8 

165.2 

178.3 
212.2 

263.4 

624.4 
1572 

9623 

48.16 30.78 

46.30 30.55 

79.86 43.35 

89.66 44.19 

99.46 54.78 
141.2 58.51 

186.3 94.59 
589.3 120.14 

1870 368.68 

10645 5493 

8.40 

8.07 

21.10 

14.30 

23.48 

24.23 

40.31 

70.96 
313.4 

5536 

I cal analysis. The CWMedian filter and the multistage 
median filter have the same problem. However, the 
recursive minimum-maximum method is able not only 
to preserve the structural information well, but also 
suppress the impulse noise effectively even when the 
probability of impulse occurrence is high. Table 4: 
MSEs of non-recursive median filters and their variants 
for 'baboon' and 'pepper' images compared with the 
recursive min-max method. 

In the second experiment, the same test images are 
used. However, the outlier consists of impulses at 

unknown grey levels. This is the situation often 
encountered in practice. Here, two groups of simula- 
tions are performed. The first group is with the recur- 
sive median filters and its variants, and the other group 
is with the non-recursive version of these filters. It is 
obvious that the recursive median filters and its vari- 
ants give a better performance in suppressing impulse 
noise, especially in the case of the high probability of 
outliers. They also tend to blur the fine details. On the 
other hand, the non-recusive median filters and its var- 
iants give a better performance in terms of preserving 
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a b 

Fig,5 a Original ‘Diane’ image; b ‘Diane’ image blurred by salt-pepper noise 0, = 0.3) 
c Original ‘Lena’ image; d ‘Lena’ image blurred by negative impulse noise (p = 0.0625) 

The original image and noisy images 
C d 

a b C 

d e 
Fig. 6 Restored ‘Diane’ images 
a Recursive median filter (3 x 3); b Recursive median filter (5 x 5); c Recursive multistage filter (5 x 5) 
d Recursive CWMedian filter (5 x 5); e Recursive minimum-maximum method 

IEE Proc.-Vis. Image Signal Process., Vol. 145, No. 4, August 1998 269 



a b C 

d 
Fig.7 Restored ‘Lena’ images 
a Nonrecursive median filter (3 x 3), b Nonrecursive median filter ( 5  x 3, c Nonrecui 
d Nonrecursive CWMedian filter (5 x 5), e Recursive minimum-maximum method 

edge and fine details in the restored image, but cannot 
suppress the impulse noise effectively when the proba- 
bility of impulse occurrence is high. The statistical 
experimental results are listed in Tables 3 and 4 for the 
first and second group of filters, respectively. The 
recursive minimum-maximum method results in the 
smallest MSE and is robust, in that it maintains its per- 
formance across different images and different types of 
outlier. 

The effectiveness of the recursive minimum-maxi- 
mum method is further illustrated by restoring two 
other images with high and low probability of impulse 
occurrence. Figs 5a and c are the original ‘Diane’ and 
‘Lena’ images. Figs. 5b and d are their corresponding 
degraded images corrupted by salt-pepper noise with p 
= 0.3, and by negative impulse noise with p = 0.0625, 
respectively. Since the recursive median filters and its 
variants give a better performance in terms of MSE in 
the case of the high probability of outliers, they are 
used to restore the image in Fig. 5b. The non-recursive 
version of median filters and its variants are used to 

shown in Figs. 6 and 7. These results show again that 
our ProPosed method works effectively under both 

, restore the image in Fig. 5d. The restored images are 

e 

rsive multistage filter ( 5  x 5) 

illustrative examples, the performance of the proposed 
method is better than that of median filters and its var- 
iants, both recursive and non-recursive. The proposed 
method can be used as a pre-processor, which can be 
combined with the other image restoration techniques 
to enhance the robustness to impulse noise. 
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